CLOSED VECTOR MEASURES

By

SACHIO OHBA

(Received April 30, 1974)

1. Introduction.

Let S be a set, R a ring of subsets of S with $S \notin R$, Σ the algebra generated by R, X a Banach space and $m: R \to X$ a set function. Define $\bar{m}: \Sigma \to X$ by $\bar{m}(E) = m(E)$ if $E \in R$ and $\bar{m}(E) = -m(S-E)$ if $S-E \in R$. Then we have

(1) if m is finitely additive, then so is \bar{m} .

(2) if m is bounded, then so is \bar{m} .

(3) if m is s-bounded, then so is \overline{m} . (for example, see [2]).

But we shall note that the countable additivity of m does not imply the countable additivity of \bar{m} (Example 2). In this paper we shall discuss the countable additivity of \bar{m} . In §2 we shall introduce the notion of closed measure. In §3 we shall consider some of its applications.

2. Closed measures.

Let S be a set, R a ring of subsets of S, X a Banach space and $m: R \to X$ a set function. We define an order $A_1 \leq A_2$ if and only if $A_1 \subset A_2$ for every sets $A_1, A_2 \in R$. Then R is a directed set with the order \leq .

Definition 1. A set function $m: R \rightarrow X$ is called closed if the image set $\{m(A): A \in R\}$ of the directed set R converges in X.

Proposition 1. Let R be a ring of subsets of S, X a Banach space and $m: R \rightarrow X$ a finitely additive set function. Then the following conditions are equivalent.

(1) m is closed.

(2) For every number $\varepsilon > 0$ there exists a set $E_0 \in R$ such that for every set $E \in R$ with $E \subset S - E_0$ we have $||m(E)|| < \varepsilon$.

Proof. (1) \Rightarrow (2). By hypothesis $x_0 = \lim \{m(A): A \in R\} \in X$ exists. Then for every number $\varepsilon > 0$ there exists a set $E_0 \in R$ such that for every set $E \in R$ with $E_0 \subset E$ we have $||m(E) - x_0|| < \varepsilon$. Since for every set $E \in R$ with $E \subset S - E_0$ we have $E_0 \subset E \cup E_0$, $||m(E \cup E_0) - x_0|| < \varepsilon$. Since $m(E \cup E_0) = m(E) + m(E_0)$ and $||m(E_0) - x_0|| < \varepsilon$, we have $||m(E)|| = ||m(E \cup E_0) - m(E_0)|| \le ||m(E \cup E_0) - x_0|| + ||x_0 - m(E_0)|| < 2\varepsilon$.

SACHIO OHBA

(2) \rightarrow (1). It is easy to show that $\{m(A): A \in R\}$ is a Cauchy net in X. See Oberle ([4] Proposition 2).

Definition 2. A set function $m: R \rightarrow X$ is called strongly bounded (s-bounded) if for every sequence $\{E_n\}$ of mutually disjoint sets of R we have

$$\lim ||m(E_n)||=0$$
.

Proposition 2. Let R be a ring of subsets of S, X a Banach space and $m: R \rightarrow X$ a finitely additive set function. If m is s-bounded, then m is closed.

Proof. If it were false, then there exist a number $\varepsilon > 0$ and an increasing sequence $\{E_n\}$ of sets of R such that $||m(E_{n+1})-m(E_n)|| > \varepsilon$ for all n. We put $F_n = E_{n+1} - E_n(n=1,2,\cdots)$. Then $\{F_n\}$ is a mutually disjoint sets of R such that $||m(F_n)|| > \varepsilon$ for all n. Therefore we have a contradiction.

The converse of the above mentioned proposition is not true.

Example 1. Let S be the interval [0,1], R the ring generated by the intervals (a, b] $(0 \le a < b \le 1)$ and F_n the real valued function defined by

$$F_n(x) = \begin{cases} 2nx & \text{if } 0 \leq x < 1/2n^{-1} \\ 1 - (2nx - 1) & \text{if } 1/2n^{-1} \leq x < n^{-1} \\ 0 & \text{if } n^{-1} \leq x \leq 1 \\ \end{cases} \quad (n = 1, 2, \cdots).$$

We put $m_n((a, b]) = F_n(b) - F_n(a)$ $(0 \le a < b \le 1)$ and $m(A) = (m_n(A))_{n-1}^{\infty}$ for every set $A \in R$. Then $m: R \to c_0$ is finitely additive. Since $||m((1/2^{n+1}, 1/2^n))| = |m_{2^n} ((1/2^{n+1}, 1/2^n))| = 1$ $(n=1, 2, \cdots)$, m is not s-bounded. For every number $\varepsilon > 0$ we put $E_0 = (0, 1-\varepsilon/2]$. Then for every set $E \in R$ with $E \subset S - E_0$ we have $||m(E)|| \le \sup \{||m(A)||: A \subset E, A \in R\} = \varepsilon/2$. Therefore m is closed.

