CLOSED VECTOR MEASURES

By
Sachio Ohba

(Received April 30, 1974)

1. Introduction.

Let S be a set, R a ring of subsets of S with $S \notin R, \Sigma$ the algebra generated by R, X a Banach space and $m: R \rightarrow X$ a set function. Define $\bar{m}: \Sigma \rightarrow X$ by $\bar{m}(E)=m(E)$ if $E \in R$ and $\bar{m}(E)=-m(S-E)$ if $S-E \in R$. Then we have
(1) if m is finitely additive, then so is \bar{m}.
(2) if m is bounded, then so is \bar{m}.
(3) if m is s-bounded, then so is \bar{m}. (for example, see [2]).

But we shall note that the countable additivity of m does not imply the countable additivity of \bar{m} (Example 2). In this paper we shall discuss the countable additivity of \bar{m}. In $\S 2$ we shall introduce the notion of closed measure. In § 3 we shall consider some of its applications.

2. Closed measures.

Let S be a set, R a ring of subsets of S, X a Banach space and $m: R \rightarrow X$ a set function. We define an order $A_{1} \leqq A_{2}$ if and only if $A_{1} \subset A_{2}$ for every sets $A_{1}, A_{2} \in R$. Then R is a directed set with the order \leqq.

Definition 1. A set function $m: R \rightarrow X$ is called closed if the image set $\{m(A): A \in R\}$ of the directed set R converges in X.

Proposition 1. Let R be a ring of subsets of S, X a Banach space and $m: R \rightarrow X$ a finitely additive set function. Then the following conditions are equivalent.
(1) m is closed.
(2) For every number $\varepsilon>0$ there exists a set $E_{0} \in R$ such that for every set $E \in R$ with $E \subset S-E_{0}$ we have $\|m(E)\|<\varepsilon$.

Proof. (1) $\Rightarrow(2)$. By hypothesis $x_{0}=\lim \{m(A): A \in R\} \in X$ exists. Then for every number $\varepsilon>0$ there exists a set $E_{0} \in R$ such that for every set $E \in R$ with $E_{0} \subset E$ we have $\left\|m(E)-x_{0}\right\|<\varepsilon$. Since for every set $E \in R$ with $E \subset S-E_{0}$ we have $E_{0} \subset E \cup E_{0},\left\|m\left(E \cup E_{0}\right)-x_{0}\right\|<\varepsilon$. Since $m\left(E \cup E_{0}\right)=m(E)+m\left(E_{0}\right)$ and $\left\|m\left(E_{0}\right)-x_{0}\right\|<$ ε, we have $\|m(E)\|=\left\|m\left(E \cup E_{0}\right)-m\left(E_{0}\right)\right\| \leqq\left\|m\left(E \cup E_{0}\right)-x_{0}\right\|+\left\|x_{0}-m\left(E_{0}\right)\right\|<2 \varepsilon$.
$(2) \Rightarrow(1)$. It is easy to show that $\{m(A): A \in R\}$ is a Cauchy net in X. See Oberle ([4] Proposition 2).

Definition 2. A set function $m: R \rightarrow X$ is called strongly bounded (s-bounded) if for every sequence $\left\{E_{n}\right\}$ of mutually disjoint sets of R we have

$$
\lim _{n \rightarrow \infty}\left\|m\left(E_{n}\right)\right\|=0
$$

Proposition 2. Let R be a ring of subsets of S, X a Banach space and $m: R \rightarrow X$ a finitely additive set function. If m is s-bounded, then m is closed.

Proof. If it were false, then there exist a number $\varepsilon>0$ and an increasing sequence $\left\{E_{n}\right\}$ of sets of R such that $\| m\left(E_{n+1}\right)-m\left(E_{n}\right) H>\varepsilon$ for all n. We put $F_{n}=E_{n+1}-E_{n}(n=1,2, \cdots)$. Then $\left\{F_{n}\right\}$ is a mutually disjoint sets of R such that $\left\|m\left(F_{n}\right)\right\|>\varepsilon$ for all n. Therefore we have a contradiction.

