ALMOST f-3-STRUCTURE

By

Anjali Shukla

(Received January 7, 1974)

Summary: In this paper, I have studied almost contact 3 -structures and almost Quaternion structures in a differentiable manifold and generalised them to an almost f-3-structure.

1. Almost contact 3 -structure.

Definition (1.1). An odd dimensional differential manifold $V_{n},(n=2 m+1)$ is said to be an almost contact manifold if there exist in V_{n} a tensor field F of the type (1, 1), a vector field T, and a 1-form A satisfying

$$
\begin{equation*}
F^{2}(X) \stackrel{\text { def }}{=} F(F(X)=-X+A(X) T, \tag{1.1}
\end{equation*}
$$

$$
F(T)=0,
$$

(1.2)c

$$
\begin{equation*}
\operatorname{rank}(F)=2 m, \tag{1.2}
\end{equation*}
$$

(1.2)d

$$
\begin{gathered}
A(F(X))=0, \\
A(T)=1
\end{gathered}
$$

The structure $\{F, T, A\}$ is called an almost contact structure.
Mishra (1972) showed that (1.2) are the consequences of (1.1). Hence (1.2) are redundant in the Definition (1.1) of an almost contact manifold.

Let $\left\{F_{1}, T_{1}, A_{1}\right\}$ be an almost contact structure in V_{n}. Let μ be a nonsingular tensor field of the type $(1,1)$ in V_{n}. Let us define

$$
\begin{gather*}
\mu\left(F_{2}(X)\right) \stackrel{\text { def }}{=} F_{1}(\mu(X)), \tag{1.3}\\
A_{2}(X) \stackrel{\text { def }}{=} A_{1}(\mu(X)), \\
T_{2} \stackrel{\text { def }}{=} \operatorname{def}^{-1} \mu\left(T_{1}\right) .
\end{gather*}
$$

Then it can be easily verified that $\left\{F_{2}, T_{2}, A_{2}\right\}$ is also an almost contact structure.

Definition (1.2). Let $\left\{F_{1}, T_{1}, A_{1}\right\},\left\{F_{2}, T_{2}, A_{2}\right\}$ be two almost contact structures in V_{n} and satisfy

$$
\begin{equation*}
F_{1}\left(F_{2}(X)\right)+F_{2}\left(F_{1}(X)\right)=A_{1}(X) T_{2}+A_{2}(X) T_{1}, \tag{1.4}
\end{equation*}
$$

(1.5)a

$$
F_{1}\left(T_{2}\right)+F_{2}\left(T_{1}\right)=0,
$$

(1.5) c

$$
\begin{gather*}
A_{1}\left(F_{2}(X)\right)+A_{2}\left(F_{1}(X)\right)=0, \tag{1.5}\\
A_{1}\left(T_{2}\right)=A_{2}\left(T_{1}\right)=0,
\end{gather*}
$$

Then $\left\{F_{1}, T_{1}, A_{1}\right\},\left\{F_{2}, T_{2}, A_{2}\right\}$ are said to define an almost contact 3 -structure in V_{n} (Yano, Ishihara and Konishi (1973)).

Theorem (1.1). The equations (1.1) and (1.4) imply (1.5)a, b.
Proof. Substituting $F_{2}(X)$ for X in (1.4) and using (1.2)c, we get

$$
F_{1}\left(F_{2}^{2}(X)\right)+F_{2}\left(F_{1}\left(F_{2}(X)\right)\right)=A_{1}\left(F_{2}(X)\right) T_{2}
$$

Using (1.4) and (1.2) in this equation we get

$$
F_{1}\left(F_{2}^{2}(X)\right)-F_{2}^{2}\left(F_{1}(X)\right)+A_{2}(X) F_{2}\left(T_{1}\right)=A_{1}\left(F_{2}(X)\right) T_{2} .
$$

In consequence of (1.1) and (1.2)c this equation takes the form

$$
A_{2}(X)\left\{F_{1}\left(T_{2}\right)+F_{2}\left(T_{1}\right)\right\}=\left\{A_{1}\left(F_{2}(X)\right)+A_{2}\left(F_{1}(X)\right)\right\} T_{2} .
$$

This equation holds for n linearly independent vector fields X. Since $A_{2}(X) \neq 0$, we have (1.5)a,b.

