ELIMINABILITY OF DESCRIPTIVE DEFINITIONS IN MANY-VALUED LOGICS

By
Tôru Miyama
(Received October 22, 1975)

1. Introduction.

At various stages in the formal development of a mathematical theory in many-valued logics, new formation rules and postulates are added to a given formal system to obtain another system. In this paper, some theorems in manyvalued logics demanded under such circumstances shall be proved generally and syntactically.
2. The formal system of many-valued logics.

We shall introduce the system M-LK formulated by M. Takahashi [1], which generally represents many-valued logics.

2.1. Truth values and primitive symbols.

Let M be an integer ≥ 2. We take the set T of all the truth values;

$$
T=\{1,2, \cdots, M\} .
$$

M-LK contains as symbols, denumerably many free variables a, b, \cdots, denumerably many bound variables x, y, \cdots, function letters of rank k ($k=0,1, \cdots$), predicate letters of rank $k(k=1,2, \cdots)$, propositional connectives of rank $k(k=0,1, \cdots)$, universal quantifiers $\forall x, \forall y, \cdots$, existential quantifiers $\exists x$, $\exists y, \cdots$, parentheses and comma. Specially, function letters of rank 0 denote individual constants and propositional connectives of rank 0 denote propositional constants. Each propositional connective of rank k is associated a truth value function from T^{k} into T.

To refine symbols of a system M-LK, we must choice and fix the following sets: \mathfrak{F} is an infinite set of free variables, and \mathfrak{B} is an infinite set of bound variables, and \mathfrak{F} is a set of function letters, and \mathfrak{B} is a set of predicate letters, and \mathbb{C} is a set of propositional connectives. We call the notation 〈ㅋ, $\mathfrak{B}, \mathfrak{Y}, \mathfrak{P}$, $\mathfrak{C}\rangle$ the frame of a system M-LK.

We assume that the definitions of "term" and "formula" in a system are well-known; their formation rules are applied to the symbols of the system.

2.2. g-matrices and matrices.

When $\Gamma^{(1)}, \cdots, \Gamma^{(\mu)}$ are sets of formulae, we call the following expression a g-matrix;

$$
\left(\begin{array}{c}
\Gamma^{(1)} \\
\vdots \\
\Gamma^{(\mu)}
\end{array}\right)
$$

Next let

$$
K=\left(\begin{array}{c}
\Gamma^{(1)} \\
\vdots \\
\Gamma^{(M)}
\end{array}\right) \text { and } L=\left(\begin{array}{c}
\Pi^{(1)} \\
\vdots \\
\Pi^{(M)}
\end{array}\right)
$$

be g-matrices. We define g-matrix $K \cup L$ to be

$$
\left(\begin{array}{c}
\Gamma^{(1)} \cup \Pi^{(1)} \\
\vdots \\
\Gamma^{(\mu)} \cup \Pi^{(\mu)}
\end{array}\right)
$$

Moreover, $\{\Gamma\}_{\mu_{1}, \ldots, \mu_{k}}$ or $\{\Gamma\}_{R}$ denotes the g-matrix such that $\Gamma^{\left(\mu_{i}\right)}$ is $\Gamma(i=1, \cdots, k)$ and $\Gamma^{(\nu)}$ is the empty set $\left(\nu \neq \mu_{1}, \cdots, \mu_{k}\right)$ where Γ is a set of formulae and $R=\left\{\mu_{1}, \cdots, \mu_{k}\right\}$. Often we write $\hat{\mu}$ as $T-\{\mu\}$.

Specially we call the g-matrix a matrix when all $\Gamma^{(1)}, \cdots, \Gamma^{(\mu)}$ are finite sequences of formulae. We define $\Gamma \cup \Pi$ to be $\Gamma \Pi$ when Γ, Π are finite sequences of formulae.

2.3. Beginning matrices.

A matrix of the form $\{A\}_{T}$ or $\left\{F_{0}\right\}_{f 0}$ is called a logical matrix where A is a formula and F_{0} is a propositional connective of rank 0 , a propositional constant, associated a truth value function f_{0}.

Let S be a set of closed formulae. A matrix of the form $\{A\}_{1}$ is called a mathematical matrix where $A \in S$. When S is not null, we call our system M-LK with S. But we simply call our system M-LK when there can be no misunderstanding. We often call S the set of axioms of M-LK (with S).

Logical matrices and mathematical matrices are called beginning matrices.

2.4. Inference rules.

We introduce inference rules and K, L, N stand for matrices and A, B, A_{1}, A_{2}, \cdots stand for formulae.

Contraction:	$\frac{K \cup\{A\}_{\mu} \cup\{A\}_{\mu}}{K \cup\{A\}_{\mu}}$	$(\mu \in T)$.
Weakening:	$\frac{K}{K \cup\{A\}_{\mu}}$	$(\mu \in T)$.
Exchange:	$\frac{K \cup\{A\}_{\mu} \cup L \cup\{B\}_{\mu} \cup N}{\overline{K \cup\{B\}_{\mu} \cup L \cup\{A\}_{\mu} \cup N}}$	
Cut:	$\frac{K \cup\{A\}_{\mu} \quad L \cup\{A\}_{\nu}}{K \cup L}$	$(\mu \in T)$.
	$(\mu, \nu \in T, \mu \neq \nu)$.	

