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1. Introduction.

Let X,, X;,--- be a sequence of independent random variables with common
distribution function F. Suppose F satisfies

lim F*(a,x+b,)=exp(—e™*), x€R,

n—»00

for a pair of sequences {a,} and {b,} with ¢,>0. Let Z,=max (X, ---,X,) and
Y.®)=(Zn.3—bn)a., t>0. Lamperti proved that the sequence {Y,} of
random elements in the Skorohod space D[r,s], 0<r<s<oo, converges in distri-
bution to an extremal process. Under some additional assumptions on F'
Pickands [7], de Haan and Hordijk obtained a law of the iterated logarithm

for sample maxima:
lim sup Y,(1)/log; »=1, liminf Y,(1)/log.7n=0, w.p.1l,

where log.=loglog. The main purpose of this paper is to give a functional
form of this law of the iterated logarithm. According to the idea of Pickands
we formulate the problem in terms of two-dimensional point process. The
proof of principal results follows the pattern of Strassen’s proof ([3], of
his functional law of the iterated logarithm for partial sums of i.i.d. random
variables.

In Section 3 we introduce a two-dimensional Poisson point process P which
plays the same role in our theory as the Brownian motion does in Strassen’s
invariance principle. In Section 4 we consider a sequence of two-dimensional
point processes @,, n>1, each consisting of random points (j/n, (X;—ba)/a.), 3=1.
It is shown that the sequence {#,} converges weakly to P. This corresponds to
Lamperti’s weak convergence result and implies it.

Our main results are given in last two sections. Let ¥, be a point prbcess
on S*={(t,x); 0<t<oco, 0<z<Loo} consisting of random points (j/n, (X;—d.)/
(a,log; n))eS*, j>1. Then ¥, is a random element taking values in the s'pacé
N(S*) of all locally finite non-negative integer valued measures on S* endowed
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with the vague topology. A theorem in Section 6 states that under some
additional conditions on F' the sequence {¥,},>: is relatively compact in N(S*)
and the set of its limit points is K, where K is the set of pxe€ N(S*) such that

S +xp(dtdm)£1. In Section 5 we prove a corresponding result for the two-
S

dimensional Poisson point process P, which is applied to obtain results in
Section 6. As a corollary a functional law of the iterated logarithm for the
sequence {Y,/log, n},>s; is obtained.

After completing this work the authors have learned a recent paper of
Wichura [10]. Our principal result (Theorem 5.1) seems to be essentially the
same as the one obtained by Wichura (Theorem 1B of [10]) except for a few
difference in presentation. However the point process approach adopted in this
paper seems to have some advantage. For example with this formulation it
is possible to obtain multi-parameter analogues of theorems in Section 6.

2. Notations and preliminaries

Let B(S) be the o-algebra of Borel subsets of a locally compact separable
metric space (S, p) and B,(S) the ring of bounded Borel sets. Let C,(S) denote
the space of all real valued continuous functions f on S with compact supports
and C;(S) the subset of Cy(S) consisting of non-negative f. Let M(S) denote
the space of all locally finite non-negative Borel measures ¢ on S and N(S) the
subspace of M(S) consisting of integer valued measures. Endowed with vague
topology M(S) and N(S) are Polish spaces.

Let {fi} be a sequence of functions f,€C;(S) which is dense in C#(S) in
the following sense: for every fe€ C{(S) there exist a compact set S and a
subsequence {f,’} of {f.} such that supp[flcFE, supp[fv]l=E and f,»—f uni-

formly. Then the topology of M(S) coincides with that derived from a metric
d defined by '

— = ot l?fk—jbfkl
@) dio,9)= Lot o gems)

where ¢f= gfdgp

Lemma 2.1. Let g€ N(S) and A;€B(S), 1<j<n, be disjoint. If ¢(dA,)
=0, 1<j<m, then there exists a meighborhood U of ¢ in N(S) such that
$(A)=p(4,), 1<5<n, for pe U.

