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I. Introduction. As a consequence of his theory of algebras, N. Jacobson
([2]) proved that if in a ring $R$ there exists an integer $n>1$ such that for every
a in $R,$ $a^{\prime}=a$ , then the ring is commutative.

R. Ayoub and C. Ayoub ([1]) proved the theorem in its simplest form for
a certain class of exponents $n$ without recourse to transfinite methods. Namely

Theorem A. Let $n=p+1$ , where $p$ is a prime of the form $2^{k}+2^{m}-1$ . If
$R$ is an arbitrary ring in which $x^{n}=x$ for every $x$ in $R$ , then $R$ is com-
mutative.

Theorem B. If $n=2,3,4,5,7$ , and $x^{n}=x$ for every $x$ in $R$ , then $R$ is
commutative.

It is the object of the present note to prove that if $m$ and $q$ are two fixed
positive integers, and

$x^{2q(m+1)}+2^{m}=x$ for all $x$ in the ring $R$ . Then $R$ is a $B\ovalbox{\tt\small REJECT} lean$ ring by using

the elementary method.

2. Some preliminary lemmas.

Lemma 1. If $x^{k}=x$ for some $k$ in $Z^{+}$ , then $x^{f}=x$ for all $r,$ $s$ in $Z^{+}$

with $r=s$ (mod $k-1$). In particular, $x^{k-1}$ is an idempotent.

Lemma 2. Let $R$ be a ring with the property that $x^{2}=0$ only if $x=0$ .
Then every idempotent is in the center of $R$ .

Proof. Let $e$ be an idempotent of $R$ , then for all $x$ in $R$ ,

(ex–exe)2$=exex-exexe-exeex+exeexe=exex-exexe-exex+exexe=0$

(xe–exe)2 $=xexe-xeexe-exeexe+exeex=xexe-xexe-exexe+exexe=0$ .
Hence $ex=exe=xe$ .

Lemma 3. Let $R$ be a ring such that for each $x$ in $R$ there is a positive
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integer $k$ (dependent on x) with $x^{k}=x$ , then $R$ has the property that $x=0$

only for $x=0$ .
Proof. If $x$ is an element with $x^{2}=0$ , then $x^{2(k-1)+1}=(x^{2})^{k-1}x=0$ . But

$x^{2(k-1)+1}=(x^{k-1})^{2}x$ (by Lemma 1)

$=x$ .
Hence $x=0$ .

In particular, if $k$ is a fixed positive integer such that $x^{k}=x$ , for all $x$ in
the ring $R$ , then $x^{k-1}$ is a central idempotent (an idempotent in the center).

Lemma 4. Let $k$ be a fixed positive even integer and $x^{k}=x$ for all $x$ in
the ring $R$ , then $2x=0$ for all $x$ in $R$ .

Proof. $-x=(-x)^{k}=x^{k}=x,$ bence $2x=0$ for all $x$ in $R$ .
3. The main results. Now let $m$ and $n$ be two positive integers with

$n>m$ . Let $k=2^{n}+2^{m}$ .
Proposition 1. Let $R$ be a ring such that $x^{2^{\hslash}+2^{m}}=x$ for all $x$ in $R$ .

Then $x^{2^{m+}1}=x$ for all $x$ in $R$ .
Proof. For $x$ in $R$ , we have

$x+x=(x+x^{2})^{2^{\hslash}+2^{\hslash}}=(x+x^{f})^{2^{\hslash}}(x+x^{2})^{2^{m}}=(x^{2^{\hslash}}+x^{2^{\hslash+1}})(x^{2\sim}+x^{2^{n+1}}’)$

(by Lemma 4)
$=x^{2^{\hslash}+2^{m}}+x^{2^{\hslash+1}}+\Psi+x^{2^{\hslash}+2^{m+1}}+x^{2(2^{\hslash}+2^{m})}$

$=x+x^{2^{\hslash+1}}+x\iota+1+x^{2}$ ,

hence we have,

$x^{2^{\hslash+1}}=x^{gm+1}$ , and $x^{z^{m+1}}=x^{2^{n+}2^{m}}=x$ .
By proposition 1, we have the following result.

Proposition 2. Let $n$ be a positive integer and $R$ be a ring such that
$x^{2^{n+1}+2^{n}}=x$ for all $x$ in $R$ , then $R$ is a Boolean ring.

Proof. By proposition 1, and its proof, we have

$x^{2^{n+1}}=x$ and $x^{n+1+1}=x^{2^{\hslash}+1}$ for all $x$ in $R$ . Hence,

$x^{2}=x^{2^{n+1}+1}=x^{2^{B}+1}$ , and $x^{\prime}=xx^{gn-1}=x^{t^{\hslash}+1}x^{2^{\hslash}-1}=x^{2^{\hslash+1}}=x+1$

for all $x$ in $R$ , then $x^{2}=x$ , i.e. $R$ is a $B\ovalbox{\tt\small REJECT} lean$ ring.
Now we consider the case in Propo8ition 1 with $n>m$ and $n$ is a multiple

of $m+1$ , i.e. there is a positive integer $q$ such that $n=q(m+1)$ . Then
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$2^{n}-2^{m\star 1}=2^{q(m+1)}-2^{m+1}=0(mod 2^{m+1}-1)$ . Since $x^{2^{m+1}}=x$ for all $x$ in $R$, by
Proposition 1, we have $x^{a^{n}+2^{h}}’=x^{2^{m+}1+2^{m}}$ , hence for all $x$ in $R,$ $x^{2^{m+1}+}=x$ , by
Proposition 2, we conclude that $R$ is a Boolean ring. This proves the following
proposition:

