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Let $R$ be a ring with unit and $J$ its Jacobson radical. If a finite group of
automorphismg $G$ acts as a Galois group on $R/J$, then $G$ is a Galois group of $R$

over $S,$ $S$ is the fixed ring of $R$ under $G$ . Let $\Delta$ be the crossed product of $R$

and $G$ .
Let $G$ act as a completely outer group of automorphisms on $R/J$. If $R$ is

semiprimary, primary, Artinian, left perfect or a commutative semiperfect ring,

(respectively), then $\Delta$ is semiprimary, primary, Artinian, left perfect or semi-
perfect ring (respectively). Similar results hold for $R$ and $S$ .

Let $R$ be a ring with identity. We denote the Jacobson radical of $R$ by $J$.
We a8sume that $G=\{1, \sigma, \cdots, \tau\}$ is a finite group of automorphisms of $R$, which
acts a8 a Galois group on $RlJ(R)$ . In other words, there are $\overline{a}_{1},$

$\cdots,\overline{a}_{n};\overline{a_{1}^{*}},$

$\cdots,$
$\overline{a_{n}^{*}}$

in $R/J$ such that $\sum_{\ell\Rightarrow\iota}^{n}\overline{a\sigma(a_{\ell}^{*})}=\overline{\delta_{1.\sigma}}$ for all $\sigma\in G$ , where $\overline{a}_{j}=a+J,$ $a\in R$ and $\delta_{1.\sigma}$ is

the Kronecker delta.
Let $S=R^{a}=$ {$r\in R|\sigma(r)=r$ for all $\sigma\in G$}, $S$ is the fixed ring of $R$ under $G$ .

The crossed product of $R/J$ with $G,$ $\Delta(R/J, G)$ is $\sum_{\sigma\epsilon G}R/Ju_{\Phi}$ with $\overline{x}u_{\sigma}\cdot\overline{y}u_{f}=\overline{xy^{\sigma}}u_{\sigma\tau}$

where $\overline{y^{\sigma}}=\sigma(y)+J$ and $\overline{x}=x+J,$ $x,$ $y\in R$ . The crossed product of $R$ with $G,$ $\Delta(R, G)$

i8 defined analogously.

Proposition 1. Let $G$ act as a Galois group on $R/J$, then $R$ over $S$ is G-
Galois.

Proof. Define $\pi;\Delta(R;G)\rightarrow\Delta(R/J, G)$ as follows $\pi(\sum_{\sigma eG}x_{\sigma}u_{\sigma})=\sum_{\sigma eG}\overline{x}_{\sigma}u_{a}$
, where

$\overline{x}.=x,+I,$ $x_{l}\in R$ . Then $\pi$ is an $R$ epimorphism with kernel $N=Ju_{1}+Ju_{\sigma}+\cdots+_{)}Ju_{\tau}$ .
Since each summand $Ru_{\sigma}$ of $N$ is small in $Ru_{\sigma}$ , we conclude $\pi$ is a minimal left
$R$ epimorphism.

Let $ u=1+a+\cdots+\tau$ , the trace. Since we have assumed $G$ acts a8 a Galois
group on $R/J;R/JuR/J=(R/J:G)$ . See T. Kanzaki ([2], Proposition 2, p. 108),

Since $\pi(RuR)=R/JuR/J$ and $\pi$ is a minimal epimorphism, we conclude $RuR=$

$4R:G)$ . Thus there exists $a_{1},$ $\ldots,$
$a_{n};a_{1}^{*},$

$\cdots,$
$a_{n}^{*}\in R$ such that $\sum_{:}aua_{\ell}^{*}=u_{1}$ or

$\sum_{\ell}a_{\ell}\sigma(a^{*}\rangle$
$=\delta_{1,e}$ . Thus $R$ is $G\cdot Galois$ over $S$.

If $R$ over $S$ is G-Galois, it is clear that $G$ acts as a Galois group on $RlJ$.
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We can view $R$ as a bi $\Delta-S$ module by defining a left $\Delta$ action to be $xu_{\sigma}\cdot r=$

$x\sigma(r)$ for $x,$ $r\in R$ and the obvious right $S$ action.
We say $G$ acts in a completely outer way on $R/J$, if $G$ induces a completely

outer group on $R/J$. See Y. Miyashita ([3], p. 127).

Proposition 2. Assume $G$ acts in a completely outer way on $R/J$ and $R/J$

is an Artinian ring. Then $R$ has a normal basis over $S$.
Proof. By Proposition 1, $R$ over $S$ is G-Galois. Thus by Propositions 2 and

3 of [61, we conclude $R$ ha8 a normal basis.

Corollary. Let $R/J$ be a commutative ring and $G$ acts as a Galois group
on $R/J$, then $R$ has a normal basis.

Also, if $R/J$ is simple and $G$ acts as a Galois group on $R/J$ which contains
no inner automorphisms, then $R$ has a normal $ba8is$ .

Proof. See ([3], Theorem 6.6, p. 128) and ([31, Corollary of Proposition 6.4,
p. 128).

