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1. Introduction.

Let S be a set, R a ring of subsets of S with S¢ R, 2 the algebra generated
by B, X a Banach space and m: R—X a set function. Define m:2—X by
m(E)=m(E) if E€R and m(E)=—m(S—FE) if S—EcR. Then we have

1) if m is finitely additive, then so is m.

(2) if m is bounded, then so is m.

(8) if m is s-bounded, then so is 7. (for example, see [2]).

But we shall note that the countable additivity of m does not imply the coun-
table additivity of m (Example 2). In this paper we shall discuss the countable
additivity of m. In §2 we shall introduce the notion of closed measure. In
§ 8 we shall consider some of its applications.

2. Closed measures.

Let S be a set, R a ring of subsets of S, X a Banach space and m: R—X
a set function. We define an order A< A, if and only if A;C A, for every sets
A,, A;eR. Then R is a directed set with the order =.

Definition 1. A set function m: R—X 1is called closed if the image set
{m(A): A€ R} of the directed set R converges in X.

Proposition 1. Let R be a ring of subsets of S, X a Banach space and
m;: R—X a finitely additive set function. Then the following conditions are
equivalent.

1) m s closed.

(2) For every number ¢>0 there exists a set E,c¢ R such that for every
set Ec€ R with EC S—E, we have |m(E)|<e.

Proof. (1)=(2). By hypothesis z,=lim {m(A): A€ R}€ X exists. Then for
every number ¢>0 there exists a set E, € R such that for every set E€ R with
E,C E we have |m(E)—x,||<e. Since for every set E€ R with EC S—E, we have
E,CcEUE,, |m(EUE)—2x,||<e. Since m(E U E,)=m(E)+m(E,) and |m(E,)—x,|| <
¢, we have |[m(E)||=|m(E U Eo)—m(E)|| < |m(E U Eo)— ||+ [|5.—m(Eo) || < 2.
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(2)=(). It is easy to show that {m(A): Ac R} is a Cauchy net in X. See
Oberle ([4] Proposition 2).

Definition 2. A set function m: R—X is called strongly bounded (s-bounded)
of for every sequence {E,} of mutually disjoint sets of R we have

lim [|m(E,)[|=0 .

Proposition 2. Let R be a ring of subsets of S, X a Banach space and
m: R—X a finitely additive set function. If m is s-bounded, then m 1is
closed.

Proof. If it were false, then there exist a number ¢>0 and an increasing
sequence {FE,} of sets of R such that |m(E,..)—m(E,)}|>¢ for all n. We put
F,=FE,,,—E,n=1,2,---). Then {F,} is a mutually disjoint sets of R such that
[lm(F,)||>¢ for all n. Therefore we have a contradiction.

The converse of the above mentioned proposition is not true.

Example 1. Let S be the interval [0,1], B the ring generated by the
intervals (a,b] (0<a<b=1) and F, the real valued function defined by

2nx if 0=Z2<1/2n71
F (x)=41—(2nx—1) if 12n'Ze<n™?
0 if n =21 n=1,2,---).

We put m,((a, b])=F.(b)—F.(a) 0=a<b=1l) and m(A)=(m,(A))s-, for every set
AcR. Then m:R—c, is finitely additive. Since [m((1/2"*, 1/2"])|=Imyn
(x/2r+, 1/2*Dl=1 (n=1,2,---), m is not s-bounded. For every number ¢>0 we
put E,=(0,1—¢/2]. Then for every set E€ R with ECS—E, we have [|[m(E)||<
sup {|m(A)|: AcE, Ac R}=¢/2. Therefore m is closed.

Remark. Note that if R is a d-ring, then any closed measure is s-bounded

([4] Proposition 1).

Proposition 3. Let R be a ring of subsets of 8, X a Banach space and
m: R—X a finitely additive set funetion. If m 18 closed and sup {|lm(B):
Bc A, Be R}<+x for every set Ac R, then m is bounded.

Proof. Since m is closed, there exists a set E,c R such that for every set
EeR with EcCcS—E, we ha/,we [lm(E)]=<1. There exists a number M>0 such
that for every set K€ R with Ec E, we have [|m(E)|=M. Since for every set
Ec R we have E=(EN E,) U(E—E,), we have |m(E)|<||m(EN Eo)ll+llm(E—Eo)l|




CLOSED VECTOR MEASURES 31

=M+1. The proof is complete.