Inferences on propositional connectives: Let F be a propositional connective of rank k and f be its truth value function and let $\mu=f\left(\mu_{1}, \cdots, \mu_{k}\right)$,

$$
\frac{K \cup\left\{A_{1}\right\}_{\mu_{1}}, K \cup\left\{A_{2}\right\}_{\mu_{2}}, \cdots, K \cup\left\{A_{k}\right\}_{\mu_{k}}}{K \cup\left\{F\left(A_{1}, \cdots, A_{k}\right)\right\}_{\mu}}
$$

Inferences on quantifiers:

$$
\begin{array}{ll}
\frac{K \cup\{A(a)\}_{1,2}, \cdots, \mu, K \cup\{A(t)\}_{\mu}}{K \cup\{\forall x A(x)\}_{\mu}} & (\mu \in T) \\
\frac{K \cup\{A(a)\}_{\mu, \mu+1}, \cdots, \mu, K \cup\{A(t)\}_{\mu}}{K \cup\{\exists x A(x)\}_{\mu}} & (\mu \in T),
\end{array}
$$

where the free variable a does not occur in the conclusion and $A(t)$ means the formula obtained from the formula $A(a)$ by substituting the term t for a in both inferences. Moreover, a is called the eigen-variable of these inferences.

A matrix is called provable, if it is obtained from beginning matrices by a finite number of applications of inference rules given above.

2.5. Some propositions of M-LK'.

To prove our theorems we need some preliminaries. The following propositions hold and their proofs should be referred to $\S 4$ in [1].
2.5.1. Let $R_{j} \subseteq T(j=1,2, \cdots, r)$. If for each j
is provable, then

$$
K \cup\{A\}_{R_{j}}
$$

is also provable where R denotes $\stackrel{r}{j=1}_{r}^{r} R_{j}$.
2.5.2. For each $\mu \in T$,

$$
\begin{aligned}
& \{\exists x A(x)\}_{1, \ldots, \mu-1} \cup\{A(t)\}_{\mu}, \ldots, \mu, \\
& \{\forall x A(x)\}_{\mu+1}, \ldots, \mu \cup\{A(t)\}_{1}, \ldots, \mu,
\end{aligned}
$$

are provable.
2.5.3. If a matrix is provable, then it is provable without cut.
2.5.4. Let G be a generalized propositional connective defined by the propositional connectives in $M-L K$ with its truth value function g of rank n, and g be composed by the truth value functions in $M-L K$. For any $\mu_{1}, \cdots, \mu_{n} \in T$, if

$$
K \cup\left\{A_{1}\right\}_{\mu_{1}}, \ldots, K \cup\left\{A_{n}\right\}_{\mu_{n}},
$$

are provable, then $K \cup\left\{G\left(A_{1}, \cdots, A_{n}\right)\right\}_{g\left(\mu_{1}, \ldots, \mu_{n}\right)}$ is provable.

3. Functionally completeness.

A functionally complete system denotes that any function from T^{k} into $T(k=1,2, \cdots)$ can be represented by the truth value functions in the system (see [2]). We hereafter treat of the functionally complete systems and suppose that a system M-LK can be regarded as the system containing all functions from T^{k} into $T(k=1,2, \cdots)$ as the truth value functions. As the following connectives are often used in this paper, we are concerned about some properties of them (refer to § 3 in [3]).
3.1. The connectives V^{k} of rank $k(k \geq 2)$.

The truth value function of this connective corresponds an element of T^{k} to the minimum of all factors of it.

We write V when there can be no misunderstanding.
3.1.1. If a matrix $K \cup\left\{A_{i}\right\}_{\mu}$ is provable for some $i(1 \leq i \leq k)$, then the matrix $K \cup\left\{\vee^{k}\left(A_{1}, \cdots, A_{k}\right)\right\}_{1}, \cdots, \mu$ is provable.
3.1.2. If a matrix $K \cup\left\{A_{i}\right\}_{\mu, \ldots, \mu}$ is provable for each $i(1 \leq i \leq k)$, then the matrix $K \cup\left\{\vee^{k}\left(A_{1}, \ldots, A_{k}\right)\right\}_{\mu, \ldots, k}$ is provable.
3.2. The connective \wedge^{k} of rank $k(k \geq 2)$,

The truth value function of this connective corresponds an element of T^{k} to the maximum of all factors of it.

We write \wedge when there can be no misunderstanding.
3.2.1. If a matrix $K \cup\left\{A_{i}\right\}_{\mu}$ is provable for some $i(1 \leq i \leq k)$, then the matrix $K \cup\left\{\wedge_{k}\left(A_{1}, \cdots, A_{1}\right)\right\}_{\mu, \cdots, \mu}$ is provable.
3.2.2. If a matrix $K \cup\left\{A_{i}\right\}_{1}, \ldots, \mu$ is provable for each $i(1 \leq i \leq k)$, then the matrix $K \cup\left\{\wedge^{k}\left(A_{1}, \cdots, A_{k}\right)\right\}_{1}, \ldots, \mu$ is provable.
3.3. The connective $G_{\mu, \nu}^{R_{1}, R_{2}}$ of rank n.