Remark (1.1). Substituting T_{1} and T_{2} for X in (1.5)b, we incidentally have (1.6)a

$$
A_{1}\left(F_{2}\left(T_{1}\right)\right)=0, \quad \text { b) } \quad A_{2}\left(F_{1}\left(T_{2}\right)\right)=0
$$

Theorem (1.2). The equations (1.1) and (1.4) imply

$$
\begin{equation*}
A_{1}\left(T_{2}\right)+A_{2}\left(T_{1}\right)=0 \tag{1.7}
\end{equation*}
$$

Proof. Putting T_{1} for X in (1.4) and using (1.2)a, d we get

$$
F_{1}\left(F_{2}\left(T_{1}\right)\right)=T_{2}+A_{2}\left(T_{1}\right) T_{1}
$$

whence, in consequence of (1.2)c, we have (1.7).
Remark (1.2). From the above we see that we need not have (1.5)c. (1.7) will suffice instead of (1.5)c. The conditions (1.5)c are additional requirements, which will be seen further.

Remark (1.3). Yano, Ishihara and Konishi (1973) had defined almost contact 3 -structures in terms of (1.4) and (1.5)a,b,c. From the discussion it follows that (1.4) and (1.5)c suffice to define an almost contact 3 -structure. The equations (1.5)a,b are consequences of (1.4). The justification for the assumption of (1.5)c comes from (1.4) through (1.7) which is implied by (1.4).

Theorem (1.3). The structure $\{F, T, A, \mu\}$ defines an almost contact 3structure if $\{F, T, A\}$ is an almost contact structure and if

$$
\begin{equation*}
\mu\left(F\left({ }^{-1} \mu(F(\mu(X)))\right)\right)+F(\mu(F(X)))=A(X) T+A(\mu(X)) \mu(T) . \tag{1.8}
\end{equation*}
$$

Proof. Substituting from (1.3) in (1.4) and writing $\{F, T, A\}$ for $\left\{F_{1}, T_{1}, A_{1}\right\}$ we get (1.8).

Theorem (1.4). If $\{F, T, A, \mu\}$ defines an almost contact 3-structure in V_{n}, then
(1.9)a

$$
\begin{gather*}
\left.\mu\left(F^{(-1} \mu(T)\right)\right)+F(\mu(T))=0 \\
A\left({ }^{-1} \mu(F(\mu(X)))\right)+A(\mu(F(X)))=0 \tag{1.9}\\
A\left({ }^{-1} \mu(T)\right)=A(\mu(T))=0 .
\end{gather*}
$$

(1.9)c

Proof. Substituting from (1.3) in (1.5) and writing $\{F, T, A\}$ for $\left\{F_{1}, T_{1}\right.$, $\left.A_{1}\right\}$ we get (1.9).

It is well known (Yano, Ishihara and Konishi, 1973) that if we put
$F_{8}(X) \stackrel{\text { def }}{=} F_{1}\left(F_{2}(X)\right)-A_{2}(X) T_{1} \stackrel{\text { dep }}{=}-F_{2}\left(F_{1}(X)\right)+A_{1}(X) T_{2}$, $T_{8} \stackrel{\text { def }}{=} F_{1}\left(T_{2}\right) \stackrel{\text { def }}{=}-F_{2}\left(T_{1}\right)$
(1.10)c

$$
\begin{equation*}
A_{8}(X) \stackrel{\text { def }}{=} A_{1}\left(F_{2}(X)\right) \xlongequal{\text { def }}-A_{2}\left(F_{1}(X)\right), \tag{1.10}
\end{equation*}
$$

then any two of the three structures $\left\{F_{\lambda}, T_{\lambda}, A_{\lambda}, \lambda=1,2,3\right\}$ define an almost contact 3 -structure.

