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1. Introduction.
At various stages in the formal development of a mathematical theory in

many-valued logics, new formation rule8 and po8tu1ates are added to a given
formal system to obtain another system. In this paper, some theorem8 in many-
valued logics demanded under such circumstances shall be proved generally and
$8yntactically$ .

2. The formal system of many-valued logics.

We shall introduce the system M-LK formulated by M. Takahashi [11, which
generally represents many-valued logics.

2.1. Truth values and primitive symbols.
Let $M$ be an integer $\geq 2$ . We take the set $T$ of all the truth value8;

$T=\{1,2_{1}\cdots, M\}$ .
M-LK contains as symbols, denumerably many free variables $a,$ $ b_{1}\cdots$ ,

denumerably many bound variables $x,$ $y,$ $\cdots$ , function letters of rank $k$

$(k=0,1, \cdots)$ , predicate letters of rank $k(k=1,2, \cdots)$ , propositional connectives of
rank $k(k=0,1, \cdots)$ , universal quantifiers $\forall x,$ $\forall y,$ $\cdots$ , existential quantffiers $\exists x$ ,
$\exists y,$ $\cdots$ , parentheses and comma. Specially, function letters of rank $0$ denote
individual constants and propositional connectives of rank $0$ denote propositional
constants. Each propositional connective of rank $k$ is assoeiated a truth value
function from $T^{k}$ into $T$.

To refine symbols of a system M-LK, we must choice and fix the following
sets: $\mathfrak{B}$ is an infinite set of free variables, and $\mathfrak{B}$ is an infinite set of bound
variables, and $\mathfrak{F}$ is a set of function letters, and $\mathfrak{P}$ is a set of predicate letters,
and $\mathfrak{C}$ is a set of propositional connectives. We call the notation $\langle \mathfrak{B}, \mathfrak{B}, \mathfrak{F}, \mathfrak{P}_{1}\mathfrak{C}\rangle$

the frame of a system M-LK.
We assume that the definitions of “term” and “formula“ in a 8y8tem are

well-known; their formation rules are applied to the symbols of the system.
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2.2. $g\cdot matr\ddagger ces$ and matrices.

When $\Gamma^{(1)},$
$\cdots,$

$\Gamma^{(Z)}$ are sets of formulae, we call the following expression a
g-matrix;

$\left(\begin{array}{l}\Gamma^{(1)}\\\vdots\\\Gamma^{(r)}\end{array}\right)$

.
Next let

$K=\left(\begin{array}{l}\Gamma^{(1)}\\\vdots\\\Gamma^{(r}\end{array}\right)$ and $L=\left(\begin{array}{l}\Pi^{(1)}\\\vdots\\\Pi^{(X)}\end{array}\right)$

be g-matrices. We define g-matrix $K\cup L$ to be

$\left(\begin{array}{l}\Gamma^{(1)}\cup\Pi^{(1)}\\\vdots\\\Gamma^{(I)}\cup\Pi^{(D}\end{array}\right)$

.
Moreover, $\{\Gamma\}_{\mu_{1}\ldots..\mu_{k}}$ or $\{\Gamma\}_{R}$ denotes the g-matrix such that $\Gamma^{(\mu_{\ell})}$ is

$\Gamma(i=1, \cdots, k)$ and $\Gamma^{(\nu)}$ is the empty set $(\nu\neq\mu_{1}, \cdots, \mu_{k})$ where $\Gamma$ is a set of for-
mulae and $R=\{\mu_{1}, \cdots, \mu_{k}\}$ . Often we write $\hat{\mu}$ as $T-\{\mu\}$ .

Specially we call the g-matrix a matrix when all $\Gamma^{(1)},$
$\ldots,$

$\Gamma^{(r)}$ are finite
sequences of formulae. We define $\Gamma\cup\Pi$ to be $\Gamma\Pi$ when $\Gamma,$ $\Pi$ are flnite sequences
of formulae.

2.3. Beginning matrices.

A matrix of the form $\{A\}_{T}$ or $\{F_{0}\}_{f0}$ is called a logical matrix where $A$ is
a formula and $F_{0}$ i8 a propositional connective of rank $0$ , a Propositional con-
stant, associated a truth value function $f_{0}$ .

Let $S$ be a set of clo8ed formulae. A matrix of the form $\{A\}_{1}$ is called a
mathematical matrix where $A\in S$ . When $S$ is not null, we call our system
M-LK with $S$. But we simply call our system M-LK when there can be no
misunderstanding. We often call $S$ the set of axioms of M-LK (with $S$).

Logical matrices and mathematical matrices are called beginning matrices.

2.4. Inference rules.

We introduce inference rules and $K,$ $L,$ $N$ stand for matrices and $A,$ $B,$ $A_{1}$ ,
$A_{2},$ $\cdots$ stand for formulae.
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$K\cup\{A\}_{\mu}\cup\{A\}_{\mu}$

Contraction: $(\mu\in T)$ .
$K\cup\{A\}_{\mu}$

Weakening: $\frac{K}{K\cup\{A\}_{\mu}}$
$(\mu\in T)$ .

