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Abstract: In a recent paper [2], the author and Mishra have defined (1),

$(1, 2)$ and (1, 2, 3) birecurrent manifolds in an almost Hermite manifold. In
the present paper the author has defined first order generalized birecurrent
manifolds for almost product manifold and various properties have been discussed.

1. Introduction.

We consider an n-dimensional manifold $M_{n}$ of differentiability class $c^{\infty}$ endowed
with a real vector valued linear function $F$ such that for arbitrary vector fields
$X,$ $Y,$ $Z$, etc.

(1.1) $a$
$X^{=}=X$ ,

where

(1.1)$b$ $\overline{X}=F(X)$ .
Let us further suppose that in $M_{n}$ there is given a positive definite Rieman-

nian metric tensor $g$ , such that

(1.2) $g(\overline{X},\overline{Y})=g(X, Y)$ .
Then $M_{n}$ is said to be an almost product manifold. Let us put

(1.3) $\prime F(X, Y)=g(\overline{X}, Y)$ .
Then from (1.1), (1.2) and (1.3), we get

(1.4) $a$ $\prime F(X, Y)=g(\overline{X}, Y)=g(X,\overline{Y})=\prime F(Y, X)$ ,

that $is,$ $\prime F$ is symmetric and

(1.4)$b$ $\prime F(\overline{X},\overline{Y})=g(X,\overline{Y})=\prime F(X, Y)$ ,

that is, hybrid.
Let $D$ be a Riemannian connexion in $M_{\iota}$ :

(1.5) $D_{X}Y-D_{r}X=[X, Y]$ , $(D_{X}g)(Y, Z)=0$ .
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Then if

(1.6) $a$ $(\nabla F)(Y, X)=0$ ,

where

(1.6)$b$ $(\nabla F)(Y, X)=(D_{X}F)(Y)$ ,

we say that $M_{n}$ is almost product and almost decolnposable.
Let $K$ be the curvature tensor of $M_{n}$ . Then in an almost product and

almost decomposable manifold, we have

(1.7) $a$ $\dot{K}(X, Y,\overline{Z})=^{\frac{\neg}{K(X,Y,Z)}}$ ,

(1.7) $b$ $K(\overline{X},\overline{Y}, Z)=K(X, Y, Z)$ .
The Weyl projective curvature tensor $W^{*}$ is given by

(1.8) $a$ $W^{*}(X, Y, Z)=K(X, Y, Z)-\frac{1}{(n-1)}$[$RIc(Y,$ $Z)X-$ RIc (X, $Z)Y$],

where Ric is the Ricci tensor defined by

(1.8) $b$ Ric $(Y, Z)=(\iota_{1}^{1}K)(Y, Z)$ ,

and $c_{1}^{1}$ is the contraction in the first slot.
The almost product and almost deeomposable manifold $M_{n}$ is called Q-recuf4

rent if

(1.9) $(\nabla Q)(X, Y, Z, U)=\alpha(U)Q(X, Y, Z)$ ,

where $Q$ is any of the curvature tensor and $\alpha$ is the l-form.

2. Birecurrent almost product manifold.

Definition (2.1). An almost product manifold $M,$. will be called Q-birecurrent
manifold if

(2.1) $(\nabla\nabla Q)(Z, T, W, X, Y)=b(X, Y)Q(Z, T, W)$ ,

where $b$ is a $C^{\infty}$ scalar valued function. The manifold $M_{n}$ will be calied Ricei
birecurrent manifold if

(2.2) $(WRic)(T, W, X, Y)=b(X, Y)$ Ric $(T, W)$ .
The almost product manifold $M_{n}$ will be caIled flrst order Q-birecurrent mani-
fold if
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(2.3) $(\nabla VQ(\overline{Z}, T, W, X, Y)+(\nabla Q)((\nabla F)(Z, Y),$ $T,$ $W,$ $X$ )

$+(\nabla Q)((\nabla F)(Z, X),$ $T,$ $W,$ $Y$ ) $+Q((\nabla\nabla F)(Z, X, Y), T, W)$

$=b(X, Y)Q(\overline{Z}, T, W)$ .
Theorem (2.1). If an almost product manifold is first order projective

birecurrent and first order birecurrent (K-birecurrent) manifold for the
same $\epsilon calar$ valued function $b$ , then it is also Ricci birecurrent manifold
provided

(2.4) $a$ $(\nabla\nabla F)(Z, X, Y)$ Ric $(T, W)+(\nabla F)(Z, X)(\nabla Ric)(T, W, Y)$

$+(\nabla F)(Z, Y)(\nabla Ric)(T, W, X)=0$ ,
$or$

(2.4)$b$ $K(Y, X, Z)=\overline{K(Y,X,Z})$ .
Proof. From (1.8), we have

(2.5) $W^{*}(\overline{Z}, T, W)=K(\overline{Z}, T_{1}W)-\frac{1}{(n-1)}[Ric(T, W)\overline{Z}-Ric(\overline{Z}, W)T]$ .