Remark (1.4). From (1.10)b and (1.2)c, we easily see that

$$
\begin{equation*}
A_{1}\left(T_{8}\right)=A_{2}\left(T_{8}\right)=0 . \tag{1.11}
\end{equation*}
$$

Corollary (1.1). When any two of the three structures $\left\{F_{\lambda}, T_{\lambda}, A_{\lambda}, \lambda=1\right.$, 2, 3) related by (1.4) and (1.10) define an almost contact 3-structure in V_{n}

$$
\begin{array}{ll}
\text { a) } A_{1}\left(T_{2}\right)=0, & \text { b) } A_{2}\left(T_{1}\right)=0 \tag{1.12}
\end{array}
$$

Proof. Putting T_{1} for X in (1.10)a and using (1.10)b, we get

$$
F_{8}\left(T_{1}\right)+F_{1}\left(T_{8}\right)=-A_{2}\left(T_{1}\right) T_{1} .
$$

But

$$
F_{8}\left(T_{1}\right)+F_{1}\left(T_{8}\right)=0 .
$$

Therefore

$$
A_{2}\left(T_{1}\right)=0
$$

Similarly we can prove that

$$
A_{1}\left(T_{2}\right)=0 .
$$

Remark (1.5). From the above discussion we see that the conditions (1.5) are redundant. When $\left\{F_{1}, T_{1}, A_{1}\right\},\left\{F_{2}, T_{2}, A_{2}\right\}$ define an almost contact 3 -structure then

$$
A_{1}\left(T_{2}\right)+A_{2}\left(T_{1}\right)=0
$$

When any two of the three structures $\left\{F_{1}, T_{1}, A_{1}\right\},\left\{F_{2}, T_{2}, A_{2}\right\},\left\{F_{3}, T_{3}, A_{3}\right\}$ define an almost contact 3 -structure and $\left\{F_{3}, T_{3}, A_{3}\right\}$ are given by (1.10), then

$$
A_{1}\left(T_{2}\right)=A_{2}\left(T_{1}\right)=0
$$

Theorem (1.5). Let μ be a non-singular tensor of the type (1, 1). Let $\{F, T, A\}$ be an almost contact structure in V_{n}. Then any two of the following

$$
\begin{gathered}
\{F, T, A\}, \\
\left\{{ }^{-1} \mu(F(\mu)), \quad{ }^{-1} \mu(T), A(\mu)\right\} \\
\left\{F\left({ }^{-1} \mu(F(\mu))\right)-A(\mu) \otimes T, \quad F\left({ }^{-1} \mu(T)\right), \quad A\left(^{-1} \mu(F(\mu))\right)\right\},
\end{gathered}
$$

define the same almost contact 3-structure, provided

$$
\begin{equation*}
F\left({ }^{-1} \mu(F(\mu))\right)+^{-1} \mu(F(\mu(F)))=A \otimes^{-1} \mu(T)+A(\mu) \otimes T \tag{1.13}
\end{equation*}
$$

The proof is obvious.
Definition (1.3). Let $\left\{F_{1}, T_{1}, A_{1}\right\},\left\{F_{2}, T_{2}, A_{2}\right\}$ define an almost contact 8structure in V_{n}. Let there be defined in V_{n} a metric tensor g such that

$$
\begin{align*}
& g\left(F_{1}(X), F_{1}(Y)\right)=g(X, Y)-A_{1}(X) A_{1}(Y), \tag{1.14}\\
& g\left(F_{2}(X), F_{2}(Y)\right)=g(X, Y)-A_{2}(X) A_{2}(Y) .
\end{align*}
$$