Proof. By assumption for each j there exist an open G, and a closed F),
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such that F,c A}=(45°, G;DA; and o(G,—F)=0. Let f;, g;€C3(S) be such
that X, <f;<X.<g;<Xs, where X, denotes the indicator of a set A. Then
U={p e N(S); |¢fi—efil<l, |¢g;—pgs1<1, 1<j<n} is a neighborhood satisfying
the condition of the lemma.

Lemma 2.2. Let S(x) be the open e-neighborhood of x€S. If e N(S)
has only a finite number of atoms =, -+, %., then for every netghborhood U
of ¢ there exists e>0 such that S(x;), 1<j<m, are disjoint and V,.={¢;

d(Sx))=0(Sdzy)), 1<j<n, and H(S— -61 S(x,))=0 is contained in U.
=
Proof. It suffices to prove assuming that
U=i¢; 9€ N(S), 1¢fi—pfil <ex, 1<k<m},

where f,€Ci(S), &>0. Let ¢>0 be so chosen that S,(x;), 1<j<n, are disjoint
and for any J and Fk,

| ful@)—fel@n)] <e(ne(x )™t if dlx, 2 <e.

Then this ¢ satisfies the conditions of the lemma.

The o-algebra R(S) of Borel subsets of N (S) coincides with the smallest o-
algebra with respect to which every mapping ¢—¢(A4), A eBy(S), is measurable.

A probability measure P on (N(S), %(S)) is called a point process on S.
For every p€ M(S) there exists a unique point process P on S such that for
every disjoint B, €B,(S) and integer k,;>0, 1<j<n,

Pio; o(B)=k; , 1<j<m}= II e*®> #(By*s
' j=1 kj!

We call P a Poisson point process and y its intensity measure.

8. A Poisson point process.

Throughout the rest let S=[0, 00)X (—o0, o0]={(¢, ); 0t <0, —oo<lw<oo},
Let P be a Poisson point process on S with intensity measure = where
r(dtdx)=e*dtdx, t=0, —oo<lx<o,
3.1)
([0, 0) X {o0})=0 .
Let N,, t>0, be a subset of N(S) defined by
N,={p; p€ N(S), o¢({t}X(—o0,])=0},

and let N’ be the set of all ¢ € N(S) satisfying the following four conditions:
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(i) P({t} X (—o0, 0])<1 for all t>0,

(i) ([0, 0)X{zh<1 for all x € (—o0, o),
(iii)  @([0, ) X{ooh=0,

(iv)  ¢([0,t] X (—o0, 0])=c0o for all t>0.

Then it is easy to see that P(N,)=1, t>0, and P(N’)=1.

For 8>0 let T, be a continuous mapping from S to S which sends (¢, z) to
(t/s, x—log 8) and (¢, ) to (t/8, ). A mapping from N(S) to N(S) induced by
T, is also denoted by T, i.e. (T,p)(A)=¢(T;*A), p€ N(S), AcB(S). Each T, is
a measurable mapping from N(S) to itself. It follows from (8.1) and the invari-
ance of = under T, that P is invariant under T,:

(3.2) PT;*=P for 8>0.

For every integer k>1 and ¢ € N(S) let {®={®[p] be a function on (0, o)
defined by

3.3) P ()= sup {y; ([0, t1X (y, o)) >k} .
Write ¢ for @,

Lemma 3.1. For each k and t>0 the function ®[-1(t) on N(S) t8 con-
tinuous at ¢ € N,N N,

Proof. Let o€ N,NN’, a={®[p](t) and r=¢([0,t]X{a}). Since ¢ N’, « is
finite and 1<r<k. For any ¢>0 there exist ¢ and b such that a—s<a<a<b<
a+e and ¢(A,)=7r, o(A)=k—r, 0(0A,)=¢(04;)=0, where A,=[0,t]X(a,d) and
A;=[0,t]X (b, 0]. Thus by there exists a neighborhood U of ¢ such
that ¢(A;)=r, ¢(As)=k—r for ¢e U. This shows that [{®[¢)(t)—al <s for ¢ e U.