The converse of the above mentioned proposition is not true.
Example 1. Let S be the interval $[0,1], R$ the ring generated by the intervals $(a, b](0 \leqq a<b \leqq 1)$ and F_{n} the real valued function defined by

$$
F_{n}(x)= \begin{cases}2 n x & \text { if } 0 \leqq x<1 / 2 n^{-1} \\ 1-(2 n x-1) & \text { if } 1 / 2 n^{-1} \leqq x<n^{-1} \\ 0 & \text { if } n^{-1} \leqq x \leqq 1 \quad(n=1,2, \cdots)\end{cases}
$$

We put $m_{n}((a, b])=F_{n}(b)-F_{n}(a)(0 \leqq a<b \leqq 1)$ and $m(A)=\left(m_{n}(A)\right)_{n=1}^{\infty}$ for every set $A \in R$. Then $m: R \rightarrow c_{0}$ is finitely additive. Since $\left\|m\left(\left(1 / 2^{n+1}, 1 / 2^{n}\right]\right)\right\|=\mid m_{2^{n}}$ $\left(\left(1 / 2^{n+1}, 1 / 2^{n}\right]\right) \mid=1(n=1,2, \cdots), m$ is not s-bounded. For every number $\varepsilon>0$ we put $E_{0}=(0,1-\varepsilon / 2]$. Then for every set $E \in R$ with $E \subset S-E_{0}$ we have $\|m(E)\| \leqq$ $\sup \{\|m(A)\|: A \subset E, A \in R\}=\varepsilon / 2$. Therefore m is closed.

Remark. Note that if R is a δ-ring, then any closed measure is s-bounded ([4] Proposition 1).

Proposition 3. Let R be a ring of subsets of S, X a Banach space and $m: R \rightarrow X$ a finitely additive set function. If m is closed and sup $\{\|m(B)\|$: $B \subset A, B \in R\}<+\infty$ for every set $A \in R$, then m is bounded.

Proof. Since m is closed, there exists a set $E_{0} \in R$ such that for every set $E \in R$ with $E \subset S-E_{0}$ we have $\|m(E)\| \leqq 1$. There exists a number $M>0$ such that for every set $E \in R$ with $E \subset E_{0}$ we have $\forall m(E) \| \leqq M$. Since for every set $E \in R$ we have $E=\left(E \cap E_{0}\right) \cup\left(E-E_{0}\right)$, we have $\|m(E)\| \leqq\left\|m\left(E \cap E_{0}\right)\right\|+\left\|m\left(E-E_{0}\right)\right\|$
$\leqq M+1$. The proof is complete.
Corollary. Let R, X and $m: R \rightarrow X$ are as in Proposition 3. If X has no subspace isomorphic to c_{0}, then the followings are equivalent.
(1) m is s-bounded.
(2) m is closed and $\sup \{\|m(B)\|: B \subset A, B \in R\}<+\infty$ for every set $A \in R$.
(3) m is bounded.

Proof. (1) $\Rightarrow(2) \Rightarrow(3)$. We can prove without the condition " X has no subspace isomorphic to $c_{0}{ }^{\prime \prime}$.
$(3) \Rightarrow(1)$. If it were false, then there exist a number $\varepsilon>0$ and a mutually disjoint sets $\left\{E_{n}\right\}$ of R such that $\left\|m\left(E_{n}\right)\right\|>\varepsilon$ for all n. Since X has no subspace isomorphic to c_{0}, there exists for every number $K>0$ a finite subsequence $\left\{E_{n_{r}}\right\}$ of $\left\{E_{n}\right\}$ such that $\left\|\sum_{r} m\left(E_{n_{r}}\right)\right\|=\left\|m\left(\underset{r}{\cup} E_{n_{r}}\right)\right\|>K$. Since $\bigcup_{r} E_{n_{r}} \in R$ and m is bounded, we have a contradiction.

We put $\mathfrak{m}=\{A \subset S$: for every set $E \in R$ we have $E \cap A \in R\}$. Then \mathfrak{m} is an algebra containing R. We say that \mathfrak{m} is the locally measurable sets. Note that if $S \in R$, then we have $\mathfrak{m}=R$.

Theorem 1. Let R be a ring of subsets of S with $S \notin R, \mathfrak{m}$ the locally measurable sets, X a Banach space and $m: R \rightarrow X$ a countably additive set function. If m is closed, then m can be extended to a countably additive set function $m_{1}: \mathfrak{m} \rightarrow X$.