Then $\left\{\left\{F_{1}, T_{1}, A_{1}\right\},\left\{F_{2}, T_{2}, A_{2}\right\}, g\right\}$ is said to define an almost contact Riemannian 3-structure in V_{n}

Theorem (1.6). $\left\{\left\{F_{1}, T_{1}, A_{1}\right\},\left\{F_{8}, T_{8}, A_{8}\right\}, g\right\},\left\{\left\{F_{2}, T_{2}, A_{2}\right\},\left\{F_{8}, T_{8}, A_{8}\right\}, g\right\}$ separately define the same almost contact Riemannian 3-structure in V_{n}

Proof. In consequence of (1.10)a,c (1.2)c, (1.14)a,b we have

$$
\begin{aligned}
g\left(F_{8}(X), F_{8}(Y)\right) & =g\left(F_{1}\left(F_{2}(X)\right)-A_{2}(X) T_{1}, F_{1}\left(F_{2}(Y)\right)-A_{2}(Y) T_{1}\right) \\
& =g\left(F_{1}\left(F_{2}(X)\right), F_{1}\left(F_{2}(Y)\right)\right)+A_{2}(X) A_{2}(Y) \\
& =g\left(F_{2}(X), F_{2}(Y)\right)-A_{8}(X) A_{8}(Y)+A_{2}(X) A_{2}(Y) \\
& =g(X, Y)-A_{3}(X) A_{8}(Y) .
\end{aligned}
$$

Remaining part of the proof is obvious.
Corollary (1.2). We have
(1.15)a

$$
\begin{gathered}
g\left(F_{1}(X), F_{8}(Y)\right)=g\left(X, F_{2}(Y)\right)-A_{1}(X) A_{8}(Y)=-g\left(F_{2}(X), Y\right) \\
-A_{1}(X) A_{8}(Y) \\
g\left(F_{2}(X), F_{8}(Y)\right)=-g\left(X, F_{1}(Y)\right)-A_{2}(X) A_{8}(Y)=g\left(F_{1}(X), Y\right) \\
-A_{2}(X) A_{8}(Y)
\end{gathered}
$$

(1.15)b

Proof. In consequence of (1.10)a, (1.10)c

$$
\begin{aligned}
g\left(F_{1}(X), F_{8}(Y)\right) & =g\left(F_{1}(X), F_{1}\left(F_{2}(Y)\right)\right)-A_{2}(Y) g\left(F_{1}(X), T_{1}\right) \\
& =g\left(X, F_{2}(Y)\right)-A_{1}(X) A_{1}\left(F_{2}(Y)\right) \\
& =g\left(X, F_{2}(Y)\right)-A_{1}(X) A_{8}(Y) \\
& =-g\left(f_{2}(X), Y\right)-A_{2}(X) A_{8}(Y) \\
g\left(F_{2}(X), F_{8}(Y)\right) & =g\left(F_{2}(X),-F_{2}\left(F_{1}(Y)\right)\right)+A_{1}(Y) g\left(F_{2}(X), T_{2}\right) \\
& =-g\left(X, F_{2}(Y)\right)+A_{2}(X) A_{2}\left(F_{1}(Y)\right) \\
& =-g\left(X, F_{1}(Y)\right)-A_{2}(X) A_{8}(Y)
\end{aligned}
$$

Definition (1.4). Let $\left\{\left\{F_{1}, T_{1}, A_{1}\right\},\left\{F_{2}, T_{2}, A_{2}\right\}, g\right\}$ define an almost contact Riemannian 3-structure in V_{n}. Let
(1.16)a $\quad ' F_{1}(X, Y) \stackrel{\text { def }}{=} g\left(F_{1}(X), Y\right)=\frac{1}{2}\left(d A_{1}\right)(X, Y)$,
(1.16)b $\quad \prime F_{2}(X, Y) \stackrel{\text { der }}{=} g\left(F_{2}(X), Y\right)=\frac{1}{2}\left(d A_{2}\right)(X, Y)$.