The truth value function of this connective corresponds an element of R_{1} to μ and an element of R_{2} to ν where $R_{1} \cup R_{2}=T^{n}$ and $R_{1} \cap R_{2}=\phi$. Instead of $G_{i, M}^{(\mu), \hat{\mu}}$, we write G_{μ}.
3.3.1. A matrix $K \cup\{A\}_{\mu}$ is provable, if and only if a matrix $K \cup\left\{G_{\mu}(A)\right\}_{1}$ is provable.
3.4. The connective \equiv of rank 2.

A formula $A \equiv B$ denotes $\underset{\mu \in T}{\wedge}\left(\vee_{\nu \hat{\mu}} G_{\nu}(A) \vee G_{\mu}(B)\right)$.
3.4.1. If two matrices $\{A \equiv B\}_{1}$ and K are provable, then the matrix K^{\prime} obtained from K by replacing some occurrences of A in K by B is also provable.

4. The extended system MLE.

Hereafter, we assume that the predicate letter $=$ of rank 2 is contained in \mathfrak{F} in the frame of our system M-LK. Suppose not, we can add the new predicate letter $=$ of rank 2 to \mathfrak{P}.

In this section, we shall introduce two formal systems of many-valued logics with equality by two methods. The one, which is called MLE, is obtained from M-LK by adding the inference rules of equality. Another, which is called $M_{L E}{ }^{\prime}$, is obtained from M-LK by joining the set Γ_{0} of equality axioms to the set S of M-LK which composes the mathematical matrices (refer to 2.3) Next we shall show the relations among MLE and MLE ${ }^{\prime}$ and M-LK.

First of all, we introduce MLE obtained from M-LK by adding the following inference rules of equality:

$$
\frac{K \cup\{t=t\}_{1}}{K} \quad \frac{K \cup\{P(s)\}_{\mu} \quad K \cup\{P(t)\} \hat{\mu}}{K \cup\{s=t\}_{\mu}} \quad(\mu \in T)
$$

where $P(a)$ expresses a prime formula and s, t express terms.
Then we can prove the cut-elimination theorem for the system MLE and the following proposition.
4.1. The following matrices are provable in MLE where $P(a)$ denotes a prime formula and $f(a), s, t$ denote terms;

1) $\{t=t\}_{1}$,
2) $\{s=t\}_{\mathcal{H}} \cup\{s=t\}_{1_{1}}$,
3) $\{t=s\}_{\boldsymbol{M}} \cup\{s=t\}_{1}$,
4) $\{s=t\}_{\boldsymbol{H}} \cup\{t=r\}_{\boldsymbol{H}} \cup\{s=r\}_{1}$,
5) $\{s=t\}_{\boldsymbol{M}} \cup\{f(s)=f(t)\}_{1}$,
6) $\{s=t\}_{\mu} \cup\{P(s)\} \hat{\mu} \cup\{P(t)\}_{\mu} \quad(\mu \in T)$.

Let Γ_{e} be the set of the following closed formulae;

1) $\forall x(x=x), \forall x \forall y\left(G_{M}(x=y) \vee y=x\right), \forall x \forall y \forall z\left(G_{M}(x=y) \vee G_{M}(y=z) \vee x=z\right)$,
2) $\forall x_{1} \cdots \forall x_{n} \forall y_{1} \cdots \forall y_{n}\left(\underset{1 \leq k \leq n}{\vee}\left(G_{M k}\left(x_{k}=y_{k}\right)\right) \vee\left(f\left(x_{1} ; \cdots, x_{n}\right)=f\left(y_{1}, \cdots, y_{n}\right)\right)\right)$,
3) $\forall x_{1} \cdots \forall x_{n} \forall y_{1} \cdots \forall y_{n}\left(\underset{1 \leq k \leq n}{\vee}\left(G_{M}\left(x_{k}=y_{k}\right)\right) \vee\left(P\left(x_{1}, \cdots, x_{n}\right) \equiv P\left(y_{1}, \cdots, y_{n}\right)\right)\right)$,
where $f\left(*_{1}, \cdots, *_{n}\right)$ and $P\left(*_{1}, \cdots, *_{n}\right)$ express a function letter of rank n and a predicate letter of rank n respectively ($n=1,2, \cdots$).

As usual, $\{\Gamma\}_{\hat{\imath}} \cup K$ is said to be provable in a system if there is a finite subset Γ^{\prime} of Γ such that the matrix $\left\{\Gamma^{\prime}\right\}_{\hat{1}} \cup K$ is provable in the system where Γ is the set of formulae.
4.2. If A is a formula contained in Γ_{e}, then the matrix $\{A\}_{1}$ is provable in MLE.
4.3. A matrix K is provable in MLE if and only if $\left\{\Gamma_{\mathrm{e}}\right\}_{\hat{1}} \cup K$ is provable in $M-L K$.