Remark. Note that if R is a δ -ring, then any closed measure is s-bounded ([4] Proposition 1).

Proposition 3. Let R be a ring of subsets of S, X a Banach space and $m: R \rightarrow X$ a finitely additive set function. If m is closed and $\sup \{ \|m(B)\| : B \subset A, B \in R \} < +\infty$ for every set $A \in R$, then m is bounded.

Proof. Since *m* is closed, there exists a set $E_0 \in \mathbb{R}$ such that for every set $E \in \mathbb{R}$ with $E \subset S - E_0$ we have $||m(E)|| \leq 1$. There exists a number M > 0 such that for every set $E \in \mathbb{R}$ with $E \subset E_0$ we have $||m(E)|| \leq M$. Since for every set $E \in \mathbb{R}$ we have $E = (E \cap E_0) \cup (E - E_0)$, we have $||m(E)|| \leq ||m(E \cap E_0)|| + ||m(E - E_0)||$

30

 $\leq M+1$. The proof is complete.

Corollary. Let R, X and m: $R \rightarrow X$ are as in Proposition 3. If X has no subspace isomorphic to c_0 , then the followings are equivalent.

- (1) m is s-bounded.
- (2) *m* is closed and sup $\{||m(B)||: B \subset A, B \in R\} < +\infty$ for every set $A \in R$.
- (3) m is bounded.

Proof. $(1) \Rightarrow (2) \Rightarrow (3)$. We can prove without the condition "X has no subspace isomorphic to c_0 ".

 $(3) \Rightarrow (1)$. If it were false, then there exist a number $\varepsilon > 0$ and a mutually disjoint sets $\{E_n\}$ of R such that $||m(E_n)|| > \varepsilon$ for all n. Since X has no subspace isomorphic to c_0 , there exists for every number K > 0 a finite subsequence $\{E_{n_r}\}$ of $\{E_n\}$ such that $||\sum_r m(E_{n_r})|| = ||m(\bigcup_r E_{n_r})|| > K$. Since $\bigcup_r E_{n_r} \in R$ and m is bounded, we have a contradiction.

We put $m = \{A \subset S: \text{ for every set } E \in R \text{ we have } E \cap A \in R\}$. Then m is an algebra containing R. We say that m is the locally measurable sets. Note that if $S \in R$, then we have m = R.

Theorem 1. Let R be a ring of subsets of S with $S \notin R$, m the locally measurable sets, X a Banach space and m: $R \rightarrow X$ a countably additive set function. If m is closed, then m can be extended to a countably additive set function $m_1: m \rightarrow X$.

Proof. Let A be any set of m. It is easy to show that the set $\{m(E \cap A): E \in R\}$ is a Cauchy net in X. Since X is complete, define $m_1(A) = \lim \{m(E \cap A): E \in R\} \in X$. The finite additivity of m_1 is obvious. We shall prove that m_1 is countably additive. Let $\{A_n\}$ be a mutually disjoint sets of m such that $A = \bigcup_{n=1}^{\infty} A_n \in m$. By definition of m_1 there exists for every number $\varepsilon > 0$ a set $E \in R$ such that $||m_1(A) - m(A \cap E)|| < \varepsilon$ and $||m(E')|| < \varepsilon$ for every set $E' \in R$ with $E' \subset S - E$. Since $A \cap E = \bigcup_{n=1}^{\infty} A_n \cap E \in R$, we have $m(A \cap E) = \sum_{n=1}^{\infty} m(A_n \cap E)$. Then there exists a positive integer n_0 such that $||m(A \cap E) - \sum_{i=1}^{n_0} m(A_i \cap E)|| < \varepsilon$. For each positive integer $i(1 \le i \le n_0)$ there exists a set $E_i \in R$ such that $E \subset E_i$ and $||m_1(A_i) - m(A_i \cap E_i)|| < (1/n_0)\varepsilon$. $\sum_{i=1}^{n_0} (m(A_i \cap E_i) - m(A_i \cap E)) = \sum_{i=1}^{n_0} m(A_i \cap (E_i - E)) = m(\bigcup_{i=1}^{n_0} A_i \cap (E_i - E) \subset S - E$. Hence we have $||\sum_{i=1}^{n_0} (m(A_i \cap E_i)|| < m(A_i \cap E_i)|| < \varepsilon$. Therefore we have $||m_1(A) - \sum_{i=1}^{n_0} m_1(A_i)|| \le ||m_1(A) - m(A \cap E)||$

SACHIO OHBA

 $+ \| m(A \cap E) - \sum_{i=1}^{n_0} m(A_i \cap E) \| + \| \sum_{i=1}^{n_0} (m(A_i \cap E) - m(A_i \cap E_i)) \| + \sum_{i=1}^{n_0} \| m(A_i \cap E_i) - m_1(A_i) \| < 4\epsilon.$ The proof is complete.