Exchange: $\frac{K\cup\{A\}_{\mu}\cup L\cup\{B\}_{\mu}\cup N}{K\cup\{B\}_{\mu}\cup L\cup\{A\}_{\mu}\cup N}$
$(\mu\in T)$ .

Cut: $\frac{K\cup\{A\}_{\mu}L\cup\{A\}_{\nu}}{K\cup L}$ $(\mu, \nu\in T, \mu\neq\nu)$ .

Inferences on propositional connectives: Let $F$ be a propositional con-
nective of rank $k$ and $f$ be its truth value function and let $\mu=f(\mu_{1}, \cdots, \mu_{k})$ ,

$\frac{K\cup\{A_{1}\}_{\mu_{1}},K\cup\{A_{2}\}_{\mu_{2^{1}}}.\cdots,K\cup\{A_{k}\}_{\mu_{k}}}{K\cup\{F(A_{1},\cdot\cdot,A_{\iota})\}_{\mu}}$

Inferences on quantifiers:

$\frac{K\cup\{A(a)\}_{12\mu},K\cup\{A(t)\}_{\mu}}{K\cup\{\forall xA(x)\}_{\mu}}$ $(\mu\in T)$

$\frac{K\cup\{A(a)\}_{\mu,\mu+1\ldots.K}\prime’ K\cup\{A(t)\}_{\mu}}{K\cup\{\exists xA(x)\}_{\mu}}$ $(\mu eT)$ ,

where the free variable $a$ does not occur in the conclusion and $A(t)$ means the

formula obtained from the formula $A(a)$ by substituting the term $t$ for $a$ in

both inferences. Moreover, $a$ is called the eigen-variable of these inferences.

A matrix is called provable, if it is obtained from beginning matrices by

a finite number of applications of inference rules given above.

2.5. Some propositions of M-LK’.
To prove our theorems we need some preliminaries. The following proposi-

tions hold and their $prfs$ should be referred to \S 4 in [11.

2.5.1. Let $R_{j}\subseteq T(j=1,2, \cdots, r)$ . If for each $j$

$K\cup\{A\}_{R_{j}}$

is provable, then $K\cup\{A\}_{R}$

is also provable where $R$ denotes $\cap rR_{j}$ .
$j=1$

2.5.2. For each $\mu\in T$,

$\{\exists xA(x)\}_{1\ldots..\mu-1}\cup\{A(t)\}_{\mu\ldots..r}$ ,
$\{\forall xA(x)\}_{\mu+1\ldots..X}\cup\{A(t)\}_{1\ldots..\mu}$ ,
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are provable.

2.5.3. If a matr $ix$ is provable, then it is provable without cut.

2.5.4. Let $G$ be a generalized propositional connective defined by the
propositional connectives in M-LK with its truth value function $g$ of rank
$n$ , and $g$ be composed by the truth value functions in M-LK. For any
$\mu_{1},$ $\cdots,$ $\mu_{n}\in T$, if

$K\cup\{A_{1}\}_{\mu_{1}}\ldots..K\cup\{A_{n}\}_{\mu_{n}}$ ,

are provable, then $K\cup\{G(A_{1}, \cdots, A_{n})\}_{g(\mu_{1}\ldots..\mu_{n})}$ is provable.

3. Functionally completeness.

A functionally complete system denotes that any function from $T^{k}$ into
$T(k=1,2, \cdots)$ can be represented by the truth value functions in the system
(see [2]). We hereafter treat of the functionally complete systems and $supp_{08}e$

that a system M-LK can be regarded as the system containing all functions
from $T^{k}$ into $T(k=1,2, \cdots)$ as the truth value functions. As the following
connectives are often used in this Paper, we are concerned about some proper-
ties of them (refer to \S 3 in [3]).

3.1. The connectives $^{k}$ of rank $k(k\geq 2)$ .
The truth value function of this connective corresponds an element of $T^{k}$ to

the minimum of all factors of it.
We write $\vee when$ there can be no misunderstanding.

3.1.1. If a matrix $K\cup\{A_{\ell}\}_{\mu}$ is provable for some $i(1\leq i\leq k)$ , then the
matrix $K\cup\{^{k}(A_{1}, \cdots, A_{k})\}_{1\ldots..\mu}$ is provable.

3.1.2. If a matrix $K\cup\{A_{\ell}\}_{\mu\ldots..r}$ is provable for each $i(1\leq i\leq k)$ , then the
matrix $K\cup\{^{k}(A_{1}\ldots..A_{k})\}_{\mu\ldots..\kappa}$ is provable.

3.2. The connective $\wedge^{k}$ of rank $k(k\geq 2)$

The truth value function of this connective corresponds an element of $T^{k}$ to
the maximum of all factors of it.

We write $\wedge when$ there can be no misunderstanding.

3.2.1. If a matrix $K\cup\{A_{\ell}\}_{\mu}$ is provable for some $i(1\leq i\leq k)$ , then the
matr $ixK\cup\{\bigwedge_{k}(A_{1}, \cdots, A_{1})\}_{\mu,\ldots.r}$ is provable.