From now on, we assume $R/J$ is an Artinian ring and $G$ acts as a completely
outer group of automorphisms on $R/J$. We call $R$ semiprimary, primary or local,

if $R/J$ is Artinian, simple and Artinian or a division ring (respectively).

Proposition 3. a) $R$ is semiprimary if and only if $\Delta(R, G)$ and $S$ are
semiprimary. See ([3], Proposition 7.3, p. 130)

b) If $R$ is primary, then $\Delta(R:G)$ and $S$ are primary.
c) If $R$ is local, then $S$ is local and $\Delta(R, G)$ is primary.

Proof. The Jacobson radical of $\Delta(R;G),$ $J(\Delta)$ is $J\cdot\Delta(R;G)=\Delta(R;G)J$, where
$J$ is the Jacobson radical of $R$ . See (6, Proposition 1). Thus $\Delta(R;G)/J(\Delta)$ is
isomorphic to $\Delta(R/J;G)$ . Hence $\Delta(R/J, G)/J(\Delta)$ is a finitely generated $R/J$ module.
Thus $\Delta$ is semiprimary.

Since $G$ acts as a completely outer group on $R/J,$ $J\cap S\subseteq J(S)$ , where $J(S)$ is
the Jacobson radical of $S$. See (6, Proposition 1).

Now $\overline{R}$ is a finitely generated projective a module, since a is semisimple,
Artinian. Since Homj $(\overline{R}, Z)\subseteq Hom_{\overline{R}}(\overline{R}, Z)\subseteq Z$ , we conclude $Hom_{\overline{\Delta}}(\overline{R}, Z)=\sum_{\sigma eG}u_{\sigma}\overline{R}$ .
See (3, Lemma 2.5, p. 128). Thus there exist $f_{1},$

$\cdots,f_{n}\in\sum_{\sigma eG}u_{\sigma}\overline{R}$ and $\overline{x}_{1},$
$\cdots,\overline{x}_{n}\in\overline{R}$

such that for all $\overline{x}\in\overline{R},\sum_{1=1}^{\iota}f_{\ell}(\overline{x})\overline{x}_{\ell}=\overline{x}$ . If $f(\overline{x})=\overline{x}\sum u_{\sigma}\overline{r}_{\ell}$ , then $\overline{x}=\overline{x}\sum_{\ell}\sum_{\sigma}(\overline{r}_{\ell}\overline{x})^{\sigma}$ , for
all $\overline{x}\in\overline{R}$ . Thus $\overline{1}=\sum_{i}\sum_{\sigma}(\overline{r}_{i}\overline{x}_{\ell})^{\sigma}$ , let $\overline{d}=\sum_{i}(\overline{r}\overline{x}_{i})$ , then tr $\overline{d}=I$ . So tr $d$–le $ J(R)\cap$

$S\subseteq J(S)$ . Thus tr $R+J(S)=S$, but $J(S)$ is small. Thus tr $(R)=S$ or there is a
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$c$ in $R$ such that tr $c=1$ . We conclude that tr: $R\rightarrow S\rightarrow 0$ splits; hence $S$ is a left
$S$ direct summand of $R$ .

Now $\Delta$ is isomorphic to End $R_{s}$, since $R$ over $S$ is G-Galois, by Proposition
1. We conclude that $AR$ is a finitely generated projective module. See K. Morita
([41, Lemma 3.3, p. 100).

Clearly, the $n\times n$ matrices over $\Delta$ and $e\Delta e,$ $ e^{2}=e\in\Delta$ are semiprimary rings.
Thus the endomorphism ring of a projective module over $\Delta$ is semiprimary. For
example, $End_{\Delta}(R)\simeq S$ is semiprimary.

Since $\Delta(R, G)lJ(\Delta)\simeq\Delta(R/J, G)$ , if $\Delta(R, G)$ is semiprimary $R$ is semiprimary.
Also $R$ is a finitely generated projective right $S$ module, so $R$ is $8emiprimary$ ,
if $S$ is semiprimary.

Proof of b). As in the proof of a) $R$ is left $\Delta$ projective. By (6, Propo8ition
6), $S/J(S)$ is the fixed ring of $R/J$ under $G$ . Furthermore, $SlJ(S)$ is a direct
summand, as an $S/J(S)$ module, of $R/J$. See T. Nakayama ([5], Lemma 4, $p$ .
207).

There is a one-to-one correspondence between ideals of $S/J(S),$ $G$ invariant
ideals of $RlJ(R)$ and ideals of $\Delta/J(\Delta)$ . See (3, p. 132). Since $R/J(R)$ is Artinian,
$\Delta$ and $S$ are primary.

Proof of c). Let $s\in S$, then if 8 is a unit in $R$, it is a unit in $S$. For
assume there is an $r\in R$ such that $rs=sr=1$ . Then $1=\sigma(r)s=sa(r)$ for all $\sigma\in G$ .
So $\sigma(r)=r$ for all $\sigma\in G$ or $r\in S$. Thus if $R$ is local, $S$ is local.

As in the proof of b) there is a one-to-one correspondence between ideals
of $\Delta/J(\Delta)$ and ideals of $SlJ(S)$ . Thus $\Delta$ is primary.