Proof. Suppose that K is provable in MLE. By the cut-elimination theorem for MLE, there exists a cut-free proof of K. We prove our assertion by induction on the number of inference rules used in the proof. Therefore we consider only the following case;

$$
\frac{L \cup\{P(s)\}_{\mu} \quad L \cup\{P(t)\} \hat{\mu}}{L \cup\{s=t\}_{\boldsymbol{\mu}}} \quad \text { (for any } \mu \text {). }
$$

Then two g-matrices $\left\{\Gamma_{\mathrm{e}}\right\}_{\hat{\imath}} \cup L \cup\{P(s)\}_{\mu}$ and $\left\{\Gamma_{\mathrm{e}}\right\}_{\hat{\imath}} \cup L \cup\{P(t)\}_{\hat{\mu}}$ are provable in M-LK by the induction hypotheses. On the other hand, $\left\{\Gamma_{e}\right\}_{\hat{1}} \cup\{s=t\}_{M} \cup\{P(s) \equiv$ $P(t)\}_{1}$ is provable in M-LK. Hence $\left\{\Gamma_{e}\right\}_{\hat{1}} \cup\{s=t\}_{M} \cup L \cup\{P(t)\}_{\mu}$ is provable in $M-$ LK by applying the Proposition 3.4.1 to $\left\{\Gamma_{e}\right\}_{\hat{1}} \cup L \cup\{P(s)\}_{\mu}$. Therefore $\left\{\Gamma_{e}\right\}_{\hat{\imath}} \cup$ $\{s=t\}_{M} \cup L$ is provable in M-LK by applying the Proposition 2.5.1 to two g-matrices $\left\{\Gamma_{e}\right\}_{\hat{\imath}} \cup L \cup\{P(t)\}_{\mu}$ and $\left\{\Gamma_{e}\right\}_{\hat{\imath}} \cup\{s=t\}_{M} \cup L \cup\{P(t)\}_{\mu}$.
4.4. Each matrix K, which occurs in a cut-free proof of MLE and which contains no predicate letter = except in prime formulae, satisfies at least one of the following conditions;

1) a matrix of the form $\{s=t\}_{M}$, where s and t are distinct terms, is contained in K,
2) a matrix of the form $\{t=t\}_{1}$ is contained in K,
3) the matrix obtained by deleting all formulae containing the predicate letter $=$ from K is provable in $M-L K$.

Proof. This proposition is proved by the induction on the number of inference rules used in the proof. As a formula containing $=$ is not sub-formula of a logical inference rule by the premises, we consider only the following case;

$$
\frac{L \cup\{P(s)\}_{\mu} \quad L \cup\{P(t)\}_{\hat{\mu}}}{L \cup\{s=t\}_{\mu \mu}} \quad(\text { for any } \mu \in T) .
$$

The lower matrix satisfies the condition 1) when s and t are distinct terms. Therefore we may consider the following case;

$$
\left.\frac{L \cup\{P(t)\}_{\mu} \quad L \cup\{P(t)\} \hat{\mu}}{L \cup\{t=t\}_{\mu}} \quad \text { (for any } \mu \in T\right) .
$$

In this case, we can easily prove our assertion by considering not only the conditions satisfied by the upper matrices but the value of μ and the form of $P(t)$. For example, the lower matrix satisfies condition 3) when the right upper matrix satisfies the condition 3) and the form of $P(t)$ is $u=v$ and μ is M.

5. Some propositions of MLE (MLE')

First of all, we need the following preliminaries to state some propositions of MLE (MLE').

Now let $B\left(a_{1}, \cdots, a_{n}\right)$ be a formula and let x_{1}, \cdots, x_{n} be distinct bound variables not occurring in $B\left(a_{1}, \cdots, a_{n}\right)$. We introduce the expression $\lambda x_{1} \cdots x_{n} B$ $\left(x_{1}, \cdots, x_{n}\right)$, which is called a variety of rank n. If t_{1}, \cdots, t_{n} are terms and V denotes a variety $\lambda x_{1} \cdots x_{n} B\left(x_{1}, \cdots, x_{n}\right)$, then $V\left(t_{1}, \cdots, t_{n}\right)$ means the formula $B\left(t_{1}, \cdots, t_{n}\right)$.

Let h be a function letter of rank p, and H be a predicate letter of rank $p+1$. We define the operation "*" (relative to h and H) for terms and formulae as follows:

1) a^{*} is $\lambda x(x=a)$ where a is a free variable.
2) $h\left(t_{1}, \cdots, t_{p}\right)^{*}$ is $\lambda y \forall x_{1} \cdots \forall x_{p}\left(\underset{1 \leq j \leq p}{\vee} G_{M}\left(t_{j}\left(x_{j}\right)\right) \vee H\left(x_{1}, \cdots, x_{p}, y\right)\right)$.
3) $f\left(t_{1}, \cdots, t_{n}\right)^{*}$ is $\lambda y \forall x_{1} \cdots \forall x_{n}\left(\underset{1 \leq j \leq n}{\vee} G_{M}\left(t_{j}\left(x_{j}\right)\right) \vee y=f\left(x_{1}, \cdots, x_{n}\right)\right)$ where f is any function letter of rank n other than h.
4) $P\left(t_{1}, \cdots, t_{n}\right) *$ is $\forall x_{1} \cdots \forall x_{n}\left(\underset{1 \leq j \leq n}{\vee} G_{M(}\left(t_{j}\left(x_{j}\right)\right) \vee P\left(x_{1}, \cdots, x_{n}\right)\right)$ where P is any prodicate letter of rank n.
5) F_{0}^{*} where F_{0} is F_{0} is any propositional connective of rank 0 .
6) $F\left(A_{1}, \cdots, A_{n}\right)^{*}$ is $F\left(A_{1}^{*}, \cdots, A_{n}^{*}\right)$ where F is any propositional connective of rank $n(n=1,2, \cdots)$.
7) $(\forall x B(x))^{*}$ and $(\exists x B(x))^{*}$ are $\forall x B^{*}(x)$ and $\exists x B^{*}(x)$ respectively where
$B^{*}(a)$ means $B(a)^{*}$.
Specially, we omit the useless symbols in order to make the expressions formulae when rank p or rank n is 0 in 2) or 3) of above-mentioned definition.
K^{*} often denotes the g-matrix obtained from a g-matrix K by operating * on all formulae in K.

Furthermore, we define the expression E^{0} as the result of substitution of \bar{h} for H throughout an expression E where \bar{h} is an abbreviation of the expression $\lambda x_{1} \cdots x_{p} y\left(y=h\left(x_{1}, \cdots, x_{p}\right)\right)$. We simply write $E^{\#}$ in place of $\left(E^{*}\right)^{0}$.

It is clear from the definitions that the following propositions hold.
5.1. Let E be a term or a formula or a g-matrix.

1) A free variable occurs in E^{*} iff it occurs in E.
2) A function letter occurs in E^{*} iff it differs from h and occurs in E.
3) For any predicate letter other than $H,=$ it occurs in E^{*} iff it occurs in E.
4) H occurs in E^{*} iff either h or H occurs in E.
5) If none of h, H occurs in E, then E^{*} coincides with $E^{\#}$.
$\exists!x A(x)$ denotes $\exists x A(x) \wedge \forall y \forall z\left(G_{M}(A(y)) \vee G_{u x}(A(z)) \vee y=z\right)$, and H^{\prime} denotes $\forall x_{1} \cdots \forall x_{p}\left(\exists!x H\left(x_{1}, \cdots, x_{p}, x\right)\right)$ and $H^{\prime \prime}$ denotes $\forall x_{1} \cdots \forall x_{p} H\left(x_{1}, \cdots, x_{p}, h\left(x_{1}, \cdots, x_{p}\right)\right)$.

Hereafter we show some propositions of MLE (MLE') which can be transformed to the propositions of $M-\mathrm{LK}$ by the proposition 4.3. They are proved by induction or by applying the propositions in $\S 2$ and $\S 3$.
5.2. Let t be a term and let A be a formula not containing H. Then the following matrices are provable in MLE and there exists the proof of each of them such that it has no expression containing H :
$\begin{array}{ll}\text { 1) }\left\{t^{\#}(a) \equiv t=a\right\}_{1} . & \text { 2) }\left\{A^{\sharp} \equiv A\right\}_{1} .\end{array}$
5.3. Let a term t and a formula A not to contain h. Then the following matrices are provable in MLE and there exists the proof of each of them such that it has no expression containing h :

1) $\left\{H^{\prime}\right\}_{\hat{1}} \cup\left\{t^{*}(a) \equiv t=a\right\}_{1} . \quad$ 2) $\quad\left\{H^{\prime}\right\}_{\hat{\imath}} \cup\left\{A^{*} \equiv A\right\}_{1}$.
5.4. Let $t, T(a)$ be terms and let $A, B, A(a)$ be formulae. Then the following matrices are provable in MLE:
2) $\{H\}_{\hat{1}} \cup\left\{\left(H^{\prime}\right) *\right\}_{1}$.
3) $\left\{H^{\prime}\right\}_{\hat{1}} \cup\left\{\left(H^{\prime \prime}\right) *\right\}_{1}$.
4) $\left\{H^{\prime}\right\}_{\hat{1}} \cup\left\{B^{*}\right\}_{1}\left(\right.$ where $\left.B \in \Gamma_{e}\right)$.
5) $\left\{H^{\prime}\right\}_{\hat{1}} \cup\left\{\exists!x t^{*}(x)\right\}_{1}$.
6) $\left\{H^{\prime}\right\}_{\hat{1}} \cup\left\{t^{*}(a)\right\}_{\boldsymbol{U}} \cup\left\{T(t)^{*}(b) \equiv T(a)^{*}(b)\right\}_{1}$.
7) $\left\{H^{\prime}\right\}_{\hat{1}} \cup\left\{t^{*}(a)\right\}_{M} \cup\left\{A(t)^{*} \equiv A(a)^{*}\right\}_{1}$.
8) $\left\{H^{\prime}, H^{\prime \prime}\right\}_{\hat{1}} \cup\{H(a, b) \equiv b=h(a)\}_{1}$.
9) $\left\{H^{\prime}, H^{\prime \prime}\right\}_{\hat{1}} \cup\left\{t^{*}(a) \equiv t=a\right\}_{1}$.
10) $\left\{H^{\prime}, H^{\prime \prime}\right\}_{\hat{1}} \cup\left\{A^{*} \equiv A\right\}_{1}$.
5.5. If a matrix K is provable in $M-L K$, then the matrix $\left\{H^{\prime}\right\}_{\hat{i}} \cup K^{*}$ is provable in MLE.