Then $\left\{\left\{F_{1}, T_{1}, A_{1}\right\},\left\{F_{2}, T_{2}, A_{2}\right\}, g\right\}$ is called contact 3 -structure.
Theorem (1.7). When $\left\{\left\{F_{1}, T_{1}, A_{1}\right\},\left\{F_{2}, T_{2}, A_{2}\right\}, g\right\}$ is a contact 3-structure in V_{n}, we have
(1.17) $\quad\left(d A_{1}\right)\left(F_{2}(X), Y\right)+\left(d A_{2}\right)\left(F_{1}(X), Y\right)=2\left\{A_{1}(X) A_{2}(Y)+A_{2}(X) A_{1}(Y)\right\}$.

Proof. In consequence of (1.10)a, (1.16)a we have

$$
\begin{aligned}
' F_{8}(X, Y) & =g\left(F_{8}(X), Y\right)=g\left(F_{1}\left(F_{2}(X)\right)-A_{2}(X) T_{1}, Y\right) \\
& ={ }^{\prime} F_{1}^{\prime}\left(F_{2}(X), Y\right)-A_{2}(X) A_{1}(Y) \\
& =\frac{1}{2}\left(d A_{1}\right)\left(F_{2}(X), Y\right)-A_{2}(X) A_{1}(Y)
\end{aligned}
$$

Similarly we have

$$
' F_{8}(X, Y)=-\frac{1}{2}\left(d A_{2}\right)\left(F_{1}(X), Y\right)+A_{1}(X) A_{2}(Y)
$$

From the last two equations, we have (1.17).

2. Almost Quaternion structure.

Definition (2.1). Let there be given in a 4m-dimensional differential manifold $V_{n},(n=4 m)$ tensor fields F_{1}, F_{2} of the type $(1,1)$ satisfying
a) $F_{1}^{2}(X)+X=0$,
b) $F_{2}^{2}(X)+X=0$,

$$
\begin{equation*}
F_{1}\left(F_{2}(X)\right)=-F_{2}\left(F_{1}(X)\right) \tag{2.1}
\end{equation*}
$$

Then $\left\{F_{1}, F_{2}\right\}$ is called an almost Quaternion structure in V_{n}.
Theorem (2.1). Let us put

$$
\begin{equation*}
F_{8}(X) \stackrel{\text { def }}{=} F_{1}\left(F_{2}(X)\right)=-F_{2}\left(F_{1}(X)\right) . \tag{2.3}
\end{equation*}
$$

Then

$$
\begin{equation*}
F_{8}^{2}(X)+X=0, \tag{2.4}
\end{equation*}
$$

$$
\begin{equation*}
F_{1}(X)=F_{2}\left(F_{8}(X)\right)=-F_{8}\left(F_{2}(X)\right) . \tag{2.5}
\end{equation*}
$$

$$
\begin{equation*}
F_{2}(X)=F_{8}\left(F_{1}(X)\right)=-F_{1}\left(F_{8}(X)\right) . \tag{2.5}
\end{equation*}
$$

Consequently any two of the three structures F_{1}, F_{2}, F_{8} define an almost Quaternion structure.

Proof. In consequence of (2.3) and (2.1)a, b, we have

$$
F_{3}^{2}(X)=-F_{1}\left(F_{2}^{2}\left(F_{1}(X)\right)\right)=F_{1}^{2}(X)=-X .
$$

Also from (2.3) and (2.1)b

$$
\begin{aligned}
& F_{2}\left(F_{8}(X)\right)=-F_{2}^{2}\left(F_{1}(X)\right)=F_{1}(X), \\
& F_{8}\left(F_{2}(X)\right)=F_{1}\left(F_{2}^{2}(X)\right)=-F_{1}(X) .
\end{aligned}
$$