3.2.2. If a matrix $K\cup\{A_{\ell}\}_{1\ldots..\mu}$ is provable for each $i(1\leq i\leq k)$ , then the
matrix $K\cup\{\wedge^{k}(A_{1}, \cdots, A_{k})\}_{1\ldots..\mu}$ is provable.
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3.3. The connective $G_{\mu,\nu}^{R_{J}.R_{2}}$ of rank $n$ .
The truth value function of this connective corresponds an element of $R_{1}$ to

$\mu$ and an element of $R_{2}$ to $\nu$ where $R_{1}\cup R_{2}=T^{n}$ and $ R_{1}\cap R_{2}=\phi$ . Instead of
$G_{1.M}^{\{\mu\},\hat{\mu}}$ , we write $G_{\mu}$ .

3.3.1. A matrix $K\cup\{A\}_{\mu}$ is provable, if and only if a matrix $K\cup\{G_{\mu}(A)\}_{1}$

is provable.
3.4. The connective $\equiv$ of rank 2.
A formula $A\equiv B$ denotes $\bigwedge_{\mu\in T}(\vee G_{\nu}(A)\vee G_{\mu}(B))\nu\in_{\hat{\mu}}$

3.4.1. If two matrices $\{A\equiv B\}_{1}$ and $K$ are provable, then the matrix $K^{\prime}$

obtained from $K$ by replacing some occurrences of $A$ in $K$ by $B$ is also

provable.

4. The extended system MLE.
Hereafter, we assume that the predicate letter $=$ of rank 2 is contained in

$\mathfrak{P}$ in the frame of our system M-LK. Suppose not, we can add the new predi-

cate letter $=$ of rank 2 to $\mathfrak{P}$ .
In this section, we shall introduce two formal systems of many-valued logics

with equality by two methods. The one, which is called MLE, is obtained

from M-LK by adding the inference rules of equality. Another, which is called

MLE’, is obtained from M-LK by joining the set $\Gamma_{e}$ of equality axioms to the

set $S$ of M-LK which composes the mathematical matrices (refer to 2.3) Next

we shall show the relations among MLE and MLE’ and M-LK.

First of all, we introduce MLE obtained from M-LK by adding the following

inference rules of equality:

$\frac{K\cup\{t=t\}_{1}}{K}$ $\frac{K\cup\{P(s)\}_{\mu}K\cup\{P(t)\}\hat{\mu}}{K\cup\{s=t\}_{F}}$ $(\mu\in T)$

where $P(a)$ expresses a prime formula and $s,$
$t$ express terms.

Then we can prove the cut-elimination theorem for the sy8tem MLE and

the following proposition.

4.1. The following matrices are provable in MLE where $P(a)$ denotes a
prime formula and $f(a),$ $s,$

$t$ denote terms;

1) $\{t=t\}_{1}$ , 2) $\{s=t\}_{r}\cup\{s=t\}_{1}$ ,

8) $\{t=s\}_{r}\cup\{s=t\}_{1}$ , 4) $\{s=t\}_{X}\cup\{t=r\}_{r}\cup\{s=r\}_{1}$ ,

5) $\{s=t\}_{K}\cup\{f(s)=f(t)\}_{1}$ , 6) $\{s=t\}_{r}\cup\{P(s)\}_{\hat{\mu}}\cup\{P(t)\}_{\mu}$ $(\mu\in T)$ .
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Let $\Gamma$ be the set of the following closed formulae;

1) $\forall x(x=x),$ $\forall x\forall y(G_{r}(x=y)\vee y=x),$ $\forall x\forall y\forall z(G_{r}(x=y)\vee G_{r}(y=z)\vee x=z)$ ,
2) $\forall x_{1}\cdots\forall x_{\hslash}\forall y_{1}\cdots\forall yn_{1\leq k\leq n}(\vee(G_{r}(x_{k}=y_{k}))\vee(f(x_{1}, \cdots, x_{n})=f(y_{1}, \cdots, y_{n})))$ ,

3) $\forall x_{1}\cdots\forall x_{n}\forall y_{1}\cdots\forall y_{n}(\vee(G_{r}(x_{k}=y_{k}))\vee(P(x_{1}, \cdots, x_{n})\equiv P(y_{1}, \cdots, y_{n})))1\leq k\leq$

”

where $f(*1’ , *_{n})$ and $P(*1’ , *_{n})$ express a function letter of rank $n$ and a
predicate letter of rank $n$ respectively $(n=1,2_{1}\cdots)$ .

As usual, $\{\Gamma\}_{1}^{\wedge}\cup K$ is said to be provable in a system if there is a finite
subset $\Gamma^{\prime}$ of $\Gamma$ such that the matrix $\{\Gamma^{\prime}\}_{1}^{\wedge}\cup K$ is provable in the 8ystem where
$\Gamma$ is the set of formulae.

4.2. If $A$ is a formula contained in $\Gamma_{\ell}$ , then the matrix $\{A\}_{1}$ is pro-
vable in MLE.

4.3. A matr’ix $K$ is provable in MLE if and only if $\{\Gamma_{e}\}_{1}^{\wedge}\cup K$ is provable
in M-LK.

Proof. Suppose that $K$ is provable in MLE. By the cut-elimination theorem
for MLE, there exists a cut-free proof of $K$. We prove our assertion by induc-
tion on the number of inference rules used in the proof. Therefore we consider
only the following case;

$\frac{L\cup\{P(s)\}_{\mu}L\cup\{P(t)\}\hat{\mu}}{L\cup\{s=t\}_{K}}$ (for any $\mu$).