6. Eliminability of descriptive definitions.

In this section, we shall generally discuss the eliminability of descriptive definitions in many-valued logics (refer to [4]).

6.1. Elimination relations.

At various stages in the formal development of a mathematical theory in many-valued logics, we add new formation rules introducing new formal symbols or notations and the new postulates providing for their use deductively to a given formal system S_{1} in order to obtain another system S_{2}. The notions of "a beginning matrix", "an inference rule" and "provability" etc. are closely related to the symbols of a system: If a new symbol is added to a system, new beginning matrices and inference rules can be added to the system. Then the set of formulae (provable matrices) of S_{1} becomes the subset of those of S_{2}.

Under such circumstances, we say that the new notations or symbols (with their postulates) are eliminable (from S_{2} in S_{1}) if there is an effective process + by which the formula E^{+}(the matrix K^{+}) of S_{1} can be found for any formula E (any matrix K) of S_{2} :
(I) If E is a formula of S_{1}, then E^{+}is E.
(II) A matrix $\left\{E^{+} \equiv E\right\}_{1}$ is provable in S_{2}.
(III) If a matrix K is provable in S_{2}, then K^{+}is provable in S_{1}.

We call (I)-(III) the elimination relations. When the elimination relations hold, then furthermore:
(IV) A matrix K is provable in S_{2} iff the matrix K^{+}is provable in S_{1}.
(V) For any matrix L of S_{1}, L is provable in S_{2} iff L is provable in S_{1}.

Often, we may consider S_{1}, S_{2} as the systems of M-LK without the mathematical axioms because of the following proposition.
6.1.1. A matrix K is provable in M-LK with S if and only if the g matrix $\{S\}_{\hat{\imath}} \cup K$ is provable in $M-L K$ without S.

6.2. Eliminability of explicit definitions.

Let S_{1} be a system of M-LK and let S_{2} be the system of M-LK obtained from S_{1} by adding the new predicate letter P of rank n and the new postulate (the mathematical matrix) of the form $\left\{\forall x_{1} \cdots \forall x_{n}\left(P\left(x_{1}, \cdots, x_{n}\right) \equiv A\left(x_{1}, \cdots, x_{n}\right)\right\}_{1}\right.$
where $\forall x_{1} \cdots \forall x_{n} A\left(x_{1}, \cdots, x_{n}\right)$ be a closed formula of S_{1}. Then we can obtain the formula B^{+}(the matrix K^{+}) of S_{1} from a formula B (a matrix K) of S_{2} by substituting $\lambda x_{1} \cdots x_{n} A\left(x_{1}, \cdots, x_{n}\right)$ to P.

Example. Let S_{1} be a system of MLE with a function letter h of rank p and let S_{2} be the system of MLE from S_{1} by adding the new predicate letter H of rank $p+1$ and the new postulate (the mathematical matrix) of the form $\left\{\forall x_{1} \cdots \forall x_{p} \forall x\left(H\left(x_{1}, \cdots, x_{p}\right) \equiv h\left(x_{1}, \cdots, x_{p}\right)=x\right)\right\}_{1}$. Then the predicate letter H is eliminable from S_{2} in S_{1} by the effective process o in $\S 5$.

6.3. Eliminability of descriptive definitions.

Let S_{8} be a system of MLE with the provable matrix $\left\{H^{\prime}\right\}_{1}$ of the from $\left\{\forall x_{1} \cdots \forall x_{p} \exists!x H\left(x_{1}, \cdots, x_{p}, x\right)\right\}_{1}$ and let S_{4} be the system of M-LK from S_{8} by adding a new function letter h of rank p and the new postulate (the mathematical matrix) $\left\{H^{\prime \prime}\right\}_{1}$ of the form

$$
\left\{\forall x_{1}, \cdots, \forall x_{p} H\left(x_{1}, \cdots, x_{p} h\left(x_{1}, \cdots, x_{p}\right)\right)\right\}_{1} .
$$

We define + for a formula A of S_{8} or S_{4} :

1) If A does not contain h, then A^{+}is A.
2) If A contains h, then A^{+}is A^{*}.

Theorem 1. The new function letter h with its postulate $\left\{H^{\prime \prime}\right\}_{1}$ is eliminable from S_{4} in S_{8} by the effective process + .

Proof. We can prove by the Propositions 5.3, 5.4 and 5.5.