We put $\Sigma = \{A \subset S : A \in R \text{ or } S - A \in R\}$. Then Σ is the smallest algebra containing R and $\Sigma \subset \mathfrak{m}$. We say that Σ is the algebra generated by R.

Proposition 4. Let R be a ring of subsets of S with $S \notin R$, Σ the algebra generated by R, X a Banach space and $m: R \to X$ a countably additive set function. If m is closed, then m can be extended to a countably additive set function $\bar{m}: \Sigma \to X$. Further $\bar{m}(A) = m(A)$ if $A \in R$ and $\bar{m}(A) = x_0 - m(S-A)$ if $S-A \in R$ (where $x_0 = \lim \{m(E): E \in R\} \in X$). ([4] Proposition 2).

Proof. By Theorem 1 *m* can be extended to a countably additive set function $m_1: m \to X$. Let \bar{m} be the restriction of m_1 to Σ . We put $x_0 = \lim \{m(E): E \in R\}$. It is easy to show that $\bar{m}(A) = m(A)$ if $A \in R$ $\bar{m}(A) = x_0 - m(S-A)$ if $S - A \in R$.

Example 2. Let S be the set of all positive integers and R the ring of all finite subsets of S. Define $m: R \to \{0, 1\}$ by m(A) = 1 if $1 \in A \in R$ and m(A) = 0 if $1 \notin A \in R$. Then m is countably additive and s-bounded. Let Σ be the algebra generated by R. Define $\bar{m}: \Sigma \to \{-1, 0, 1\}$ by $\bar{m}(A) = m(A)$ if $A \in R$ and $\bar{m}(A) = -m(S-A)$ if $S-A \in R$. Then \bar{m} is not countably additive. For, let A_n be the singleton set $\{n\}, n \in S \ (n \ge 2)$ and put $A = \bigcup_{n=2}^{\infty} A_n$. Since $S-A = \{1\} \in R$, we have $A \in \Sigma$ and $\bar{m}(A) = -1$. On the other hand, $\sum_{n=2}^{\infty} \bar{m}(A_n) = \sum_{n=2}^{\infty} m(A_n) = 0$.

Corollary. Let R, Σ, X and $m: R \to X$ are as in Proposion 4. Suppose that $S \notin R_{\sigma}$. We define $\bar{m}: \Sigma \to X$ by $\bar{m}(A) = m(A)$ if $A \in R$ and $\bar{m}(A) = x_{0} - m(S - A)$ if $S - A \in R$. Then \bar{m} is countably additive (where R_{σ} is the set of all countable unions of sets of R and x_{0} is any element of X).

Proof. We note that if $A \cap B = \phi$, $A, B \in \Sigma$, then $A \in R$ or $B \in R$. Let $\{A_n\}$ be a mutually disjoint sets of Σ such that $A = \bigcup_{n=1}^{\infty} A_n \in \Sigma$.

Case 1. $A_n \in R$ $(n=1, 2, \cdots)$ and $A \in R$. It is obvious.

Case 2. $S-A_1 \in R$ and $S-A \in R$. Since $(S-A_1)-(S-A) = \bigcup_{n=2}^{\infty} A_n \in R$, we have $m(S-A_1)-m(S-A) = \sum_{n=2}^{\infty} m(A_n)$. Then $\bar{m}(A) = x_0 - m(S-A) = x_0 - m(S-A_1) + \sum_{n=2}^{\infty} m(A_n) = \sum_{n=1}^{\infty} \bar{m}(A_n)$.

Case 3. $A_n \in R$ $(n=1,2,\cdots)$ and $S-A \in R$. Since $S=(S-A) \cup \bigcup_{n=1}^{\infty} A_n \in R_\sigma$,

we have a contradiction.

3. Applications.

Let S be a set, R a ring of subsets of S, X a Banach space and $m: R \rightarrow X$ a finitely additive set function. Let R_0 be a subfamily of R such that

(1) $A, B \in R_0 \Longrightarrow A \cup B \in R_0$.

(2) $A \in R$, $B \in R_0$ and $A \subset B \Longrightarrow A \in R_0$.

Then R_0 is a subring and is a directed set with the order \leq in §2. The following theorem is a generalization of [5] Theorem 1.

Theorem 2. Let R be a ring of subsets of S, X a Banach space and $m: R \rightarrow X$ a finitely additive set function. Suppose that R_0 be a subfamily of R such that

(i) $A, B \in R_0 \Longrightarrow A \cup B \in R_0$.