Then two g-matrices $\{\Gamma_{e}\}_{1}^{\wedge}\cup L\cup\{P(s)\}_{\mu}$ and $\{\Gamma_{\iota}\}_{1}^{\wedge}\cup L\cup\{P(t)\}_{\hat{\mu}}$ are provable in
M-LK by the induction hypotheses. On the other hand, $\{\Gamma_{e}\}_{1}^{\wedge}\cup\{s=t\}_{K}\cup\{P(s)\equiv$

$P(t)\}_{1}$ is provable in M-LK. Hence $\{\Gamma_{\iota}\}_{1}^{\wedge}\cup\{s=t\}_{r}\cup L\cup\{P(t)\}_{\mu}$ is provable in M-
LK by applying the Proposition 3.4.1 to $\{\Gamma,\}^{\wedge}\cup L\cup\{P(s)\}_{\mu}$ . Therefore $\{\Gamma_{e}\}_{1}^{\wedge}\cup$

$\{s=t\}_{M}\cup L$ is provable in M-LK by aPplying the PropositIon 2.5.1 to two
g-matrices $\{\Gamma_{e}\}_{1}^{\wedge}\cup L\cup\{P(t)\}_{\hat{\mu}}$ and $\{\Gamma_{e}\}_{1}\wedge\cup\{s=t\}_{P}\cup L\cup\{P(t)\}_{\mu}$ .

4.4. Each matrix $K$, which occurs in a cut-free proof of MLE and
which contains no predicate letter $=$ except in prime formulae, satisfies at
least one of the following conditions;

1) a matrix of the form $\{s=t\}_{r}$ , where $s$ and $t$ are distinct terms, $is$

contained in $K$,
2) a matr$ix$ of the form $\{t=t\}_{1}$ is contained in $K$,
3) the matrix obtained by deleting all formulae containing the predicate

letter $=from$ $K$ is provable in M-LK.
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Proof. This Proposition is proved by the induction on the number of
inference rules used in the $prf$ . As a formula containing $=$ is not sub-formula
of a logical inference rule by the premises, we consider only the following $ca8e$ ;

$\frac{L\cup\{P(s)\}_{\mu}L\cup\{P(t)\}_{\hat{\mu}}}{L\cup\{s=t\}_{r}}$ (for any $\mu\in T$).

The lower matrix satisfies the condition 1) when $s$ and $t$ are distinct terms.
Therefore we may consider the following case;

$\frac{L\cup\{P(t)\}_{\mu}L\cup\{P(t)\}_{\hat{\mu}}}{L\cup\{t=t\}_{r}}$ (for any $\mu\in T$).

In this case, we can easily prove our assertion by considering not only the
conditions satisfied by the upper matrices but the value of $\mu$ and the form of
$P(t)$ . For example, the lower matrix satisfies condition 3) when the right uPper

matrix satisfies the condition 3) and the form of $P(t)$ is $u=v$ and $\mu$ is $M$.
5. Some propositions of MLE (ML $E^{\prime}$)

First of all, we need the following preliminaries to state some propositions
of MLE (MLE\prime ).

Now let $B(a_{1}, \cdots, a_{n})$ be a formula and let $x_{1},$ $\cdots,$ $x_{n}$ be distinct bound varia-
bles not oecurring in $B(a_{1}, \cdots, a_{n})$ . We introduce the expres8ion $\lambda x_{1}\cdots x_{\pi}B$

$(x_{1}, \cdots, x_{n})$ , which is called a variety of rank $n$ . If $t_{1},$
$\cdots,$

$t_{n}$ are terms and $V$

denotes a variety $\lambda x_{1}\cdots x_{n}B(x_{1}, \cdots, x_{n})$ , then $V(t_{1}, \cdots, t_{n})$ means the formula
$B(t_{1}, \cdots, t_{n})$ .

Let $h$ be a function letter of rank $p$ , and $H$ be a predicate letter of rank
$p+1$ . We define the operation ‘

$*$ (relative to $h$ and $H$ ) for terms and formulae
as follows:

1) $a^{*}$ is $\lambda x(x=a)$ where $a$ is a free variable.
2) $h(t_{1}, \cdots, t_{p})^{*}$ Is $\lambda y\forall x_{1}\cdots\forall x_{p}(\vee G_{K}(t_{j}(x_{j}))\vee H(x_{1}1\leq j\leq p x_{p}, y))$ .
3) $f(t_{1}, \cdots, t_{n})^{*}$ is $\lambda y\forall x_{1}\cdots\forall x_{n_{1\leq j\leq n}}(\vee G_{r}(t_{j}(x_{j}))\vee y=f(x_{1}, \cdots, x_{n}))$ where $f$ is

any function letter of rank $n$ other than $h$ .
4) $P(t_{1}, \cdots, t_{n})^{*}$ is $\forall x_{1}\cdots\forall x_{n_{1\leq j\leq}}(\vee G_{r}(t_{j}(x_{j}))\vee P(x_{1}, \cdots, x_{n}))$ where $P$ is any