Proposition 4. Assume $G$ acts as a completely outer group of automor-
phisms on $R/J(R)$ . Then $R$ is left Artinian if and only if $\Delta(R:G)$ and $S$ are
left Artinian.

Proof. We have shown in the course of the proof of Proposition $3a$ , that
$S$, as a right $S$ module, is a direct summand of $R$ . Thus if $R$ is left Artinian,
so is $S$.

Proposition 5. Assume $G$ acts as a completely outer group on $R/J$. Then
if $R$ is left perfect, then $\Delta(R:G)$ and $S$ are left perfect.

Proof. By Proposition 3, we know $\Delta(R:G)$ and $S$ are semiprimary. Since
$J(S)\subseteq J(R)$ , ([6], Proposition 1), $J(S)$ is left $T$ nilpotent. Thus $S$ is left perfect.

We know that as a right $S$ module $R$ is finitely generated, projective and a
generator. Also End $R_{s}$ is isomorphic to $\Delta(R, G)$ . Thus $\Delta(R, G)$ is semiperfect.
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Let $M$ be left $\Delta$ module, in order that $M$ have a projeotive cover it suffices
that for any left $\Delta$ module $B$ requiring no more generators than $M,$ $B=J(A)B$

implie8 $B=0$ . ([11, Lemma 2.6, P. 473). But $B=J(\Delta)B=J(R\rangle B$ and $R$ being left
perfect implies $B=0$. ([11, Proposition 2.7, P. 474). Thus every left $\Delta$ module
has a projective cover and $\Delta$ is left perfect.

Proposition 6. Let $G$ act as a completely outer $Ga$fois group on $R/J$. If
$R$ is a commutative, semiperfect ring, then $\Delta(R, G)$ and $S$ are semiperfect.

Proof. Let $1=e_{1}+\cdots+e.$ , where $e_{1},$ $\cdots,$ $e_{n}$ are completely primitive orthogo-

nal idempotents, Let $H_{i}=\{\sigma\in G|\sigma(e_{\ell})=e\}$ , then $H_{i}$ is subgroup of $G$ for $i=1,$ $\cdots,$ $n$ .
By $\Delta_{\ell}$ , we mean the crossed product of $e_{\ell}R$ and $H_{\ell}$ . Now $\Delta_{t}=e\Delta(R, H_{i})e_{\ell}=$

$e\Delta(R, G)e_{\ell}$ . We show the second equality.

Let $H=\{1=\rho_{1}, \cdots, \rho_{f}\}$ and $G=\{1=\rho_{1}, \rho_{8}, \cdots, \rho_{r};\epsilon_{1}, \cdots, \epsilon_{\ell}\}$ . Now $e\Delta(R, G)e=$

$e_{\ell}(Ru_{1}+Ru_{\rho_{2}}+\cdots+Ru_{\rho_{r}}+Ru_{1}+\cdots+Ru_{\ell})e=e_{\ell}\Delta_{i}e_{i}+e_{\ell}Re_{\ell^{1}}^{e}u_{1}+\cdots+e_{\ell}Reitu_{\ell}$ . Now

$1=\sum_{i=1}e_{1}^{l}J$ for each $j=1,$ $\cdots,$
$t$ . By Azumaya’s Theorem $ei^{j}=e_{k},$ $k\neq i$ for $\epsilon_{j}\not\in H_{\ell}$

for $j=1,$ $\cdots,$
$t$ . Thu8 $e_{t}Re_{i}^{\epsilon}!=0$ for $j=1,$ $\cdots,$

$t$ , since $R$ is commutative.
Now $\Delta\cap\Delta_{j}=0$ , if $i\neq j$ . Also $H_{\ell}$ acts as a completely outer group of au-

tomorphisms on $Re/Je$ and $Re_{t}$ is a local ring. Thus $\Delta$ is semiperfect, by
Proposition $8c$ . Let $\Delta^{\prime}=\sum_{i=1}^{*}\oplus\Delta_{\ell},$ $A^{\prime}$ is a semiperfect ring.

Thus $u_{1}=E_{1}+\cdots+E_{k}$ , the $Es$ are completely primitive orthogonal idem-

potents of $\Delta^{\prime}$ . For each $j,$ $E_{j}=(\sum_{i=1}^{n}e_{\ell}u_{1})E_{j}$ , then $e_{\ell}E_{j},$ $i=1,$ $\cdots,$ $n$ , are orthogonal

idempotents since the $e_{i}’ s$ are central in $\Delta^{\prime}$ . Now $E_{j}$ is primitive, so $E_{j}=E_{j}e_{j}$

(after renumbering).

Thus $E_{j}\Delta^{\prime}E_{j}=E_{j}e_{j}\Delta^{\prime}e_{j}E_{j}=E_{j}\Delta_{j}E_{j}=E_{j}e_{j}\Delta(R:G)e_{j}E_{j}=E_{j}\Delta(R;G)E_{j}$ . Thus
$E_{j}\Delta(R;G)E_{j}$ is a lc al ring, for each $j$ , hence $4(R, G)$ is semiperfect.

We conclude by asking if Proposition 6 is true for a noncommutative semi-
perfect ring.
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