Proof. Let A be any set of m. It is easy to show that the set $\{m(E \cap A)$: $E \in R\}$ is a Cauchy net in X. Since X is complete, define $m_{1}(A)=\lim \{m(E \cap A)$: $E \in R\} \in X$. The finite additivity of m_{1} is obvious. We shall prove that m_{1} is countably additive. Let $\left\{A_{n}\right\}$ be a mutually disjoint sets of \mathfrak{m} such that $A=\bigcup_{n=1}^{\infty} A_{n} \in \mathfrak{m}$. By definition of m_{1} there exists for every number $\varepsilon>0$ a set $E \in R$ such that $\left\|m_{1}(A)-m(A \cap E)\right\|<\varepsilon$ and $\left\|m\left(E^{\prime}\right)\right\|<\varepsilon$ for every set $E^{\prime} \in R$ with $E^{\prime} \subset S-E$. Since $A \cap E=\bigcup_{n=1}^{\infty} A_{n} \cap E \in R$, we have $m(A \cap E)=\sum_{n=1}^{\infty} m\left(A_{n} \cap E\right)$. Then there exists a positive integer n_{0} such that $\left\|m(A \cap E)-\sum_{i=1}^{n_{0}} m\left(A_{i} \cap E\right)\right\|<\varepsilon$. For each positive integer $i\left(1 \leqq i \leqq n_{0}\right)$ there exists a set $E_{i} \in R$ such that $E \subset E_{i}$ and $\left\|m_{1}\left(A_{i}\right)-m\left(A_{i} \cap E_{i}\right)\right\|<\left(1 / n_{0}\right) \varepsilon . \sum_{i=1}^{n_{0}}\left(m\left(A_{i} \cap E_{i}\right)-m\left(A_{i} \cap E\right)\right)=\sum_{i=1}^{n_{0}} m\left(A_{i} \cap\left(E_{i}-E\right)\right)=$ $m\left(\bigcup_{i=1}^{n_{0}}\left(A_{i} \cap\left(E_{i}-E\right)\right)\right.$ and $\bigcup_{i=1}^{n_{0}} A_{i} \cap\left(E_{i}-E\right) \subset S-E$. Hence we have $\| \sum_{i=1}^{n_{0}}\left(m\left(A_{i} \cap E_{i}\right)\right.$ $\left.-m\left(A_{\imath} \cap E\right)\right) \|<\varepsilon$. Therefore we have $\left\|m_{1}(A)-\sum_{i=1}^{n_{0}} m_{1}\left(A_{i}\right)\right\| \leqq\left\|m_{1}(A)-m(A \cap E)\right\|$
$+\left\|m(A \cap E)-\sum_{i=1}^{n_{0}} m\left(A_{i} \cap E\right)\right\|+\left\|\sum_{i=1}^{n_{0}}\left(m\left(A_{i} \cap E\right)-m\left(A_{i} \cap E_{i}\right)\right)\right\|+\sum_{i=1}^{n_{0}} \| m\left(A_{i} \cap E_{i}\right)-$ $m_{1}\left(A_{i}\right) \|<4 \varepsilon$. The proof is complete.

We put $\Sigma=\{A \subset S: A \in R$ or $S-A \in R\}$. Then Σ is the smallest algebra containing R and $\Sigma \subset \mathfrak{m}$. We say that Σ is the algebra generated by R.

Proposition 4. Let R be a ring of subsets of S with $S \notin R, \Sigma$ the algebra generated by R, X a Banach space and $m: R \rightarrow X$ a countably additive set function. If m is closed, then m can be extended to a countably additive set function $\bar{m}: \Sigma \rightarrow X$. Further $\bar{m}(A)=m(A)$ if $A \in R$ and $\bar{m}(A)=x_{0}-m(S-A)$ if $S-A \in R$ (where $x_{0}=\lim \{m(E): E \in R\} \in X$). ([4] Proposition 2).

Proof. By Theorem 1 m can be extended to a countably additive set function $m_{1}: \mathfrak{m} \rightarrow X$. Let \bar{m} be the restriction of m_{1} to Σ. We put $x_{0}=\lim \{m(E)$: $E \in R\}$. It is easy to show that $\bar{m}(A)=m(A)$ if $A \in R \bar{m}(A)=x_{0}-m(S-A)$ if $S-$ $A \in R$.