prodicate letter of rank $n$ .
5) $F_{0}^{*}$ where $F_{0}$ is $F_{0}$ is any propositional connective of rank $0$ .
6) $F(A_{1}, \cdots, A_{n})^{*}$ is $F(A_{1}^{*}, \cdots, A_{n}^{*})$ where $F$ is any propositional $nnective$

of rank $n(n=1,2, \cdots)$ .
7) $(\forall xB(x))^{*}$ and $(\exists xB(x))^{*}$ are $\forall xB^{*}(x)$ and $\exists xB^{*}(x)$ respectively where
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$P.(a)$ means $B(a)^{*}$ .
Specially, we omit the useless symbols in order to make the expressions

formulae when rank $P$ or rank $n$ is $0$ in 2) or 3) of above-mentioned definition.
$K^{*}$ often denotes the g-matrix obtained from a g-matrix $K$ by operating $on$

all formulae in $K$.
Furthermore, we define the expression $E^{0}$ as the result of substitution of

$\overline{h}$ for $H$ throughout an expression $E$ where $\overline{h}$ is an abbreviation of the expres-

sion $\lambda x_{1}\cdots x_{p}y(y=h(x_{1}, \cdots, x_{p}))$ . We simply write $E^{\iota}$ in place of $(E^{*})^{0}$ .
It is clear from the definitions that the following propositions hold.

5.1. Let $E$ be a term or a formula or a g-matrix.
1) A free variable occurs in $E^{*}$ iff it occurs in $E$ .
2) A function letter occurs in $E^{*}$ iff it $d\dot{j}ffers$ from $h$ and occurs in $E$ .
3) For any predicate letter other than $H,$ $=$ it occurs in $E^{*}$ iff it

occurs in $E$ .
4) $H$ occurs in $E^{*}$ iff either $h$ or $H$ occurs in $E$.
5) If none of $h,$ $H$ occurs in $E$, then $E^{*}$ coincrdes with $E^{t}$ .
$\exists!xA(x)$ denotes $\exists xA(x)\wedge\forall y\forall z(G_{H}(A(y))\vee G_{H}(A(z))\vee y=z)$ , and $H^{\prime}$ denotes

$\forall x_{1}\cdots\forall x_{p}(\exists!xH(x_{1}, \cdots, x_{p}, x))$ and $H^{\prime\prime}$ denotes $\forall x_{1}\cdots\forall x_{p}H(x_{1}, \cdots, x_{p}, h(x_{1}, \cdots, x_{p}))$ .
Hereafter we show some propositions of MLE (MLE’) which can be trans-

formed to the propositions of M-LK by the proposition 4.8. They are proved

by induction or by applying the propositions in \S 2 and \S 3.

5.2. Let $t$ be a term and let $A$ be a formula not containing H. Then
the following matrices are provable in MLE and there exists the proof of
each of them such that it has no expression containing $H$ :

1) $\{t\#(a)\equiv t=a\}_{1}$ . 2) $\{A\#\equiv A\}_{1}$ .
5.3. Let a term $t$ and a formula $A$ not to contain $h$ . Then the following

$matr\dot{j}ces$ are provable in MLE and there exists the proof of each of them
such that it has no expression containing $h$ :

1) $\{H^{\prime}\}_{1}^{\wedge}\cup\{t^{*}(a)\equiv t=a\}_{1}$ . 2) $\{H^{\prime}\}_{\ell}^{\wedge}\cup\{A^{*}\equiv A\}_{1}$ .
5.4. Let $t$ , $T(a)$ be terms and let $A,$ $B,$ $A(a)$ be formulae. Then the

following matrices are provable in MLE:
1) $\{H\}_{1}^{\wedge}\cup\{(H^{\prime})^{*}\}_{1}$ . 2) $\{H^{\prime}\}_{1}^{\wedge}\cup\{(H^{\prime\prime})^{*}\}_{1}$ .
3) $\{H^{\prime}\}_{1}^{\wedge}\cup\{B^{*}\}_{1}$ (where $ B\in\Gamma$ ). 4) $\{H^{\prime}\}_{1}^{\wedge}\cup\{\exists!xt^{*}(x)\}_{1}$ .
5) $\{H^{\prime}\}_{1}^{\wedge}\cup\{t^{*}(a)\}_{r}\cup\{T(t)^{*}(b)\equiv T(a)^{*}(b)\}_{1}$ .
6) $\{H^{\prime}\}_{1}^{\wedge}\cup\{t^{*}(a)\}_{r}\cup\{A(t)^{*}\equiv A(a)^{*}\}_{1}$ .
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7) $\{H^{\prime}, H^{\prime\prime}\}_{1}^{\wedge}\cup\{H(a, b)\equiv b=h(a)\}_{1}$ .
8) $\{H^{\prime}, H^{\prime\prime}\}_{1}^{\wedge}\cup\{t^{*}(a)\equiv t=a\}_{1}$ . 9) $\{H^{\prime}, H^{\prime\prime}\}_{1}^{\wedge}\cup\{A^{*}\equiv A\}_{1}$ .
5.5. If a matrix $K$ is provable in M-LK, then the matrix $\{H^{\prime}\}_{i}^{\wedge}\cup K^{*}$ is

provable in MLE.
6. Eliminability of descriptive definitions.
In this section, we shall generally discuss the eliminability of descriptive

definitions in many-valued logics (refer to [4]).