For each ¢t>0 the function [-](t) on N(S) is R(S)-measurable and finite
P-a.e. The stochastic process {(f), ¢>0, is an extremal process introduced by
Dwass [2] and Lamperti [6], i.e. a Markov process such that

(3.4) Plg; Clel(t)<y}=exp (—te™)

and

3.5) P{C(s_{_t)sylc(s):w}:{gxp (—tev), y=>=z,
’ y<w ’

for s,t>0.

Let D[r, 8], 0<r<s<co be the space of right continuous functions on [, s]
with left limits endowed with the Skorohod topology [1]. If ¢ € N’ then the
restriction of {(f) on [7, s] is an element of D[r,s] which will also be denoted
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by (lel. If ¢¢ N’ then it is possible that {[¢](f) is not finite for some t€ [r, s].
For such a ¢ let us modify {[¢] to be a fixed element of DI, s].

Lemma 3.2. The mapping from N to Dr,8] which sends ¢ to ([p] 18
continuous at every ¢ € N'NN,NN,.

Proof. Let ¢ N'NN,NN, and a={[p](r). Let ({, %) be an atom of ¢
such that ¢, <7, {[e]l(t))=a=2,. Let $<---<t, be successive jump points of
{lel(t) in [, 8] and z;={[e)(t;). Then (¢, xy), 1<i<k, are atoms of ¢ contained
in A=[0, s] X[a—1, o0]. Let (tx+1, Lxs1), ***» (tx, ©x) be remaining atoms of ¢ in A
if they exist.

By assumption for given s>0 there exist rectangular neighborhoods A,=1I,XJ,
of (¢, 25), 1<9<N, such that {I,} and {J,} are two families of disjoint bounded
open intervals of length <s and such that every I, contains neither r nor s.

It follows from [Lemma 2.1 that there exists a neighborhood U of ¢ such

that g€ U implies ¢(4)=1, 1<j<N, and $(AN(U A)=0. Let ¢eU and let
J=

(t), x})e A; be an atom of ¢. Then #/<r<ti<...-<t[<s, and {[¢](t)==] for r<t
<t, LPlO)=x} for t;<t<ty41, 2<T<k—1, {[PIO)=wui for t<t<s.

Let 2 be a continuous increasing function on [7, 8] such that A(r)=7, A(s)=s,
At)=t}, 2<j<k, and linearly interpolated on intervals (r,%;), (%5 %), *++, (¢ 8)
respectively. Then we have

sup |A(t)—t|= sup |t;—t}|<e
r<t<s 2Li<k
and
sup [C[¢1(A(0)—Clel(®)|= sup |x;—2fl<s.
r<t<s 1<k
These inequalities prove the lemma.

4. Weak convergence of sample sequences.

Let X,, X,, +++ be i.i.d. random variables on a probability space £, , P)
with common distribution function F. Assume that there exist two sequences
{a.} and {b,}, a,>0, of reals such that
(4.1) lim F*(a,x+b,)=exp(—e™), 2€R,

or equivalently

(4.2) lim n{l—F(a,x+b,)}=e¢*, x€R.

N—00

For AcB let 9,(A, w) be the number of 2>>1 such that (¢/n, (X{w)—b,)/a,) € A.
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Then for each we R, P, (w)=P,(-,w) is a measure belonging to N(S), and the
mapping &, is a measurable mapping from (2, %) to (N(S), R(S)). Let P,=PP;!
be the distribution of @,. Then we have

Theorem 4.1. P, converges weakly to P,

Proof. Let K|, :--, K,, be any finite family of disjoint compact intervals of
S. By a result of Kallenberg [5] it suffices to prove that
(4.3) lim P{O, (K )=ay, + -, P (K,) =}

n-~»00

=P{¢; SD(KI):al’ % ?(Km)':am} ’

where a;>0, 1<j<m, are integers. We prove assuming that K,=IXJ,,
e+ Kn=1IXJ, where I is a compact interval of [0, ), J,=[ay, ], ** *) T =[Um, Bl
are disjoint compact intervals of (—oo,c0]. The general case easily follows
from this case. Let n’ be the number of ¢ such that i€ nJ, then n'/n—|J| as
n—oo, The random vector (D (IXJ)), -+, D (IXJy), P(IXL)), where L=(—o0,