Example 2. Let S be the set of all positive integers and R the ring of all finite subsets of S. Define $m: R \rightarrow\{0,1\}$ by $m(A)=1$ if $1 \in A \in R$ and $m(A)=0$ if $1 \notin A \in R$. Then m is countably additive and s-bounded. Let Σ be the algebra generated by R. Define $\bar{m}: \Sigma \rightarrow\{-1,0,1\}$ by $\bar{m}(A)=m(A)$ if $A \in R$ and $\bar{m}(A)=-$ $m(S-A)$ if $S-A \in R$. Then \bar{m} is not countably additive. For, let A_{n} be the singleton set $\{n\}, n \in S(n \geqq 2)$ and put $A=\bigcup_{n=2}^{\infty} A_{n}$. Since $S-A=\{1\} \in R$, we have $A \in \Sigma$ and $\bar{m}(A)=-1$. On the other hand, $\sum_{n=2}^{\infty} \bar{m}\left(A_{n}\right)=\sum_{n=2}^{\infty} m\left(A_{n}\right)=0$.

Corollary. Let R, Σ, X and $m: R \rightarrow X$ are as in Proposion 4. Suppose that $S \notin R_{o}$. We define $\bar{m}: \Sigma \rightarrow X$ by $\bar{m}(A)=m(A)$ if $A \in R$ and $\bar{m}(A)=x_{0}-m(S-A)$ if $S-A \in R$. Then \bar{m} is countably additive (where R_{o} is the set of all countable unions of sets of R and x_{0} is any element of X).

Proof. We note that if $A \cap B=\phi, A, B \in \Sigma$, then $A \in R$ or $B \in R$. Let $\left\{A_{n}\right\}$ be a mutually disjoint sets of Σ such that $A=\bigcup_{n=1}^{\infty} A_{n} \in \Sigma$.

Case 1. $A_{n} \in R(n=1,2, \cdots)$ and $A \in R$. It is obvious.
Case 2. $S-A_{1} \in R$ and $S-A \in R$. Since $\left(S-A_{1}\right)-(S-A)=\bigcup_{n=2}^{\infty} A_{n} \in R$, we have $m\left(S-A_{1}\right)-m(S-A)=\sum_{n=2}^{\infty} m\left(A_{n}\right)$. Then $\bar{m}(A)=x_{0}-m(S-A)=x_{0}-m\left(S-A_{1}\right)+$ $\sum_{n=2}^{\infty} m\left(A_{n}\right)=\sum_{n=1}^{\infty} \bar{m}\left(A_{n}\right)$.

Case 3. $A_{n} \in R(n=1,2, \cdots)$ and $S-A \in R$. Since $S=(S-A) \cup \bigcup_{n=1}^{\infty} A_{n} \in R_{\sigma}$,
we have a contradiction.

3. Applications.

Let S be a set, R a ring of subsets of S, X a Banach space and $m: R \rightarrow X$ a finitely additive set function. Let R_{0} be a subfamily of R such that
(1) $A, B \in R_{0} \Rightarrow A \cup B \in R_{0}$.
(2) $A \in R, B \in R_{0}$ and $A \subset B \Rightarrow A \in R_{0}$.

Then R_{0} is a subring and is a directed set with the order \leqq in § 2 . The following theorem is a generalization of [5] Theorem 1.

Theorem 2. Let R be a ring of subsets of S, X a Banach space and $m: R \rightarrow X$ a finitely additive set function. Suppose that R_{0} be a subfamily of R such that
(i) $A, B \in R_{0} \Rightarrow A \cup B \in R_{0}$.
(ii) $A \in R, B \in R_{0}$ and $A \subset B \Rightarrow A \in R_{0}$.
and
(iii) the image set $\left\{m(A): A \in R_{0}\right\}$ of the directed set R_{0} converges in X.

Then there exist two set function $m_{1}: R \rightarrow X$ and $m_{2}: R \rightarrow X$ such that
(1) $m=m_{1}+m_{2}$
(2) $A \in R_{0} \rightarrow m_{1}(A)=0$
(3) for every set $A \in R$ with $m_{2}(A) \neq 0$ there exists a set $B \in R_{0}$ such that $B \subset A$ and $m_{2}(B) \neq 0$.
(4) m_{1} and m_{2} are finitely additive.

