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1. Introduction.
Let $S$ be a set, $R$ a ring of subsets of $S$ with $S\not\in R,$ $\Sigma$ the algebra generated

by $R,$ $X$ a Banach space and $m:R\rightarrow X$ a set function. Define $\overline{m};\Sigma\rightarrow X$ by
$\overline{m}(E)=m(E)$ if $EeR$ and $\overline{m}(E)=-m(S-E)$ if $S-E\in R$ . Then we have

(1) if $m$ is finitely additive, then so is $\overline{m}$ .
(2) if $m$ is bounded, then so is $\overline{m}$ .
(3) if $m$ is s-bounded, then so is $\overline{m}$ . (for example, see [2]).

But we shall note that the countable additivity of $m$ does not imply the coun-
table additivity of $\overline{m}$ (Example 2). In this paper we shall discuss the countable
additivity of $\overline{m}$ . In \S 2 we shall introduce the notion of closed measure. In

\S 8 we shall consider some of its applications.

2. Closed measures.
Let $S$ be a set, $R$ a ring of subsets of $S,$ $X$ a Banach space and $m;R\rightarrow X$

a set function. We define an order $A_{1}\leqq A_{2}$ if and only if $A_{1}\subset A_{2}$ for every sets
$A_{1},$ $A_{2}\in R$ . Then $R$ is a directed set with the order $\leqq$ .

Definition 1. A set function $m:R\rightarrow X$ is called closed if the image set
$\{m(A):A\in R\}$ of the $d$irected set $R$ converges in $X$.

Proposition 1. Let $R$ be a ring of subsets of $S,$ $X$ a Banach space and
$m:R\rightarrow X$ a finitely additive set function. Then the following conditions are
equivalent.

(1) $m$ is closed.
(2) For every number $\epsilon>0$ there exists a set $E_{0}\in R$ such that for every

set $EeR$ with $E\subset S-E_{0}$ we have $||m(E)||<\epsilon$ .
Proof. (1) $\Rightarrow(2)$ . By hypothesis $x_{0}=\lim\{m(A):A\in R\}eX$ exists. Then for

every number $e>0$ there exists a set $E_{0}\in R$ such that for every set $EeR$ with
$E_{0}\subset E$ we have $||m(E)-x_{0}\Vert<\epsilon$ . Since for every set $E\in R$ with $E\subset S-E_{0}$ we have
$E_{0}\subset E\cup E_{0},$ $\Vert m(E\cup E_{0})-x_{0}\Vert<\epsilon$ . Since $m(E\cup E_{0})=m(E)+m(E_{0})$ and $||m(E_{0})-x_{0}\Vert<$

$e$ , we have $\Vert m(E)\Vert=\Vert m(E\cup E_{0})-m(E_{0})\Vert\leqq\Vert m(E\cup E_{0})-x_{0}\Vert+\Vert x_{0}-m(E_{0})\Vert<\&$ .
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(2) $\Rightarrow(1)$ . It is easy to show that $\{m(A):AeR\}$ is a Cauchy net in $X$. See
Oberle ([4] Proposition 2).

Definition 2. A set function $m:R\rightarrow X$ is called strongly bounded (s-bounded)

$i\beta$ for every sequence $\{E_{n}\}$ of mutually disjoint sets of $R$ we have

$\lim_{n\rightarrow\infty}\Vert m(E_{n})\Vert=0$ .
Proposition 2. Let $R$ be a ring of subsets of $S,$ $X$ a Banach space and

$m:R\rightarrow X$ a finitely additive set function. If $m$ is s-bounded, then $m$ is
closed.

Proof. If it were false, then there exist a number $e>0$ and an increasing

sequence $\{E_{n}\}$ of sets of $R$ such that $\Vert m(E_{n+1})-m\langle E_{*}$) $H>e$ for all $n$ . We put
$F_{*}=E_{n+1}-E_{n}(n=1,2, \cdots)$ . Then $\{F_{n}\}$ is a mutually disioInt sets of $R$ such that
$\Vert m(F_{n})\Vert>\epsilon$ for all $n$ . Therefore we have a contradiction.

The converse of the above mentioned proposition is not true.