OO]—’_Q: J;, is multinomially distributed with parameters #/; Dny, ***, Dams Puimsr
where p,;=F(a,p;+b,)—F(a.a;+b,), 1<5i<m, 10,..m+1=1—§:1 Pns. Since ’}}g‘} N Ppy=
(e*—e#)-|J| by [4.2), the joint characteristic function {1——§1 Dns(l—e*)}*" of
O,(IXJy), -+, 0,(IXJ,) converges to

exp {— jzi(e'“f—e“f)- |J]-(1—e*s)}= Xjr:i1 e's#19 P(dyp) .
This proves [(4.3).

Corollary 4.1. Let y,<:--<y, then
@ lim P(ZP—b)lan<ys, 1<j<k}
=exp (—e™) I% I1 {(e™vse1—e~4%4/(a, )} ,

where 2* denote the summation over all k-tuples (ay, ---,a,) of non-negative
tntegers such that a, <1, a;+a;<<2, +--, @14+ -+a,<k.

Proof. The set of discontinuity points of the function {’[p](1) of ¢ has
P-measure zero by [Lemma 3.1. Since Z(0)=(Y[P.(w)](1) it follows from
Theorem 4.1 and of [1] that the limit on the left of is equal
to Ply; {[p]l(1)<y;, 1<j<k} whose value is given by the right side of [4.4).

By [Lemma 3.2 the set of discontinuity points of the mapping {:p—{[¢]le
DIr,8] has P-measure zero. Thus it follows from that Z[®,(w)]
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converges in distribution to an extremal process {[¢] characterized by and
(3.6). Since

(4.5) CDn(@)]()= Y. (L, 0) =(Z nlw)—by) [an

we have the following:

Corollary 4.2. (Lamperti [6]) The random element Y,(t,w) tn DIr,s]
defined by (4.5) converges in distribution to the extremal process characterized
by (3.4) and (8.5).

5. A law of the iterated logarithm for a Poisson point process.

Let S*=[0, c0) X (0, oo]={(¢, x); 0<t <o, 0<x<cc}. Let K denote a subset

of N(S*) consisting of all ze N(S*) such that S ,ou(dtdz)<1. Then K is a
S

compact subset of N(S*). In fact it is easy to see that K is closed. Applying
a standard argument with Riesz’s representation theorem one can prove that
K is relatively compact. Let S;i=[0, m]X (0, ©]cS* and let K™={ue N(S*);
S ,oM(dtdz)<1+1/m}. Then K is closed and K= 0 K.

s m=

For real s>¢ let T* be a mapping from S to S which sends (¢, ) to (/s,
(x—log 8)/log, 8). A mapping from N(S) to itself induced by T* is also denoted
by T%.

For ¢e N(S) and s>e let us define p,=plpl € N(S*) by wm(A)=(T¥p)(A)=
o(T¥*A), Ac B(S*). In this section we prove the following:

Theorem 5.1. There exists a subset N, of N(S) such that P(N,)=1 and
Jor each o€ N, the sequence {¢,[¢ll.>s 18 relatively compact in N(S*) and the
set of its limit points coincides with K.

Lemma 5.1. Let X..(go)=§ +a:ga(dtdm), where o€ N(S), 0<a<oco., Then as

SG
y—oo P{X, (p)>yl=0(e ") for every fixed a and a<l.
Proof. Let (74,8&), (2, 8,), 0<r, <+ <7,<a, be all atoms of ¢ contained
in Sz. Then &’s are exponentially distributed with mean one, v is independent
of &7s and Poisson distributed with mean a. Applying the inequality

o mﬂ. wf"'l { @ wz w,"l’l .
eee L= —— > ’
R ey T ES 1T R TR TR j=CGrnre 920

where C=(e*—1)/2, we have
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PXAp)>P=Ple+ - +6>p= F o125 "y

i=o 7!
cam ® - (ay)’
P— a~y v —
—° E—o J! .§+ 1n! >—:o JHI+1!