6.1. Elimination relations.
At various stages in the formal development of a mathematical theory in

many-valued logics, we add new formation rules introducing new formal symbols
or notations and the new postulates providing for their use deductively to a
given formal system $S_{1}$ in order to obtain another system $S_{2}$ . The notions of
“a beginning matrix”, “an inference rule” and “provability” etc. are closely
related to the symbols of a system: If a new symbol is added to a system, new
beginning matrices and inference rules can be added to the system. Then the
set of formulae (provable matrices) of $S_{1}$ becomes the subset of those of $S_{2}$ .

Under such circumstances, we say that the new notations or symbols (with

their postulates) are eliminable (from $S_{2}$ in $S_{1}$ ) if there is an effective $process+$

by which the formula $E^{+}$ (the matrix $K^{+}$) of $S_{1}$ can be found for any formula
$E$ (any matrix $K$ ) of $S_{2}$ :

(I) If $E$ is a formula of $S_{1}$ , then $E^{+}$ is $E$.
(II) A matrix $\{E^{+}\equiv E\}_{1}$ is provable in $S_{2}$ .
(III) If a matrix $K$ is provable in $S_{2}$ , then $K^{+}$ is provable in $S_{1}$ .
We call $(I)-(III)$ the elimination relations. When the elimination relations

hold, then furthermore:
(IV) A matrix $K$ is provable in $S_{2}$ iff the matrix $K^{+}$ is provable in $S_{1}$ .
(V) For any matrix $L$ of $S_{1},$ $L$ is provable in $S_{2}$ iff $L$ is provable in $S_{1}$ .
Often, we may consider $S_{1},$ $S_{2}$ as the systems of M-LK without the mathema-

tical axioms because of the following proposition.

6.1.1. A matrix $K$ is provable in M-LK with $S$ if and only if the g-
matrix $\{S\}_{1}^{\wedge}\cup K$ is provable in M-LK without $S$.

6.2. Eliminability of explicit definitions.
Let $S_{1}$ be a sy8tem of M-LK and let $S_{2}$ be the system of M-LK obtained

from $S_{1}$ by adding the new predicate letter $P$ of rank $n$ and the new postulate
(the mathematical matrix) of the form $\{\forall x_{1}\cdots\forall x_{n}(P(x_{1}, \cdots, x_{n})\equiv A(x_{1}, \cdots, x_{n})\}_{1}$
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where $\forall x_{1}\cdots\forall x_{n}A(x_{1}, \cdots, x_{n})$ be a closed formula of $S_{1}$ . Then we can obtain

the formula $B^{+}$ (the matrix $K^{+}$ ) of $S_{1}$ from a formula $B$ (a matrix $K$ ) of $S$,
by substituting $\lambda x_{1}\cdots x_{n}A(x_{1}, \cdots, x_{n})$ to $P$.

Example. Let $S_{1}$ be a system of MLE with a function letter $h$ of rank $P$

and let $S_{8}$ be the system of MLE from $S_{1}$ by adding the new predicate letter

$H$ of rank $p+1$ and the new postulate (the mathematical matrix) of the form
$\{\forall x_{1}\cdots\forall x_{p}\forall x(H(x_{1}, \cdots, x_{p})\equiv h(x_{1}, \cdots, x_{p})=x)\}_{1}$ . Then the predicate letter $H$ is

eliminable from $S_{2}$ in $S_{1}$ by the effective process $0$ in \S 5.

6.3. Eliminability of descriptive definitions.

Let $S_{\epsilon}$ be a system of MLE with the provable matrix $\{H^{\prime}\}_{1}$ of the from
$\{\forall x_{1}\cdots\forall x_{p}\exists]xH(x_{1}, \cdots, x_{p}, x)\}_{1}$ and let $S$ be the system of M-LK from $S_{\epsilon}$ by

adding a new function letter $h$ of rank $p$ and the new postulate (the mathema-

tical matrix) $\{H^{\prime\prime}\}_{1}$ of the form

$\{\forall x_{1}, \cdots, \forall x_{p}H(x_{1}, \cdots, x_{p}h(x_{1}, \cdots, x_{p}))\}_{1}$ .
We define $+for$ a formula $A$ of $S_{\epsilon}$ or $S_{4}$ :
1) If $A$ does not contain $h$ , then $A^{+}$ is $A$ .
2) If $A$ contains $h$ , then $A^{+}$ is $A^{*}$ .
Theorem 1. The new function letter $h$ with its postulate $\{H^{\prime\prime}\}_{1}i\epsilon$ elimi-

nable from $S$ in $S_{\epsilon}$ by the effective process $+$ .
Proof. We can prove by the Propositions 5.3, 5.4 and 5.5.