Example 1. Let $S$ be the interval $[0,1],$ $R$ the ring generated by the
intervals $(a, b$] $(0\leqq a<b\leqq 1)$ and $F_{n}$ the real valued function defined by

$F_{n}(x)=\left\{\begin{array}{ll}2nx & if 0\leqq x<1/2n^{-1}\\1-(2nx-1) & if 1/2n^{-1}\leqq x<n^{-1}\\0 & if n^{-1}\leqq x\leqq 1 (n=1,2, \cdots).\end{array}\right.$

We put $m_{n}((a, b$]) $=F_{*}(b)-F_{n}(a)(0\leqq a<b\leqq 1)$ and $m(A)=(m,,(A))_{n\leftarrow 1}^{\infty}$ for every set
$A\in R$ . Then $m:R\rightarrow c_{0}$ is finitely additive. Since $||m((1/2^{\hslash+1}, 1/2^{n}$]) $||=|m_{f}*$

$((1/2^{n+1},1/2^{*}])|=1(n=1,2, \cdots),$ $m$ is not s-bounded. For every number $e>0$ we
put $E_{0}=(0,1-e/2$]. Then for every set $EeR$ with $E\subset S-E_{0}$ we have $||m(E)\Vert\leqq$

$\sup$ { $||m(A)\Vert:A\subset E,$ A $eR$} $=\epsilon/2$ . Therefore $m$ is closed.

Remark. Note that if $R$ is a $\delta$-ring, then any closed measure is s-bounded
([4] Proposition 1).

Proposition 3. Let $R$ be a ring of subsets of $S,$ $X$ a Banach space and
$m:R\rightarrow X$ a finitely additive set function. If $m$ is closed and $\epsilon up\{\Vert m(B)\Vert$ :
$B\subset A,$ $B\in R$} $<+\infty$ for every set $A\in R$ , then $m$ is bounded.

$Pra\Phi f$ . $ince $m$ is closed, there exists a set $E_{0}eR$ such that for every set
$EeR$ with $EcS-E_{0}$ we $b?^{V6}||m(E)|[\leqq 1$ . There exi8ts a number $M>0$ s.uch
that for every set $EeR$ with $E\subset E_{0}$ we have $\Vert m(E)||\leqq M$. Since for every set
$EeR$ we have $E=(\beta\cap E_{0})\cup tE-E_{0})$ , we have $\# m(E)||\leqq||m(E\cap E_{0})||+||m(E-E_{0})||$
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$\leqq M+1$ . The proof is complete.

Corollary. Let $R,$ $X$ and $m:R\rightarrow X$ are as in Proposition 3. If $X$ has
no subspace isomorphie to $c_{0}$ , then the followings are equivalent.

(1) $m$ is s-bounded.
(2) $m$ is closed and $sup\{||m(B)\Vert:BcA, B\in R\}<+\infty$ for every set $A\in R$ .
(3) $m$ is bounded.

Proof. (1) $\Rightarrow(2)\Rightarrow(3)$ . We can prove without the condition “X has no sub-
space isomorphic to $c_{0}$ .

(3) $\Rightarrow(1)$ . If it were false, then there exist a number $\epsilon>0$ and a mutually
disjoint sets $\{E_{n}\}$ of $R$ such that $||m(E_{n})||>\epsilon$ for all $n$ . Since $X$ has no subspace
isomorphic to $c_{0}$ , there exists for every number $K>0$ a flnite subsequence
$\{E_{n_{f}}\}$ of $\{E_{n}\}$ such that $\Vert\sum_{r}m(E_{n_{r}})\Vert=\Vert m(\bigcup_{r}E_{n_{f}})\Vert>K$. Since $\bigcup_{r}E_{n_{r}}eR$ and $m$ is
bounded, we have a contradiction.

We put $\mathfrak{m}=$ {$AcS$: for every set EeR we have $E\cap AeR$}. Then $\mathfrak{m}$ is an
algebra containing $R$ . We say that $\mathfrak{m}$ is the locally measurable sets. Note that
if $SeR$ , then we have $m=R$ .