=const. X e~¥(ay)~*I,(2Vay) <const.x e"* , a<1l.

Lemma 5.2. Let b>1. For P-a.e. ¢ the sequence {¢/[pll;s; 18 relatively
compact and every limit point of it 18 contained in K.

Proof. It is seen that given ¢>0 K™ js contained in the e-neighborhood
of K for large m. Hence it suffices to prove that for every m>1 and for
Pa.e. ¢ plple K™ ultimately. Let 1<a<1+1/m. By (8.2) and

we have
P { S , omi(dt de) > 1+1/m }:P{X,.(go» (1+1/m) log, b%}
Sm
=const. X e~*1°52’=const. X j~¢ for large j.
Thus by the first Borel-Cantelli lemma we obtain
Pl e K™ j0.}=0.

Lemma 5.3. For any f€C{(S*) dnd for any >0 there exists b,>1 such
that if 1<b<b, then

P{ sup l,u,.f—-y,ffl>6 i.0.}=0.

01"1<

Proof. Let a>0 and 5>1 be such that f(¢, )=0 if either ¢t>a or x<loghb.
Let b7 <n<b’ then as j—o

1<log; b’/log; n<log;, b'/log, b'~1—1 ,
and if z>—log (b’/n)+(log b)(log; n) then
0<ztlog (b//n)<(log, b/ 1—1)"1-0 ,

Hence given >0 one can choose b,>1 such that for any b, 1<b<b,, there
exists j, satisfying

z+log (b//n) log, b’ b . w+log (Bm)\
6.1) % log, n s ( t logs n ) f(t’

x .0
log,;b! ) I <3
for every t>0, 'a:>0, Y i<n<b! and 5>7,.

Let 1<b<b,. By the definition of g, and g, we have

sup . |pnSf—pif |
<bJ

6.2) ;8
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Ss z—logn f(_t_ x—logn ‘)go(dtd:v)

bim1oaDyi log, n ' log.m
_( zx—loghtl ./t x—logh’ ) l
Ss log, b’ Y <bf * logy b pldtds)| .

It follows from (3.2) that has the same distribution as

.3) Ssm+ log (¥/n) f(y— z+log (b’/n))¢(dt dz)

t, ———
log, n n log. n
x ao
_Ss log, b’ f(t’ log, &’ >¢(dt dx)l .

di—lgn<hd

43

By (5.1), is dominated by (3log, /) 6X,(¢) for large j. It follows from

that
P{(8log; b)) 10X, (p)>d}< const. X572 .
Therefore

P{. sup |ttaf— ! f1> 6} < const. X 52

b6i—1l<n<

for large 7. Thus the lemma follows from the Borel-Cantelli lemma.

Let d be a metric in N(S*) defined by [2.I). Then we have from Lemma

5.3 the following:
Lemma 5.4. For any 6>0 there exists b>1 such that
P{ sup . d(y,, m)>0d i.0.}=0.

bi=l<n<bd

From Lemma 5.2 and Lemma 5.4 we have immediately the following:

Lemma 5.5. For P-a.e. ¢ the sequence {¢,[¢ll>s 18 relatively compact and

the set of its limit points 18 contained in K.

For n>1 let C, be the set of points (j/2", k/2")eS*, where j and k are
positive integers. Let D, be the set of pxe N(S*) satisfying (i) supp [¢lCC,,

(i) g{(¢, )}=1 for every atom (¢, x) of z, and (iii) S +a:,u(dt dr)=1,
S

leD,. is a countable dense subset of K.
Lemma 5.6. For every pc K
P{lim inf d(g,, )=0}=1.