6.4. Replaceability of undefined functions by predicates.

We show the application of our arguments in 6.2 and 6.3.
For the above-mentioned systems S_{2}, S_{4}, we suppose that the frame (and the original set of mathematical matrices) of S_{2} is same to one of S_{4}. The new postulate of the form $\left\{\forall x_{1} \cdots \forall x_{p} \forall x\left(H\left(x_{1}, \cdots, x_{p}, x\right) \equiv h\left(x_{1}, \cdots, x_{p}\right)=x\right)\right\}_{1}$ of S_{2} can be replaced in S_{4} by the pair of the postulates $\left\{H^{\prime}\right\}_{1}$ and $\left\{H^{\prime \prime}\right\}_{1}$ without changing the provability relationship. So we can equate S_{2} with S_{4}.

Futhermore we consider the matrix $\left\{H^{\prime}\right\}_{1}$ as the postulate of the predicate letter H in S_{8}.

Then the following proposition and Theorem 2 hold by passing through S_{2} (or S_{4}) where o and + are ones mentioned in 6.2 and 6.3 respectively.
6.4.1. Let $A(B)$ be a formula of $S_{1}\left(S_{8}\right)$ and let $K(L)$ be a matrix of $S_{1}\left(S_{8}\right)$.
(1) $\left\{A \equiv A^{+0}\right\}_{1}$ is provable in S_{1}.
(2) $\left\{B \equiv B^{0+}\right\}_{1}$ is provable in S_{8}.
(3) If K is provable in S_{1}, then K^{+}is provable in S_{8}.
(4) If L is provable in S_{8}, then L^{0} is provable in S_{1}.

Theorem 2. Let $K(L)$ be a matrix of $S_{1}\left(S_{8}\right)$.
(1) K is provable in S_{1} if and only if K^{+}is provable in S_{8}.
(2) L is provable in S_{8} if and only if L^{0} is provable in S_{1}.

Note: In $\S 4-\S 6$, we considered the predicate letter $=$ of rank 2 , whose values are $1, M$, as equality symbol. Futhermore we may consider the predicate letter $|=|$ of rank 2 , whose values are μ and ν where $\mu \neq \nu$, as generalized equality symbol. But we can reduce a formal system with $|=|$ to the suitable system with $=$ by applying the method in 6.2: $\forall x \forall y\left(x=y \equiv G_{1}^{(\mu)},{ }_{M}^{\mu}(x|=| y)\right)$ and $\forall x \forall y\left(x|=| y \equiv G_{\mu, \nu}^{(1), \hat{1}}(x=y)\right)$ are explicit definitions of $=$ and $\mid=1$, respectively. Hence we can consider our arguments in $\S 4-\S 6$ as the general ones on equality with two values.

7. The applications.

In this section, we shall extend the interpolation theorem and Beth's theorem in many-valued logics with functionally completeness by applying the Theorem 2.

The notations should be referred to [3].

7.1. The extended interpolation theorem.

We prove an extension of the interpolation theorem which takes function letters into account (refer to [5]).

The extended interpolation theorem. Let $\left(K_{1} / K_{2}\right)$ be a partition of a matrix K and let $\mu, \nu \in T$. If the matrix K is provable in a system S_{0} of $M-L K$, then there exists the interpolation formula C for the ordered pairs $\left(K_{1} / K_{2}\right)$ and (μ, ν) satisfying the following conditions:
(1) Both matrices $K_{1} \cup\{C\}_{\mu}$ and $K_{2} \cup\{C\}_{\nu}$ are provable in S_{0}.
(2) Each predicate letter in C occurs in K_{1} and in K_{2}.
(3) Each free variable in C occurs in K_{1} and in K_{2}.
(4) Each function letter in C occurs in K_{1} and in K_{2}.

Proof. We may consider systems of M-LK without the mathematical axioms by 6.1.1 in order to refine the postulates used in the proofs. In [3], we proved the original theorem which has the conditions (1)-(3). So there exists the interpolation formula C_{0} in S_{0} satisfying the conditions (1)-(3). Futhermore we may specially suppose that the original formula C_{0} has only one function letter h of
rank p as the one which does not satisfy the condition (4).
We define the systems S_{1}, S_{8} in order to apply the Theorem 2; S_{1} is the system with equality obtained from S_{0} by adding equality and S_{3} is the system with equality obtained from S_{1} by omitting h and supplying instead the new predicate letter H of rank $p+1$ with the postulate H^{\prime}.

Under these notations, we prove this theorem by considering the following three cases.

Case 1. The function letter h occurs neither in K_{1} nor in K_{2}.
"a semiterm" is the result from a term by substituting bound variables for some occurrences of free variables. We call such an expression as $h\left(t_{1}, \cdots, t_{p}\right)$ h-semiterm where t_{1}, \cdots, t_{p} are semiterms.

Consider the proofs of $K_{1} \cup\left\{C_{0}\right\}_{\mu}$ and $K_{2} \cup\left\{C_{0}\right\}_{\nu}$. We substitute the new free variable a for the h-semiterm, which there is no h-semiterm h^{\prime} containing as the sub-semiterm of h^{\prime}, in each proof. The result are proofs.

So we see that $K_{1} \cup\left\{\forall x C_{1}\right\}_{\mu}$ and $K_{2} \cup\left\{\forall x C_{1}\right\}_{\nu}$ are provable in S_{0} where C_{1} is obtained from C_{0} by the above-mentioned way of substitutions and $\forall x C_{1}$ is obtained from C_{1} by binding the new free variable a.