Theorem 1. Let $R$ be a ring of subsets of $S$ with $S\not\in R,$ $\mathfrak{m}$ the locally
measurable sets, $X$ a Banach space and $m:R\rightarrow X$ a countably additive set func-
tion. If $ mi\epsilon$ closed, then $m$ can be extended to a countably additive set func-
tion $m_{1}:\mathfrak{m}\rightarrow X$.

Proof. Let $A$ be any set of $\mathfrak{m}$ . It is easy to show that the set {$m(E\cap A)$ ;
$E\in R\}$ is a Cauchy net in $X$. Since $X$ is complete, define $m_{t}(A)=\lim\{m(EnA)$ :
$E\in R\}\in X$. The finite additivity of $m_{1}$ is obviou8. We shall prove that $m_{1}$ is
countably additive. Let $\{A_{n}\}$ be a mutually disjoint sets of $\mathfrak{m}$ such that
$A=\bigcup_{n=1}A_{n}\in \mathfrak{m}$ . By dePnition of $m_{1}$ there exists for every number $\epsilon>0$ a set
$EeR$ such that $||m_{1}(A)-m(A\cap E)\Vert<e$ and $||m(E^{\prime})\Vert<\epsilon$ for every set $E^{\prime}eR$ with
$E^{\prime}cS-E$ . Since $A\cap E=\bigcup_{n=1}^{\infty}A_{n}\cap E\in R$ , we have $m(A\cap E)=\sum_{n=1}^{\infty}m(A_{n}\cap E)$ . Then

there exists a positive integer $n_{0}$ such that $||m(A\cap E)-\sum_{i=1}^{n_{0}}m(A\cap E$ } $||<\epsilon$ . For
each positive integer $i(1\leqq i\leqq n_{0})$ there exists a set $E_{\ell}\in R$ such that $E\subset E$ and
$\Vert m_{1}(A)-m\langle A\cap E)\}|<(1/n_{0})\epsilon.\sum_{i=1}^{n_{0}}(m(A\cap E)-m(A\cap E))=\sum_{\ell=1}^{n_{0}}m\langle A\cap(E-E))=$

$m(\bigcup_{i=1}^{n_{0}}(A_{\iota}\cap(E-E))$ and $\bigcup_{i=1}^{n_{0}}A\cap(E_{\ell}-E)\subset S-E$. Hence we have $||\sum_{i=1}^{u_{0}}(m(A\cap E_{i})$

$-m(A\cap E))\Vert<\epsilon$ . Therefore we have $\Vert m_{1}(A)-\sum_{i=1}^{n_{0}}m_{1}(A)\Vert\leqq||m_{1}(A)-m(A\cap E)\Vert$
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$+\Vert m(A\cap E)-\sum_{l=1}^{n_{0}}m(A\cap E)\Vert+\Vert\sum_{\ell=1}^{n_{0}}(m(A_{\ell}\cap E)-m(A\cap E))\Vert+\sum_{\ell=1}^{n_{0}}\Vert m(A\cap E_{i})-$

$ m_{1}(A)\Vert<\&$ . The proof is complete.

We put $\Sigma=$ {$AcS:$ $A$ $eR$ or $S-A\in R$}. Then $\Sigma$ is the smallest algebra con-
taining $R$ and $\Sigma\subset \mathfrak{m}$ . We say that $\Sigma$ is the algebra generated by $R$ .

Proposition 4. Let $R$ be a $r\prime ing$ of subsets of $S$ with $S\not\in R,$ $\Sigma$ the algebra

generated by $R,$ $X$ a Banach space and $m:R\rightarrow X$ a countably additive set

function. If $m$ is closed, then $m$ can be extended to a countably additive
set function $\overline{m};\Sigma\rightarrow X$. Further $\overline{m}(A)=m(A)$ if $AeR$ and $\overline{m}(A)=x_{0}-m(S-A)$

if $S-AeR$ (where $x_{0}=\lim\{m(E):E\in R\}eX$ ). ([41 Proposition 2).