Corollary. Let R, X and m: R—X are as in Proposition 3. If X has
no subspace isomorphic to c,, then the followings are equivalent.

(1) m is s-bounded.

(2) m is closed and sup {|m(B)||: Bc A, Be R}<-+ for every set A€ R.

(8) m is bounded.

Proof. (1)=(2)=(3). We can prove without the condition “X has no sub-
space isomorphic to c,’’.

(8)=(1). If it were false, then there exist a number ¢>0 and a mutually
disjoint sets {E,} of R such that [m(E,)[|>¢ for all ». Since X has no subspace
isomorphic to ¢,, there exists for every number K>0 a finite subsequence
{E,,} of {E,} such that lITZm(E,,,)H:lIm(LrJE',,,)lI>K. Since LTJE,,,eR and m is
bounded, we have a contradiction.

We put m={AcS: for every set Ec R we have ENAcR}. Then m is an

algebra containing B. We say that m is the locally measurable sets. Note that
if Se R, then we have m=R.

Theorem 1. Let R be a ring of subsets of S with S¢R, m the locally
measurable sets, X a Banach space and m: R—X a countably additive set func-
tton. If m i8 closed, then m can be extended to a countably additive set func-
tion m;: m—X,

Proof. Let A be any set of m. It is easy to show that the set {m(EnN A):
Ee R} is a Cauchy net in X. Since X is complete, define m,(A4)=lim {m(EN A):
EeR}e X. The finite additivity of m, is obvious. We shall prove that m, is
countably additive. Let {A4,} be a mutually disjoint sets of m such that

A= Q A,em, By definition of m, there exists for every number >0 a set
E e R such that |[m,(A)—m(ANE)|<e and |m(E")|<e for every set E’c R with
E'CS—E. Since ANE= { A.NE¢R, we have m(ANE)= 3 m(4,NE). Then

there exists a positive integer =, such that |Jm(ANE)— é m(A;N E)|[<e. For

each positive integer ¢{(1=7=<n,) there exists a set E,€ R such that EcE, and
no no

[lmy(A)—m(AN E)} <(1/no)e. i§1 (m(AN E)—m(A; N E))= t§ m(A,N (B,—E))=

m( U (AN (E—E) and U AN (E~E)cS—E. Hence we have | 3 (m(A,N By

—m(A(N E))||<e. Therefore we have |m,(A)— i‘i m(A,)|=|m(A)—m(A N E)|
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+ImANE)— & m(An B) |+ Z (AN E)—m(ANE) |+ I I m(4,N E)—
m,(A,)||<4e. The proof is complete.

We put S={AcS: AcR or S—AcR}. Then 2 is the smallest algebra con-
taining R and Scm. We say that Y is the algebra generated by R.

Proposition 4. Let R be a ring of subsets of S with S¢ R, 3 the algebra
generated by R, X a Banach space and m:R—X a countably additive set
Sfunction. If m is closed, then m can be extended to a countadbly additive
set function m:3I—X. Further m(A)=m(A) if AeR and m(A)=x,—m(S—A)
if S—AcR (where x,=lim {m(E): Ec R}c X). ([4] Proposition 2).

Proof. By m can be extended to a countably additive set
function m,: m—X. Let m be the restriction of m, to . We put z,=lim {m(E):
EcR}. It is easy to show that m(4)=m(A) if A€ R m(A)=x,—m(S—A) if S—
AeR.

Example 2. Let S be the set of all positive integers and E the ring of
all finite subsets of S. Define m: R—{0,1} by m(4)=1 if 1e Aec R and m(A)=0
if 1¢ Ac R. Then m is countably additive and s-bounded. Let 2 be the algebra
generated by R. Define m: 2 —{—1,0,1} by m(A)=m(4) if Ac R and m(A)=—
m(S—A) if S—AeR. Then 7 is not countably additive. For, let A, be the
singleton set {n}, n € S (n=2) and put A=:L_°J2 A,. Since S—A={1}e R, wehave Ac’Z

and 7(4)=—1. On the other hand, 3 (4,)= 3 m(4,)=0.