From the above equation, we have

(2.6) $(\nabla\nabla W^{*})(\overline{Z}, T, W, X, Y)+(\nabla W^{*})((\nabla F)(Z, Y),$ $T,$ $W,$ $X$ )

$+(\nabla W^{*})((\nabla F)(Z, X),$ $T,$ $W,$ $Y$ ) $+W^{*}((\nabla\nabla F)(Z, X, Y), T, W)$

$=(\nabla\nabla K)(\overline{Z}, T, W, X, Y)+(\nabla K)((\nabla F)(Z, Y),$ $T,$ $W,$ $X$ )

$+(\nabla K)((\nabla F)(Z, X),$ $T,$ $W,$ $Y$ ) $+K((\nabla\nabla F)(Z, X, Y), T, W)$

$-[(\nabla\nabla F)(Z, X\underline{1}Y)$ Ric $(T, W)+(\nabla F)(Z, X)(\nabla Ric)(T,W,Y)$
$(n-1)$

$+(\nabla F)(Z, Y)(\nabla Ric)(T, W, X)+(\nabla\nabla Ric)(T, W, X, Y)\overline{Z}$

$-((\nabla\nabla Ric)(\overline{Z}_{1}W, X, Y)+(\nabla Ric)((\nabla F)(Z, Y),$ $W,$ $X$ )

$+(\nabla Ric)((\nabla F)(Z, X),$ $W,$ $Y$ ) $+Ric((\nabla\nabla F)(Z, X, Y), W))T1$ .
Let the manifold $M_{n}$ be first order birecurrent manifold. Then putting $K$ for
$Q$ in (2.3) and contracting it, we get

(2.7) $(\nabla\nabla Ric)(\overline{Z}, W, X, Y)+(\nabla Ric)((\nabla F)(Z, Y),$ $W,$ $X$ )

$+(\nabla Ric)((\nabla F)(Z, X),$ $W,$ $Y$ ) $+Ric((\nabla\nabla F)(Z, X, Y), W)$

$=b(X, Y)$ Ric $(\overline{Z}, W)$ .
Let the manifold $M_{n}$ be first order projective birecurrent and first order

birecurrent manifold for the same birecurrence scalar valued function $b$ . Then
using (2.3) and (2.7) in (2.6), we get

(2.8) ($(V\nabla Ric)(T,$ $W_{1}X,$ $Y)-b(X,$ $Y)$ Ric $(T,$ $W)$) $\overline{Z}$
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$+(\nabla\nabla F)(Z, X, Y)$ Ric $(T, W)+(\nabla F)(Z, X)(\nabla Ric)(T, W, Y)$

$+(\nabla F)(Z, Y)(\nabla Ric)(T, W, X)=0$ .
Making use of $(2.4)a$ in the above equation, we get

(2.9) $a$ $(\nabla\nabla Ric)(T, W, X, Y)=b(X, Y)$ Ric $(T, W)$ .
Interchanging $X$ and $Y$ in $(2.4)a$ and subtracting the resulting equation thus
obtained from $(2.4)a$ , we get

(2.9) $b$ $(\nabla VF)(Z, X, Y)-(\nabla\nabla F)(Z, Y, X)=0$ ,

which in consequence of Ricci identity implies $(2.4)b$ . Hence the statement.

Theorem (2.2). For the first order Q-birecurrent almost product manifold
with the Killing structure tensor $F$, we have

(2.10) $(\nabla\nabla Q)(Z, T, W,\overline{X},\overline{Y})+(V\nabla Q)(Y, T, W,\overline{X},\overline{Z})$

$+(\nabla\nabla Q)(X, T, W,\overline{Z},\overline{Y})+Q((\nabla\nabla F)(\overline{Y},\overline{X}, Z), T, W)$

$=b(\overline{X},\overline{Y})Q(Z, T, W)+b(\overline{X},\overline{Z})Q(Y, T, W)+b(\overline{Z},\overline{Y})Q(X, T, W)$ .
Proof. Since $F$ is Killing:

(2.11) $a$ $(\nabla F)(X, Z)+(\nabla F)(Z, X)=0$ .
From $(2.11)a$ , we get

(2.11) $b$ $(\nabla\nabla F)(X, Z, Y)+(\nabla\nabla F)(Z, X, Y)=0$ .
Interchanging $Y$ and $Z$ in (2.3) and then $X$ and $Z$ in (2.3) and adding these
two equations thus obtained with (2.3) itself and making use of $(2.11)a,b$ , we
get

(2.12) $(\nabla\nabla Q)(\overline{Z}_{1}T, W, X, Y)+(\nabla\nabla Q)(\overline{Y}, T, W, X, Z)$

$+(\nabla\nabla Q)(\overline{X}, T, W, Z, Y)Q(((\nabla\nabla F)(Y, X, Z),T, W)=b(X, Y)Q(\overline{Z}, T, W)$

$+b(Z, Y)Q(\overline{X}, T, W)+b(X, Z)Q(\overline{Y}, T, W)$

Barring $X,$ $Y$ and $Z$ in (2.12) and using (1.1), we get (2.10).

Theorem (2.3). The first order Q-birecurrent almost product and almost
decomposable manifold is Q-birecurrent manifold.