Proof. By Theorem 1 $m$ can be extended to a countably additive set
function $m_{1}:\mathfrak{m}\rightarrow X$. Let $\overline{m}$ be the restriction of $m_{1}$ to $\Sigma$ . We put $x_{0}=\lim\{m(E)$ :
$E\in R\}$ . It is easy to show that $\overline{m}(A)=m(A)$ if AeR $\overline{m}(A)=x_{0}-m(S-A)$ if $S-$

A $eR$ .
Example 2. Let $S$ be the set of all povitive integers and $R$ the ring of

all finite subsets of $S$ . Define $m:R\rightarrow\{0,1\}$ by $m(A)=1$ if le $AeR$ and $m(A)=0$

if $1\not\in AeR$ . Then $m$ is countably additive and s-bounded. Let $\Sigma$ be the algebra

generated by $R$ . Define $\overline{m};\Sigma\rightarrow\{-1,0,1\}$ by $\overline{m}(A)=m(A)$ if $A\in R$ and $\overline{m}(A)=-$

$m(S-A)$ if $S-AeR$ . Then $\overline{m}$ is not countably additive. For, let $A_{n}$ be the

singleton set $\{n\},$ $neS(n\geqq 2)$ and put $A=\bigcup_{n=2}A_{n}$ . Sinoe $S-A=\{1\}eR$ , we have $ Ae\Sigma$

and $\overline{m}(A)=-1$ . On the other hand, $\sum_{n=2}^{\infty}\overline{m}(A_{n})=\sum_{n=2}^{\infty}m(A_{n})=0$ .

Corollary. Let $R,$ $\Sigma,$ $X$ and $m:R\rightarrow X$ are as in Proposion 4. Suppose

that $S\not\in R_{\sigma}$ . We define $\overline{m};\Sigma\rightarrow X$ by $\overline{m}(A)=m(A)$ if A $eR$ and $\overline{m}(A)=x_{0}-m(S-A)$

if $S-A\in R.$ Then $\overline{m}$ is countably additive (where $R_{\sigma}$ is the set of all count-
able unions of sets of $R$ and $x_{0}$ is any element of $X$ ).

Proof. We note that if $A\cap B=\phi,$ $A$, Be $\Sigma$ , then AeR or $BeR$ . Let
$\{A_{n}\}$ be a mutually disjoint sets of $\Sigma$ such that $ A=\bigcup_{*=1}A_{n}e\Sigma$ .

Case 1. $A_{n}eR(n=1,2, \cdots)$ and A $eR$ . It is obvious.

Case 2. $S-A_{1}eR$ and $S-AeR$ . Since $(S-A_{1})-(S-A)=\bigcup_{=2}A_{n}eR\infty$ , we

have $m(S-A_{1})-m(S-A)=\sum_{n=2}^{\infty}m(A_{n})$ . Then $\overline{m}(A)=x_{0}-m(S-A)=x_{0}-m(S-A_{1})+$

$\sum_{n=2}^{\infty}m(A_{n})=\sum_{n=1}^{\infty}\overline{m}(A_{l})$ .
Case 3. $A_{n}eR(n=1,2, \cdots)$ and $S-AeR$ . Since $S=(S-A)\cup\bigcup_{=1}^{\infty}A_{n}\in R_{\sigma}$ ,
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we have a contradiction.

3. Applications.

Let $S$ be a set, $R$ a ring of subsets of $S,$ $X$ a Banach space and $m:R\rightarrow X$

a finitely additive set function. Let $R_{0}$ be a 8ubfamily of $R$ 8uch that
(1) $A,$ $BeR_{0}\Rightarrow A\cup BeR_{0}$ .
(2) $A$ $eR,$ $BeR_{0}$ and $A\subset B\Rightarrow AeR_{0}$ .

Then $R_{0}$ is a subring and is a directed set with the order $\leqq$ in \S 2. The follow-
ing theorem is a generalization of [5] Theorem 1.