Proof. It suffices to prove assuming that ze€ D,.. Let (¢,2),

Then D, =

veey (b)) be
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atoms of peD, and let S;.={(t 2); lt—¢;|<e, |o—wx;|<e}. By Lemma 2.2 given
>0 one can choose ¢>0 so small that S,,,, 1<j<I are disjoint and
' ]
Vc={”; DGN(S"’) ’ ”(Sl.l)':l [} ]-Sjsl ’ and V(S+_’ 'UISI,3)=0}
Pt
C {v; d(g, v)<o} .

Let b be such that b7/*+e<t;<b%*—e¢ for every j. For each pe N(S) let
us define A,=g.lple N(S*) by A.(A)=p.(ANS’), where S/=(b""2, /2] (0, co].
Write for simplicity v;=p and 9;=42,. Then

l
{o; 9ilpl € Vi}={p; 9(B")=1, 1<k<l, o(B®— U B{")=0},
k=1

where B{’={(t, x); |t/b’—t:| <e, |(x—log b’)/log, b'—x,| <} and B P =(p/-1/2, pi+1/2] x
(log b’, <]. Therefore the events {p; d,[pl € V,}, 7>1, are independent and

l :
P, e V}=exp {—=(B "’—kL_J1 B,‘,”)kI_I1 n(BY) exp {—n(B{)} .

Since #n(B{’)=2¢{(7 log b)~*x**—(j log b);'k"} >const. X 7% and since lim z(B ¥ —

j—oo

i
u B{®)=lim n(B ®)=>b*—b"/%, we have
=1

g§—rc0
_ %
P{p;e Viy>ej ¥=2 "=c.7°‘1 R

with some constant ¢>0. Thus it follows from the second Borel-Cantelli lemma
that

P, eV, io.}=1,
and therefore
P{d(v, #)<d i.0.}=1.
Since é was arbitrary we must have

(5.4) lim inf d(3;, )=0 .
J—)OO

On the other hand by [Lemma 5.2 we have for P-a.e.
(5.5) lim d(v;, K)=0 .
J—’W

Let ¢ satisfy [5.4) and (5.5). Let {9,[¢]} be a subsequence of {v[¢]} tending to
¢, and let g* be a limit point of {v,;}, Then v, f>5,f, feC{(S+), implies pwx¥>p.

Since S +x;z*(dt dm)=S +a:,u(clt dr)=Y we must have p*=y. This proves the
S S
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lemma.

Proof of Theorem 5.1. Immediate from Lemma 5.5 and Lemma 5.6.

Let 0<r< o be fixed and let d, be a metric in N(S;), defined by with
a countable dense family {f;} of functions in C{(S}). For pe N(S*) let (»),€
N(S}) denote the restriction of # to S;. Then the mapping g—(¢), maps K

onto the compact set K,= {ve N(S}); SS +aev(dt dx)<1} of N(S;). This mapping
is continuous at every g€ N’/, where N’ is the set of pe N(S*) such that
2, 2); 0<z<Lo0}=0.

Lemma 5.7. Let {2,} be a sequence of measures A,€ N(S*). If {2} 8
relatively compact and if the set of its limit points i8 K, then the sequence
{(22) 11 t8 relatively compact im N(S}) and the set of its limit points 18 K,.

Proof. By assumption for every m>1 there exists n,=n.m) such that
2,6 K™ for n>n,. Hence if n>nq(m) then (1,),€ K™={pe N(S}); Ss+wv(dt de)
<1+1/m}. Since K™ is a compact subset of N(S;), every limit pointr of {(4,),}
is in,ﬁlKﬁ"‘)=K,. If ve K,NN! where N’/ is the set of ve N(S}) such that

v{(r, 2); 0<x<Lo0}=0, then there exists g€ KN N’ satisfying (¢),=v. It follows
from the assumption that liminfd(4,, ©)=0 and therefore lim inf d,((4,),,v)=0.

Since K,N N/ is dense in K, every ve K, is a limit point of {(,),}.