Corollary. Let R, 2, X and m: R—X are as in Proposion 4. Suppose
that S¢ R,. We define m: Z—X by m(A)=m(A) if A€ R and m(4A)=x,—m(S—A)
if S—AcR. Then 1w is countably additive (where R, is the set of all count-
able unions of sets of R and x, is any element of X).

Proof. We note that if ANB=¢, A,BeX, then AeR or BeR. Let
{4,} be a mutually disjoint sets of T such that A= U 4, .

Case 1. A,eR (n=1,2,--:) and Ac R. It is obvious.

Case 2. S—A;€R and S—A€R. Since (S—Al)—(S——A)———:l:jzA,,eR, we

have m(S—A,)—m(S—A)= igm(A,.). Then m(A)=2—m(S— A)=x,—m(S—A,)+
= mA)= 5 (Ay).
Case 8. A.eR (n=1,2,---) and S—AeR. Since S=(S—A)U U 4.€R,,
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we have a contradiction.

3. Applications.

Let S be a set, R a ring of subsets of S, X a Banach space and m:R—X
a finitely additive set function. Let R, be a subfamily of R such that

(1) A,BeR,~AUBER,.

(20 AeR, BeR, and AcCB=AcR,.
Then R, is a subring and is a directed set with the order < in §2. The follow-
ing theorem is a generalization of [5] Theorem 1.

Theorem 2. Let R be a ring of subsets of S, X a Banach space and
m: R—X a finitely additive set function. Suppose that R, be a subfamily of
R such that

(i) A, BeR=~AUBE&R,.

(ii) A€R, BeR, and AcB=AcR,.
and

(iii) the image set {m(A): A€ Ry} of the directed set R, converges in X.

Then there exist two set function m,: R—»X and m,: R—X such that

1) m=my-+m,

(2) A€ Ry—m;(A)=0

(8) for every set Ac R with my(A)>0 there exists a set Be€ R, such that
Bc A and my(B)=x0.

4) m, and m, are finitely additive.

Proof. By the condition (iii) there exists for every number ¢>0 a set A€ R,
such that for every set Be R, with BcS—A we have |m(B)li<e. Then for
every set Ec R the set {m(E—B): Be R,} is a Cauchy net in X, since for every
sets B,Ce R, with AcB and AcC we have |[m(E—B)—m(E—C)[|=[mENC
—B)—m(ENB—C)||Z||m(ENC—B)||+]|m(ENB—C)||<2. Similarly, the set
{m(ENB): Be R} is a Cauchy net in X. Since X is complete, lim {m(E—B):
BeR}eX and lim{m(ENB): Be R}€ X exist. Then we put m,(E)=lim {m(E
—B): Be R} and my(E)=lim {m(E’nB):BeRo}. By the definition of m, and
m, the properties (1)—(4) are obvious.

Theorem 3. (The Lebesgue decomposition theorem). Let r be a o-ring of
subsets of S, X a Banach space, m:y—X a countably additive set function
and ¢ a non-negative measure on y. Then there exist unique countably addi-
tive set funmctions m,: y—X and m,: y—X such that

1) m=m,+m,
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(2) p(A)=0=m,(A)=0
(8) there exists a locally measurable set A such that my(EN A)=0 and
#(E—A)=0 for every set Ecy.

Proof. We put r,={A€y: #(A)=0}. Then r, satisfies the conditions (i) and
(ii) of Since m is s-bounded, m satisfies the condition (iii) of
Then by there exist m, and m, such that

(1) m=m,+m,.

2) Aeyr~m,(A)=0.

(8) for every set Acy with my(4)>0 there exists a set Bey, such that
Bc A and my(B)=x0.
(1) and (2) are obvious. The countable additivity of m, and m, are obvious
(for example, see the proof of Theorem 1). The proof of (3). Using Pro-
position 2 we can prove that there exists a set Ner, such that m,(E—N)=0
for every set Ecy. Then we put A=S—N. Thus (3) is obvious. The unique-
ness of the decomposition is obvious.

Remark. 1) In a recent paper, W. M. Bogdanowicz and R. A. Oberle [3]
has given some decomposition theorems for vector measure.

2) Our definition of closed measure is different from Kluvanek’s definition
(see 1. Kluvanek and G. Knowles: Vector Measures and Control Systems, North-
Holland, Amsterdam (1976)).
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