Proposition 3. Let $m$ and $q$ be two fixed positive integers and $x^{2()+2}=qm+1m$

$x$ for all $x$ in the ring R. Then $R$ is a Boolean ring.
In general, if $ n=q(m+1)+\gamma$ , where $q$ and $r$ are two positive integers with

$0<r<m+1$ . Then we have

$2^{\prime}-2^{m+1+r}=2^{f}(2^{q(m+1)}-2^{n+1})\equiv 0(mod 2^{m+1}-1)$ ,

and then, $x^{2^{n}}=x^{2^{m+1+r}}$ . Hence $x^{2^{n}+2^{n*}}=x^{a^{n+1+r+2^{m}}}$’ for all $x$ in $R$ . Now

Proposition 4. Let $m,$ $q,$ $r$ be fixed positive integers with $r<m+1$ and
$R$ be a ring such that $x^{2q()}=xm+1+r+pn$ for all $x$ in $R$ , then $x^{2^{r+1}}=x$ for all $x$

in $R$ .
Proof. By Proposition 1 we have $x^{2^{m+1}}=x$ for all $x$ in $R$ . Hence $x^{2r}=$

$(x^{a^{m+1}})^{2r}=x^{2^{n+1+r}}’$ . Therefore we obtain

$x^{2^{r}+2^{m}}=x^{2^{m+1+r}+2^{m}}$

$=x^{a)}q(n*+1+r+2^{n*}$ (by the proof of Proposition 3.)

$=x$ , for all $x$ in $R$ . By Proposition 1, we have
$x^{2^{\gamma+1}}=x$ for all $x$ in $R$ . Obviously, we have the following two corollaries.

Corollary 1. Let $n$ be a fixed positive even integer and $R$ be a ring
such that $x^{2^{\hslash}+2}=x$ for all $x$ in R. Then $R$ is a Boolean ring.

Corollary 2. Let $n$ be a fixed positive odd integer and $R$ be a ring such
that $x^{2^{n}+2}=x$ for all $x$ in R. Then $x^{4}=x$ for all $x$ in $R$ and hence $R$ is com-
mutative.

The commutativity of $R$ in Corollary 2 is a consequence of Jacobson’s
theorem ([2]), but we can give a simple proof as follow ($a1_{8}0$ refer to R. Ayoub
and C. Ayoub): Since by Lemma 4, $x+x^{2}=(x+x^{2})^{2},$ $x+x^{f}$ is a central idem-
potent. If $x$ and $y$ are two elements of $R$ , both $x+y+(x+y)^{t}$ and $x+y+x^{2}+y^{2}$

are in the center of $R$ , hence $xy+yx$ is in the center of $R$ . In particlular,
$x(xy+yx)=(xy+yx)x$ implies $x^{f}y=yx^{2}$ , i.e. $x^{2}$ is in the center of $R$ for $x$ in $R$ .
therefore, $x$ is in the center of $R$ for all $x$ in $R,$ $R$ is commutative. The
following example proves that there is a ring satisfying $x=x$ for all $x$ but it
is not a Boolean ring:
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In general, for each positive integer $n$ , there is a ring $R$ such that $x^{2^{\hslash+1}}=x$

for all $x$ in $R$ and there is an $a$ in $R$ such that $a^{k}\neq a$ for all $1<k<2^{n+1}$ .
Let $Z_{2}$ be the field of integers modulo 2, $Z_{2}[t]$ be the ring of all polynom-

ials of $t$ over $Z_{2}$ . For each positive integer $n$ there is a polynomial $f(t)$ which
is irreducible over $Z_{2}$ and its degree is $n$ . Let $R$ be the quotient ring of
$Z_{2}[t]$ over the ideal $(f(t))$ , then $R$ contains exactly $2^{n+1}$ elements, since $f(t)$ is
irreducible over $Z_{2},$ $R$ is in fact a field. Hence $x^{k}=x$ contains at mvst $k$

distinct solutions for each $1<k<2^{n+1}$ . Furthermore, for each nonzero element
$x$ in $R$ , we have $|x^{2^{n+1}-1}=1$ , and there is an $a$ in $R$ such that $a^{k}\neq 1$ for all
$1\leq k<2^{n+1}-1$ (the multiplicative group of a field is cyclic). Hence $a^{2^{n+1}}=a$ and
$a^{k}\neq a$ for all $1\leq k<2^{n+1}$ .

Proposition 5. For each positive integer $n$ there is a ring $R$ such that
$x^{2^{m+1}}=x$ for all $x$ in $R$ and there is an $a$ in $R$ such that $a^{k}\neq a$ for all
$1\leq k<2^{\prime+1}$ .
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