Hence we see that $\forall x C_{1}$ satisfies the conditions (1)-(4).
Case 2. The function letter h occurs in K_{1} but not in K_{2}.
By the condition (1) and the Theorem 2, $\left\{\Gamma_{\dot{\theta}}, H^{\prime}\right\}_{\hat{1}} \cup K_{2}^{+} \cup\left\{C_{0}^{+}\right\}_{\nu}$ is provable in $S_{8} ;\left\{\Gamma_{e}, H^{\prime}\right\}_{1} \cup K_{2} \cup\left\{C_{0}^{*}\right\}_{\nu}$ is provable in S_{8} because of the definition of + .

In the system S_{8}, there exists the interpolation formula C_{1} by applying the original theorem for ($\left\{\Gamma_{e}, H^{\prime \prime}\right\}_{\hat{1}} \cup\left\{C_{0}^{*}\right\}_{\nu} / K_{2}$) and (μ, ν). Hence the formula C_{1} in S_{8} satisfies the conditions '(1)'-(3)':
(1) $\left\{\Gamma_{\varrho}, H^{\prime}\right\}_{\hat{1}} \cup\left\{C^{*}\right\}_{\nu} \cup\left\{C_{1}\right\}_{\mu}$ and $K_{2} \cup\left\{C_{1}\right\}_{\nu}$ are provable in S_{8}.
(2)' Each predicate letter in C_{1} occurs in $\left\{\Gamma_{e}, H^{\prime}\right\}_{\hat{1}} \cup\left\{C_{0}^{*}\right\}_{\nu}$ and in K_{2}.
(3) Each free variable in C_{1} occurs in $\left\{\Gamma_{e}, H^{\prime}\right\}_{\hat{1}} \cup\left\{C_{0}^{*}\right\}_{\nu}$ and in K_{2}.

So each predicate letter (free variable) in C_{1} occurs in C_{0} because any predicate letter in Γe occurs in C_{0}^{*} and the predicate letters $=, H$ don't occurs in K_{2}. Hence C_{1} is the formula in S_{1} and S_{0}. The provable matrices $\left\{C_{0}\right\}_{\nu} \cup\left\{C_{1}\right\}_{\mu}$ and $K_{2} \cup\left\{C_{1}\right\}_{\nu}$ in S_{0} are obtained from (1)' by the Theorem 2 and 4.4. Futhermore $K_{1} \cup\left\{C_{1}\right\}_{\mu}$ is provable in S_{0} by applying clit to $\{C\}_{\nu} \cup\left\{C_{1}\right\}_{\mu}$ and $K_{1} \cup\left\{C_{0}\right\}_{\mu}$.

We can regard C_{1} as the required interpolation formula.
Case 3. The function letter h occurs in K_{2} but not in K_{1}. We can take the requited formula by the similar way in Case 2.

7.2. The extended Beth's theorem.

We proved the extended interpolation theorem in 7.1. Hence we can similarly prove the following theorem by the way used in §5 in [3].

The extended Beth's theorem. Let the following conditions be satisfied:
(1) P, Q are predicate letters of rank n.
(2) Q does not occur in a matrix $K(P)$.
(3) All formulae in $K(P)$ are closed formulae.
(4) $K(P) \cup K(Q) \cup\left\{\forall x_{1} \cdots \forall x_{n}\left(P\left(x_{1}, \cdots, x_{n}\right) \equiv Q\left(x_{1}, \cdots, x_{n}\right)\right)\right\}_{1}$ is provable where $K(Q)$ is the matrix obtained from $K(P)$ by substituting Q to P.

Then there exists the formula $C\left(a_{1}, \cdots, a_{n}\right)$ satisfying the following conditions:
a) $K(P) \cup\left\{\forall x_{1} \cdots \forall x_{n}\left(P\left(x_{1}, \cdots, x_{n}\right) \equiv C\left(x_{1}, \cdots, x_{n}\right)\right\}_{1}\right.$ is provable.
b) Each predicate (function) letter in $C\left(a_{1}, \cdots, a_{n}\right)$ occurs in $K(P)$.
c) The predicate letters P, Q are not contained in $C\left(a_{1}, \cdots, a_{n}\right)$.
d) $\forall x_{1} \cdots \forall x_{n} C\left(x_{1}, \cdots, x_{n}\right)$ is the closed formula.

REFERENCES

[1] M. Takahashi, Many-valued logics of extended Gentzen style I, Science reports of the Tokyo Kyoiku Daigaku, 9 (1967).
[2] W. Jobe, Functionally completeness and canonical forms in many-valued logic, J. Symbolic Logic, 27 (1962).
[3] T. Miyama, The interpolation theorem and Beth's theorem in many-valued logics, Math. Japonicae Univ. Osaka Pref., 19 (1974).
[4] S. C. Kleene, Introduction to metamathematics, North-Holland, (1967).
[5] T. Nagashima, An extension of Craig-Schïtte interpolation theorem, Ann. Japan Assoc. Philos. Sci., 3 (1966).

Tokyo University of Education Tokyo, Japan