Proof. By the condition (iii) there exists for every number $\varepsilon>0$ a set $A \in R_{0}$ such that for every set $B \in R_{0}$ with $B \subset S-A$ we have $\|m(B)\|<\varepsilon$. Then for every set $E \in R$ the set $\left\{m(E-B): B \in R_{0}\right\}$ is a Cauchy net in X, since for every sets $B, C \in R_{0}$ with $A \subset B$ and $A \subset C$ we have $\|m(E-B)-m(E-C)\|=\| m(E \cap C$ $-B)-m(E \cap B-C)\|\leqq\| m(E \cap C-B)\|+\| m(E \cap B-C) \|<2 \varepsilon$. Similarly, the set $\left\{m(E \cap B): B \in R_{0}\right\}$ is a Cauchy net in X. Since X is complete, $\lim \{m(E-B)$: $\left.B \in R_{0}\right\} \in X$ and $\lim \left\{m(E \cap B): B \in R_{0}\right\} \in X$ exist. Then we put $m_{1}(E)=\lim \{m(E$ $\left.-B): B \in R_{0}\right\}$ and $m_{2}(E)=\lim \left\{m(E \cap B): \dot{B} \in R_{0}\right\}$. By the definition of m_{1} and m_{2} the properties (1)-(4) are obvious.

Theorem 3. (The Lebesgue decomposition theorem). Let γ be a σ-ring of subsets of S, X a Banach space, $m: ~ \gamma \rightarrow X$ a countably additive set function and μ a non-negative measure on γ. Then there exist unique countably additive set functions $m_{1}: \gamma \rightarrow X$ and $m_{2}: \gamma \rightarrow X$ such that
(1) $m=m_{1}+m_{2}$
(2) $\mu(A)=0 \Rightarrow m_{1}(A)=0$
(3) there exists a locally measurable set A such that $m_{2}(E \cap A)=0$ and $\mu(E-A)=0$ for every set $E \in \gamma$.

Proof. We put $\gamma_{0}=\{A \in \gamma: \mu(A)=0\}$. Then γ_{0} satisfies the conditions (i) and (ii) of Theorem 2. Since m is s-bounded, m satisfies the condition (iii) of Theorem 2. Then by Theorem 2 there exist m_{1} and m_{2} such that
(1') $m=m_{1}+m_{2}$.
(2') $A \in \gamma_{0} \Rightarrow m_{1}(A)=0$.
(3^{\prime}) for every set $A \in \gamma$ with $m_{2}(A) \neq 0$ there exists a set $B \in \gamma_{0}$ such that $B \subset A$ and $m_{2}(B) \neq 0$.
(1) and (2) are obvious. The countable additivity of m_{1} and m_{2} are obvious (for example, see the proof of Theorem 1). The proof of (3). Using [5] Proposition 2 we can prove that there exists a set $N \in \gamma_{0}$ such that $m_{2}(E-N)=0$ for every set $E \in \gamma$. Then we put $A=S-N$. Thus (3) is obvious. The uniqueness of the decomposition is obvious.

Remark. 1) In a recent paper, W. M. Bogdanowicz and R. A. Oberle [3] has given some decomposition theorems for vector measure.
2) Our definition of closed measure is different from Kluvanek's definition (see I. Kluvánek and G. Knowles: Vector Measures and Control Systems, NorthHolland, Amsterdam (1976)).

REFERENCES

[1] N. Dinculeanu: Vector Measures, Pergamon Press, New York (1968).
[2] J. Hoffmann-Jørgensen: Vector measures, Math. Scand, 28 (1971) 5-32.
[3] W. M. Bogdanowicz and R. A. Oberle: Decompositions of finitely additive vector measures generated by bands of finitely additive scalar measures, Ill. J. Math. 19 (1975) 370-377.
[4] R. A. Oberle: Characerization of a class of equicontinuous sets of finitely additive measure with an application to vector valued Borel measures, Canad. J. Math. 26 (1974) 281-290.
[5] S. Ohba: The decomposition theorems for vector measures. The Yokohama Math. J, 19 (1971) 23-28.
[6] -: Extensions of vector measures. The Yokohama Math. J, 21 (1973) 61-66.
[7] —: Decompositions of vector measures. The Reports of the Faculty of Technology, Kanagawa Univ., 10 (1972).
[8] M. Sion: A Theory of Semigroup Valued Measures, Lecture Notes in Mathematics, 355, Springer 1973.

Kanagawa University Rokkaku-bashi, Kanagawa-ku Yokohama, Japan