Theorem 2. Let $R$ be a ring of subsets of $S,$ $X$ a Banach space and
$m:R\rightarrow X$ a finitely additive set function. Suppose that $R_{0}$ be a subfamily of
$R$ such that

(i) $A,$ $BeR_{0}\Rightarrow A\cup BeR_{0}$ .
(ii) $A$ $eR,$ $BeR_{0}$ and $A\subset B\Rightarrow AeR_{0}$ .

and
(iii) the image set $\{m(A):A\in R_{0}\}$ of the directed set $R_{0}$ converges in $X$.
Then there exist two set function $m_{1}:R\rightarrow X$ and $m_{t}:R\rightarrow X$ such that
(1) $m=m_{1}+m_{2}$

(2) $AeR_{0}\rightarrow m_{1}(A)=0$

(3) for every set $AeR$ with $m_{2}(A)\neq 0$ there exists a set $BeR_{0}$ such that
$Bc$ $A$ and $m,(B)\neq 0$ .

(4) $m_{1}$ and $m_{2}$ are finitely additive.

Proof. By the condition (iii) there exists for every number $e>0$ a set $A$ $eR_{0}$

8uch that for every set $B\in R_{0}$ with $B\subset S-A$ we have $||m(B)||<e$ . Then for
every set $EeR$ the set $\{m(E-B):BeR_{0}\}$ is a Cauchy net in $X$, since for every

sets $B,$ $CeR_{0}$ with $A\subset B$ and $A\subset C$ we have $[|m(E-B)-m(E-C)||=||m(E\cap C$

$-B)-m(E\cap B-C)||\leqq\Vert m(E\cap C-B)\Vert+||m(E\cap B-C)||<\&$ . Similarly, the set
$\{m(E\cap B);B\in R_{0}\}$ is a Cauchy net in $X$. Since $X$ is complete, lim {$m(E-B)$ :
$BeR_{0}\}eX$ and $\lim\{m(E\cap B):BeR_{0}\}eX$ exist. Then we put $m_{1}(E)=\lim\{m(E$

$-B):BeR_{0}\}$ and $m_{2}(E)=\lim\{m(E\cap B):BeR_{0}\}$ . By the definition of $m_{1}$ and
$m$, the properties (1) $-(4)$ are obvious.

Theorem 3. (The Lebesgue decomposition theorem). Let $\gamma$ be a $\sigma$-ring of
subsets of $S,$ $X$ a Banach space, $m:\gamma\rightarrow X$ a countably additive set function
and $\mu$ a non-negative measure on $\gamma$ . Then there exist unique countably addi-
tive set functions $m_{1}:\gamma\rightarrow X$ and $m_{2}:\gamma\rightarrow X$ such that

(1) $m=m_{1}+m_{2}$
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(2) $\mu(A)=0\Rightarrow m_{1}(A)=0$

(3) there exists a locally measurable set $A$ such that $m_{2}(E\cap A)=0$ and
$\mu(E-A)=0$ for every set $ E\in\gamma$ .

Proof. We put $\gamma_{0}=\{Ae\gamma:\mu(A)=0\}$ . Then $\gamma_{0}$ satisfles the conditions (i) and
(ii) of Theorem 2. Since $m$ is s-bounded, $msati_{8}fies$ the condition (iii) of
Theorem 2. Then by Theorem 2 there exist $m_{1}$ and $m_{2}$ such that

(1) $m=m_{1}+m,$ .
$(2^{\prime})$ $Ae\gamma_{0}\Rightarrow m_{1}(A)=0$ .
(3) for every set $ Ae\gamma$ with $m_{8}(A)\neq 0$ there exists a set $Be\gamma_{0}$ such that

$B\subset A$ and $m,(B)\neq 0$ .
\langle 1) and (2) are obvious. The countable additivity of $m_{1}$ and $m_{2}$ are obvious
(for example, 8ee the proof of Theorem 1). The proof of (3). Using [5] Pro-
position 2 we can prove that there exists a set $N\in\gamma_{0}$ 8uch that $m_{2}(E-N)=0$

for every set $ Ee\gamma$ . Then we put $A=S-N$. Thus (3) is obvious. The unique-
nes8 of the decomposition is obvious.

Remark. 1) In a recent paper, W. M. Bogdanowicz and R. A. Oberle [8]
has given some decomposition theorems for vector measure.

2) Our definition of closed measure is different from Kluvapelc $s$ definition
(see I. Kluvanek and G. Knowles: Vector Measures and Control Systems, North-
Holland, Amsterdam (1976)).
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