6.4. Replaceability of undefined functions by predicates.

We show the application of our arguments in 6.2 and 6.3.
For the above-mentioned systems $S_{a},$ $S_{4}$ , we suppose that the frame (and the

original set of mathematical matrices) of $S_{2}$ is same to one of $S$ . The new
postulate of the form $\{\forall x_{1}\cdots\forall x_{p}\forall x(H(x_{1}, \cdots, x_{p}, x)\equiv h(x_{1}, \cdots, x_{p})=x)\}_{1}$ of $S_{2}$ can be
replaced in $S_{4}$ by the pair of the postulates $\{H^{\prime}\}_{1}$ and $\{H^{\prime\prime}\}_{1}$ without changing

the provability relationship. So we can equate $S_{2}$ with $S_{4}$ .
Futhermore we consider the matrix $\{H^{\prime}\}_{1}$ as the postulate of the predicate

letter $H$ in $S_{\epsilon}$ .
Then the following propo8ition and Theorem 2 hold by passing through

$S_{g}$ (or $S$ ) where $0$ and $+are$ ones mentioned in 6.2 and 6.3 respectively.

6.4.1. Let $A(B)$ be a formula of $S_{1}(S_{8})$ and let $K(L)$ be a matrix of
$S_{1}(S_{l})$ .

(1) $\{A\equiv A^{+0}\}_{1}$ is provable in $S_{1}$ .
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(2) $\{B\equiv B^{0+}\}_{1}$ is provable in $S_{8}$ .
(3) If $K\dot{j}s$ provable in $S_{1}$ , then $K^{+}$ is provable in $S_{t}$ .
(4) If $L$ is provable in $S_{8}$ , then $ L^{0}i\epsilon$ provable in $S_{1}$ .
Theorem 2. Let $K(L)$ be a matrix of $S_{1}(S_{s})$ .
(1) $K$ is provable in $S_{1}$ if and only if $K^{+}$ is provable in $S_{8}$ .
(2) $L$ is provable in $S_{\epsilon}$ if and only if $L^{0}$ is provable in $S_{1}$ .
Note: In \S 4-\S 6, we considered the predicate letter $=$ of rank 2, whose

values are 1, $M$, as equality symbol. Futhermore we may consider the predicate

letter $|=|$ of rank 2, whose values are $\mu$ and $\nu$ where $\mu\neq\nu$ , as generalized

equality symbol. But we can reduce a formal sy8tem with $|=|$ to the suitable

system with $=$ by applying the method in 6.2: V $x\forall y(x=y\equiv G_{1H}^{(\mu\}^{\wedge}\mu}(x|=|y))$ and

$\forall x\forall y(x|=|y\equiv G_{\mu,\dot{\nu}}^{\{1|1}(x=y))\wedge$ are explicit definitions of $=$ and $[=|,$ $re8pectively$ .
Hence we can consider our arguments in \S 4-\S 6 as the general ones on equality

with two values.

7. The applications.
In this section, we shall extend the interpolation theorem and Beth’s theorem

in many-valued logics with functionally completeness by applying the Theorem 2.

The notations should be referred to [31.

7.1. The extended interpolation theorem.
We prove an extension of the interpolation theorem which takes function

letters into account (refer to [5]).

THE EXTENDED INTERPOLATION THEOREM. Let $(K_{1}/K_{2})$ be a partition of a
matrix $K$ and let $\mu,$

$\nu\in T.$ If the matrix $K$ is provable in a system $S_{0}$ of
M-LK, then there exists the interpolation formula $C$ for the ordered pairs
$(K_{1}/K_{2})$ and $(\mu, \nu)$ satisfying the following conditions:

(1) Both matrices $K_{1}\cup\{C\}_{\mu}$ and $K_{2}\cup\{C\}_{\nu}$ are provable in $S_{0}$ .
(2) Each predicate letter in $C$ occurs in $K_{1}$ and in $K_{2}$ .
(3) Each free variable in $C$ occurs’in $K_{1}$ and in $K,$ .
(4) Each function letter in $C$ occurs in $K_{1}$ and in $K_{2}$ .
Proof. We may consider systems of M-LK without the mathematical axioms

by 6.1.1 in order to refine the postulates used in the proofs. In [31, we proved

the original theorem which has the conditions (1) $-(8)$ . So there exists the inter-

polation formula $C_{0}$ in $S_{0}$ satisfying the conditions (1) $-(3)$ . Futhermore we may

specially suppose that the original formula $C_{0}$ has only one function letter $h$ of
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rank $p$ a8 the one which does not satisfy the condition \langle 4).

We define the systems $S_{1},$ $S_{\epsilon}$ in ’order to aPply the Thebrem 2; $S_{1}$ is the
system with equality obtained from $S_{0}$ by adding equality and $S_{\epsilon}$ is the Iystem
with equality obtained from $S_{1}$ by omitting $h$ and euPplying instead the new
predicate letter $H$ ef rank $p+1$ with the postulate $H^{\prime}$ .

Under these netations, we prove this theoreIn by considering the following
three cases.

Case 1. The function letter $h$ occurs neither in $K_{1}$ nor in $K_{2}$ .
“a semiterm” is the result from a term by substituting bound variables for

8ome occurrences of free variables. We call such an $expre\epsilon sion$ as $h(t_{1}, \cdots, t_{p})$

h-semiterm where $t_{1},$
$\cdots,$ $t_{p}$ are semiterms.