Proof. From (2.3) and (1.6), we get

$(\nabla\nabla Q)(\overline{Z}, T, W, X, Y)=b(X, Y)Q(\overline{Z}, T, W)$ .
Barring $Z$ in the above equation and using (1.1), we get the result.

Theorem (2.4). The scalar curvature $R$ in the birecurrent almost product
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manifold $M_{n}$ is given by

(2.13) $a$ $R=((\nabla VR)(X, Y)/b(X, Y)$ ,

and the birecurrence scalar valued function $b$ is symmetric:

(2.13)$b$ $b(X, Y)=b(Y, X)$ .
Proof. For birecurrent almost product manifold, we get

(2.14) $a$ $(\nabla\nabla K)(Z, T, W, X, Y)=b(X, Y)K(Z, T, W)$ .
Contracting $(2.14)a$ , we get

(2.14) $b$ $(\nabla\nabla Ric)(Z, W, X, Y)=b(X, Y)Ric(Z, W)$ .
From $(2.14)b$ , we get

(2.14)$c$ $(\nabla\nabla r)(Z, X, Y)=b(X, Y)r(Z)$ ,

where

(2.14) $d$ $Ric(Y, Z)^{d}=^{ef}g(r(Y), Z)$ .
Contracting $(2.14)c$ , we get $(2.18)a$ . Interchanging $X$ and $Y$ in $(2.13)a$ and
subtracting the resulting equation from $(2.13)a$ itself, we get $(2.13)b$ .

Theorem (2.5). In birecurrent almost product and almost decomposable
man’ifold, the 2-form $B$ is hybrid in both the slots:

(2.15) $a$ $B(\overline{X},\overline{Y})=B(X, Y)$ ,

where

$(2.15)b$ $B(X, Y)=b(X, Y)-b(Y, X)$ .
Proof. Interchanging $X$ and $Y$ in $(2.14)c$ and subtracting the resulting

equation thus obtained from $(2.14)c$ and applying Ricci identity, we get

(2.16) $K(Y, X, r(Z))-r(K(Y, X, Z))=B(X, Y)r(Z)$ .
Barring $X$ and $Y$ in (2.16) and using $(1.7)b$ , we get

(2.17) $K(Y, X, r(Z))-r(K(Y, X, Z))=B(\overline{X},\overline{Y})r(Z)$ .
Comparing (2.16) and (2.17), we get $(2.15)a$ .

Theorem (2.6). Every recurrent manifold $M_{n}$ with the l-form a satisfy-
ing

(2.18) $(\nabla\alpha)(X, Y)+\alpha(X)\alpha(Y)\not\equiv O$ ,
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is a birecurrent manifold $M_{n}$ but the converse is not true in general.

Proof. From (1.9), we get

(2.19) $(\nabla\nabla Q)(Z, T_{1}W, X, Y)=((\nabla\alpha\rangle(X, Y)+\alpha(X)a(Y))Q(Z, T, W)$ .
Comparing (2.19) and (2.1), we get

(2.20) $b(X, Y)=(r_{a})(X, Y)+\alpha(X)\alpha(Y)$ ,

which proves the statement.

Theorem (2.7). In $M_{n}$ , l-form $a$ and 2-form $B$ satisfy the relation:
(2.21) $(\nabla B)(X, Y, Z)=a(Z)B(X, Y)$ .

Proof. From (2.16), we have

(2.22) $(\nabla K)(Y, X, r(T), Z)+K(Y, X, (\nabla r)(T, Z))-(\nabla r)(K(Y, X, T), Z)$

$-r((\nabla K)(Y, X, T, Z))=(\nabla B)(X, Y, Z)r(T)+B(X, Y)(\nabla r)(T, Z)$ .
For a recurrent manifold $M_{n}$ , we have (1.9), which implies

(2.23) $(\nabla r)(T, Z)=\alpha(Z)r(T)$ .
Substituting from (2.23) and (1.9) in (2.22) and using (2.16), we get (2.21).

Theorem (2.8). In the birecurrent manifo $ldM_{\hslash}$ , we get

(2.24) $\alpha(\overline{X})B(Y, Z)+\alpha(\overline{Y})B(Z, X)+\alpha(\sum)B(X, Y)=0$ .
Proof. From (2.20), we get

(2.25) $B(X, Y)=(\nabla\alpha)(X, Y)-(\nabla\alpha)(Y, X)$ .
From (2.25), we get

(2.26) $(\nabla B)(X, Y, Z)=(\nabla\nabla\alpha)(X, Y, Z)-(\nabla\nabla\alpha)(Y, X, Z)$ .
From (2.26), we have

(2.27) $(\nabla B)(X, Y, Z)+(\nabla B)(Y, Z, X)+(\nabla B)(Z, X, Y)=0$ .
From (2.21) and (2.27), we get

(2.28) $\alpha(Z)B(X, Y)+\alpha(X)B(Y, Z)+a(Y)B(Z, X)=0$ .
Barring $X,$ $Y$ and $Z$ in (2.28) and using $(2.25)a$ we get (2.24).
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