Theorem 5.2. For each r>0 and P-a.e. ¢ the sequence {(¢.[¢])/}n>s 8
relatively compact in N(S}) and the set of its limit points is K,.

Proof. Immediate from and [Lemma 5.7.

Corollary 5.1. For r>0 and P-a.e. ¢

lim supg L oalle)) (dedzm)=1, lim inf Ss+x(,u,.[go]),(dt dz)=0 .

Proof. The mapping from N(S}) to [0, o] which sends v to Ss+xv(dt dx) is

continuous and maps K, onto [0, 1].
Corollary 5.2. Let
CP=LPlp]l=([p)(n)—log n)/log. n

for oe N(S), j>1, n>3, and let {,=®, .-, ®). For P-a.e. ¢ the sequence
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.} is relatively compact in R* and the set of its limit points 18 {(x, - -, %:);
k
2,>0 0 >2,20, 2 x,<1}. In particular
i=t

limsup ®=1/k, liminf{®=0.

N—»C0 n—oo

Proof. For ve N(S}) and j7>1 let
m?P ()=inf {x; >0, u([0,1]X(x, c])<j—1},

and m@)=(m®@), ---,m®()). Then m is a continuous mapping from N(S}) to
R* (see the proof of and Z.[o]l=m((z.):l¢]), where C,=(EP, .-, {®),
§¥=max (¢, 0). Thus implies that for P-a.e. ¢ the sequence
{E.lel} is relatively compact in R* and the set of its limit points is m(K,)=
k
@, - @) @20 2020, % #,<1}. Since by Lemma 5.8 lim inf E®p]=0 for
)= =00

Pa.e. ¢ we have lim ((®—f®)=0, P-a.e. Hence {{.[¢]} is relatively compact

with the limit point set m(K)).

Let 0<r<s<co and let F'[r,8] denote the space of nonnegative bounded
right-continuous non-decreasing functions on [7, 8] endowed with the Skorohod
topology. The same space with the weak topology will be denoted by Fl.[7, sl.
A sequence {f,} converges to f in Fu[r,s] iff f,(t) converges to f(f) at every
continuity point of f. For ve N(S}) let f=60(v) be a function in F[r,s] defined
by f(t)=inf {; £=>0, ([0, t] X[, o])=0}, t€[r,8]. The mapping 6 from N(S}) to
F'[r,8] is not continuous. However it is continuous as a mapping to F.[r, s].
The image 6(K,) of K, is the set of fe F[r, s] satisfying:

(i) the set C of increasing points of f is countable,

@ii) f(r)+ P2 Sfl2)<1.

Let us define {¥*={¥[p] € Flu[r, 8] by {¥({t)=(og. n) *({(nt)—log n), te[r,s8], n>3.
Then (0((x,),))(t)=C%(), te[r,8]. Hence we have

Corollary 5.3. For P-a.e. ¢ the sequence {{X[¢]} is relatively compact in
Fulr, 8] and the set of its limit points is &(K,).

Let h,=h.[¢] be the maximum of jumps of the function {¥(?), te[r,8]. It
is easy to derive from [Theorem 5.2 the following

Corollary 5.4. For P-a.e. ¢
lim sup h.[l¢l=1, lim inf h,[p]=0.
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6. A law of the iterated logarithm for sample sequences.

Suppose the common distribution function F of independent random variables
X, X,, - -+ has the positive derivative F’(x) for all sufficiently large z. Let

_ 1—F(x)
u(z)= @)
and
_{1—F ()} log, {1/(1—F())}
v(x)= (@)
Define two sequences {a,} and {b,} by
(6.1) F®)=1—n"*, a,=u,).

Throughout the rest we assume that F is twice differentiable and satisfies

(6.2) lim v/(x)=0.

X~»00

The following lemma is a slightly modified form of Lemma 8 of de Haan
and Hordijk [4].

Lemma 6.1. If F satisfies (6.2) then

lim —log n—log {1—F'(b,+a,x log. n)} =1
a0 xlogs n

untformly on every z-interval of the form (0, c].