(ii) $A \in R$, $B \in R_0$ and $A \subset B \Longrightarrow A \in R_0$.

and

(iii) the image set $\{m(A): A \in R_0\}$ of the directed set R_0 converges in X. Then there exist two set function $m_1: R \to X$ and $m_2: R \to X$ such that

(1) $m = m_1 + m_2$

(2) $A \in R_0 \rightarrow m_1(A) = 0$

(3) for every set $A \in R$ with $m_2(A) \neq 0$ there exists a set $B \in R_0$ such that $B \subset A$ and $m_2(B) \neq 0$.

(4) m_1 and m_2 are finitely additive.

Proof. By the condition (iii) there exists for every number $\varepsilon > 0$ a set $A \in R_0$ such that for every set $B \in R_0$ with $B \subset S - A$ we have $||m(B)|| < \varepsilon$. Then for every set $E \in R$ the set $\{m(E-B): B \in R_0\}$ is a Cauchy net in X, since for every sets $B, C \in R_0$ with $A \subset B$ and $A \subset C$ we have $||m(E-B) - m(E-C)|| = ||m(E \cap C$ $-B) - m(E \cap B - C)|| \le ||m(E \cap C - B)|| + ||m(E \cap B - C)|| < 2\varepsilon$. Similarly, the set $\{m(E \cap B): B \in R_0\}$ is a Cauchy net in X. Since X is complete, $\lim \{m(E-B): B \in R_0\} \in X$ and $\lim \{m(E \cap B): B \in R_0\} \in X$ exist. Then we put $m_1(E) = \lim \{m(E - B): B \in R_0\}$ and $m_2(E) = \lim \{m(E \cap B): B \in R_0\}$. By the definition of m_1 and m_2 the properties (1)-(4) are obvious.

Theorem 3. (The Lebesgue decomposition theorem). Let γ be a σ -ring of subsets of S, X a Banach space, $m: \gamma \rightarrow X$ a countably additive set function and μ a non-negative measure on γ . Then there exist unique countably additive set functions $m_1: \gamma \rightarrow X$ and $m_2: \gamma \rightarrow X$ such that

(1) $m = m_1 + m_2$

SACHIO OHBA

(2) $\mu(A) = 0 \Longrightarrow m_1(A) = 0$

(3) there exists a locally measurable set A such that $m_2(E \cap A) = 0$ and $\mu(E-A) = 0$ for every set $E \in \gamma$.

Proof. We put $\gamma_0 = \{A \in \gamma: \mu(A) = 0\}$. Then γ_0 satisfies the conditions (i) and (ii) of Theorem 2. Since *m* is s-bounded, *m* satisfies the condition (iii) of Theorem 2. Then by Theorem 2 there exist m_1 and m_2 such that

(1') $m = m_1 + m_2$.

(2') $A \in \gamma_0 \Longrightarrow m_1(A) \equiv 0.$

(3') for every set $A \in \gamma$ with $m_2(A) \neq 0$ there exists a set $B \in \gamma_0$ such that $B \subset A$ and $m_2(B) \neq 0$.

(1) and (2) are obvious. The countable additivity of m_1 and m_2 are obvious (for example, see the proof of Theorem 1). The proof of (3). Using [5] Proposition 2 we can prove that there exists a set $N \in \gamma_0$ such that $m_2(E-N)=0$ for every set $E \in \gamma$. Then we put A=S-N. Thus (3) is obvious. The uniqueness of the decomposition is obvious.

Remark. 1) In a recent paper, W. M. Bogdanowicz and R. A. Oberle [3] has given some decomposition theorems for vector measure.

2) Our definition of closed measure is different from Kluvanek's definition (see I. Kluvánek and G. Knowles: Vector Measures and Control Systems, North-Holland, Amsterdam (1976)).

REFERENCES

- [1] N. Dinculeanu: Vector Measures, Pergamon Press, New York (1968).
- [2] J. Hoffmann-Jørgensen: Vector measures, Math. Scand, 28 (1971) 5-32.
- [3] W. M. Bogdanowicz and R. A. Oberle: Decompositions of finitely additive vector measures generated by bands of finitely additive scalar measures, Ill. J. Math. 19 (1975) 370-377.
- R. A. Oberle: Characerization of a class of equicontinuous sets of finitely additive measure with an application to vector valued Borel measures, Canad. J. Math. 26 (1974) 281-290.
- [5] S. Ohba: The decomposition theorems for vector measures. The Yokohama Math. J, 19 (1971) 23-28.
- [6] ———: Extensions of vector measures. The Yokohama Math. J, 21 (1973) 61-66.
- [7] ———: Decompositions of vector measures. The Reports of the Faculty of Technology, Kanagawa Univ., 10 (1972).
- [8] M. Sion: A Theory of Semigroup Valued Measures, Lecture Notes in Mathematics, 355, Springer 1973.

Kanagawa University Rokkaku-bashi, Kanagawa-ku Yokohama, Japan

34