Consider the proofs of $K_{1}\cup\{C_{0}\}_{\mu}$ and $K_{2}\cup\{C_{0}\}_{\nu}$ . We substitute the new free
vatiable $a$ for the h-semiterm, whhch there is no h-semiterm $h^{\prime}$ containing as
the sub-semiterth Of $h^{\prime}$ , in each Proof. The result are Proofs.

So we see that $K_{1}\cup\{\forall xC_{1}\}_{\mu}$ and $K_{1}\cup\{\forall xC_{1}\}_{\nu}$ are provable in $S_{0}$ where $C_{1}$ is
obtained from $C_{0}$ by the above-mentioned way of substitutions and $\forall X_{1}$ is
obtained from $C_{1}$ by binding the new free variable $a$ .

Hence we see that $\forall oeC_{1}$ satisfies the cOnditions (1) $\sim(4)$ .
Case 2. The function letter $h$ occurs in $K_{1}$ but not in $K_{2}$ .
By the condition (1) and the Theorem 2, $\{\Gamma., H^{\prime}\}_{1}^{\wedge}UK_{\epsilon}^{+}\cup\{C_{0}^{+}\}_{\nu}$ is provable in

$S_{8};\{\Gamma_{\vee}, H^{\prime}\}_{1}^{\wedge}UK_{l}\cup\{C_{0}^{*}\}_{\nu}$ is provable in $S_{\epsilon}$ because of the definition of $+$ .
In the system $S_{8}$ , there exists the interpolation formula $C_{1}$ by applying

the original theorem for $(\{\Gamma_{e}, H^{\prime\prime}\}_{1}^{\wedge}\cup\{C_{0}^{*}\}_{\nu}/K_{2})$ and $(\mu, \nu)$ . Hence the formula $C_{1}$

in $S_{0}satis^{i}fies$ the $cond_{\grave{1}}tions^{\prime}(1)^{\prime}-(3)^{\prime}$ :
(1) $\{\Gamma, H^{\prime}\}_{1}^{\wedge}\cup\{C^{*}\}_{\nu}\cup\{C_{1}\}_{\mu}$ and $K_{a}\cup\{C_{1}\}_{\nu}$ are provable in $S_{\epsilon}$ .
(2) Each predicate letter in $C_{1}$ occurs in $\{\Gamma_{e}, H^{\prime}\}_{1}^{\wedge}\cup\{C_{0^{*}}\}_{\nu}$ and in $K_{2}$ .
(3) Each free variable in $C_{1}$ occurs in $\{\Gamma., H^{\prime}’\}_{1}^{\wedge}\cup\{C_{0}^{*}\}_{\nu}$ and in $K,$ .
So each predicate letter (free variable) in $C_{1}$ occurs in $C_{0}$ because any predi-

cate letter in $\Gamma e$ occurs in $c_{0}*and$ the predicate letters $=,$ $H$ don’t occurs in
$K_{2}$ . Hence $C_{1}$ is the formula in $S_{1}$ and $S_{0}$ . The provable matrices $\{C_{0}\}_{\nu}\cup\{C_{1}\}_{\mu}$

and $K_{2}\cup\{C_{1}\}_{\nu}$ in $S_{0}$ are obtained from (1) by the Theorem 2 and 4.4. Futher-
ihbite $K_{1}\cup t^{(}C_{1}b_{\beta}$ is ProvaUe in $S_{0}$ by $ap\theta yIng$ eut to $\{C\}_{\nu}\cup\{C_{1}\}_{\mu}$ and $K_{1}\cup\{C_{0}\}_{\mu}$ .

We ean regard $C_{1}$ us the reqmred interpoiution formuk.
Case 3. The ffincffon Ietter $h$ occurs in $K$, but rrct in $K_{1}$ . We can talcte

the requited ffirmula by the similar way in Case 2.
7..2. Tlre lxkn&d $B\theta h’ rtheor\epsilon m$ .
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We proved the extended interpolation theorem in 7.1. Hence we can
similarly prove the following theorem by the way used in \S 5 in [3].

THE EXTENDED BETH’S THEOREM. Let the following conditions be satisfied;

(1) $P,$ $Q$ are predicate letters of rank $n$ .
(2) $Q$ does not occur in a matrix $K(P)$ .
(3) All formulae in $K(P)$ are closed formulae.
(4) $K(P)\cup K(Q)\cup\{\forall x_{1}\cdots\forall x_{n}(P(x_{1}, \cdots, x_{n})\equiv Q(x_{1}, \cdots, x_{n}))\}_{1}$ is provable where

$K(Q)$ is the matrix obtained from $K(P)$ by substituting $Q$ to $P$.
Then there exists the formula $C(a_{1}, \cdots, a_{n})$ satisfying the following

conditions:
a) $K(P)\cup\{\forall x_{1}\cdots\forall x_{n}(P(x_{1}, \cdots, x_{n})\equiv C(x_{1}, \cdots, x_{\hslash}))\}_{1}\dot{t\prime}S$ provable.

b) Each $pred\dot{j}cate$ (function) letter in $C(a_{1}, \cdots, a_{n})$ occurs in $K(P)$ .
c) The predicate letters $P,$ $Q$ are not contained in $C(a_{1}, \cdots, a.)$ .
d) $\forall x_{1}\cdots\forall x,.C(x_{1}, \cdots, x_{n})$ is the closed formula.
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