Let Y,=—log {1—F(X,)}. Then Y,, Y, --- are independent and there exists
%, such that P{Y,>x}=e"* for £>x,. Let z,, 7, --+ be independently exponentially
distributed with mean one and independent of X,, and let o,=7,+-«++7,.
Let
&ns =Xi=bs
T anlog.m
and

— Yy—logn _ —log n—log {1—F (b,+astss log; n)}
log, n log. n )

Nng

Let P,;=(j/n,&,;) and Q,;=(g/n,7,;) be random points of S. Let us define
7. (0)=P,(-,0)e N(S*) and ¥, (0)=T%(-,w) € N(S*) by ¥.(A)=no. of P, ;€A and
¥/, (A)=no. of Q,;€ A, Ac B(S*), respectively.

Lemma 6.2. W.p.1l the sequence {T'’} is relatively compact tn N(S*) and
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the set of its limit points is K.

Proof. Since for large n the distribution of {¥'.} coincides with that of
{¢.} in the preceding section the lemma follows from Theorem 5.1.
Lemma 6.3.

limd@,,¥7,)=0 w.p.l.

fA—00

Proof. It suffices to prove that for every feC(S*)
(6.3) lim |, =7, fl=0 w.p.l.
Let p be a metric in S* defined by

o((ty, 1), (Es X)) =1ts—t1|+|e"2—e™1] .

Let F\,=[0, a]X[e, oo], 0<a, c<oo, be such that supp [f]C F, and let F,=[0, a+1]
X [¢/2, 0]. Given £>0 choose >0 so small that e=*2—e*>3 and [f(P)—f(Q)|<
ce/d if p(P,Q)<5. By the strong law of large numbers and by Lemma 6.1 w.p.l
there exists m,(w) such that o(P,; Q.;)<d for every n>mw) and j<n(a-+1).
Thus we have |f(Pa;)—f(Q.)l<ce/4 for every n>n, and j>1. By

w.p.l there exists n,=mn,(w)>n.w) such that E] 7.3<2 for n>n,. Therefore if
=1

n>n, then the number of Q,;€ F; is less than ¢/4. Hence the number of j
such that f(P,,)—f(Q.;)#0 is less than 4/c if n>mn,. Thus

[ =T fl=] ‘JE S (Pag)— 4:] F(@uI< :E L f (Pop)—f(Qny)l
<4/c-cefd=e for n>mn,. This proves (6.3).

Theorem 6.1. W.p.l the sequence {¥,} i3 relatively compact in N(S*) and
the set of its limit points is K.

Proof. Apply and

Theorem 6.2. Let 0<r<co, W.p.l the sequence {(¥,),} is relatively com-
pact in N(S}) and the set of its limit points is K,.

Proof. Immediate from and Lemma 5.7.

The following corollaries correspond to those in the preceding section and
are proved by the same method.

Corollary 6.1. Let 0<r<co, Then
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. Lnr] — + [nr] — +
lim sup 3, (-——X’—&—) =1, liminf ) (—X’—b"—-) =0 w.p.l.
noco =1 \ @, lOg, N n—oo  j=1 \ G, lOg: N

Corollary 6.2. Let Z9=(Z{—b,)/(a,log,n) and Z,=(ZP,---,Z%). Then
w.p.1 the sequence {Z,} is relatively compact in R* and the set of its limit
points is m(K,). In particular

lim sup Z®=1/k , lim inf Z¥=0 w.p.1.

n—oo n—o0

Corollary 6.3. Let Y,(t)=(Ziny—b,)/a,, telr,s], 0<r<s<oco. Then w.p.d
the sequence {Y,/log.n} is relatively compact in Fu[r,s8] and the set of its
limit points is 6(K,).

Corollary 6.4. Let V"=1I£2‘x (Z—Z,_))/(a,log; m). Then

limsup V,=1, lim inf V,=0 w.p.1.

n—oo Nn—00
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