We can similarly prove (2.5)b.
Remaining part of the proof is obvious.
Corollary (2.1). Let F be an almost complex structure in $V_{4 m}$. Let μ be a non-singular tensor field of the type (1,1). Then any two of the three structures

$$
F,^{-1} \mu(F(\mu)), \quad F\left({ }^{-1} \mu(F(\mu))\right),
$$

define an almost Quaternion structure in $V_{4 m}$, provided

$$
\begin{equation*}
F\left({ }^{-1} \mu(F(\mu))\right)+{ }^{-1} \mu(F(\mu(F)))=0 . \tag{2.6}
\end{equation*}
$$

Proof. The proof is obvious.
Definition (2.2). Let $\left\{F_{1}, F_{2}\right\}$ define an almost Quaternion structure in
$V_{n},(n=m)$. Let there be defined in V_{n} a metric tensor g satisfying
(2.7)a

$$
\begin{aligned}
& g\left(F_{1}(X), F_{1}(Y)\right)=g(X, Y), \\
& g\left(F_{2}(X), F_{2}(Y)\right)=g(X, Y) .
\end{aligned}
$$

(2.7)b

Then $\left\{F_{1}, F_{2}, g\right\}$ are said to define an almost Quaternion Riemannian structure in V_{n}

Theorem (2.2). $\left\{F_{1}, F_{3}, g\right\},\left\{F_{2}, F_{8}, g\right\}$ separately define the same almost Quaternion Riemannian structure in V_{n}.

Proof. In consequence of (2.3) and (2.7)a, b

$$
\begin{aligned}
g\left(F_{8}(X), F_{8}(Y)\right) & =g\left(F_{1}\left(F_{2}(X)\right), F_{1}\left(F_{2}(Y)\right)\right) \\
& =g\left(F_{2}(X), F_{2}(Y)\right) \\
& =g(X, Y)
\end{aligned}
$$

Also, since we have assumed in (1.1)a that

$$
F_{1}^{2}(X)+X=0,
$$

and proved in (2.4) and (2.5)b that

$$
F_{3}^{2}(X)+X=0
$$

and

$$
F_{1}\left(F_{8}(X)\right)=-F_{8}\left(F_{1}(X)\right),
$$

the structure $\left\{F_{1}, F_{3}, g\right\}$ defines the same almost Quaternion Riemannian structure in V_{n}.

The fact that $\left\{F_{2}, F_{3}, g\right\}$ defines the same almost Quaternion Riemannian structure in V_{n}, can be proved similarly.

Definition (2.3). Let $\left\{F_{1}, F_{2}, g\right\}$ define an almost Quaternion Riemannian structure in V_{n}. Then if
(2.8) a
$\left(D_{x} F_{1}\right)(Y)=0$,
b) $\left(D_{X} F_{2}\right)(Y)=0$;
(2.9) a

$$
\left(D_{X} F_{1}\right)(Y)+\left(D_{Y} F_{1}\right)(X)=0, \quad \text { b) }\left(D_{X} F_{2}\right)(Y)+\left(D_{Y} F_{2}\right)(X)=0:
$$

(2.10) a

$$
\begin{align*}
& \left(D_{x}^{\prime} F_{1}\right)(Y, Z)+\left(D_{Y}^{\prime} F_{1}\right)(Z, X)+\left(D_{Z}^{\prime} F_{1}\right)(X, Y)=0 \\
& \left(D_{x}^{\prime} F_{2}\right)(Y, Z)+\left(D_{Y}^{\prime} F_{2}\right)(Z, X)+\left(D_{z}^{\prime} F_{2}\right)(X, Y)=0 ; \tag{2.10}
\end{align*}
$$

where
(2.10)c
(2.11)a

$$
\begin{gathered}
\prime F(X, Y) \stackrel{\text { def }}{=} g(F(X), Y), \\
\left.\operatorname{div}\left(\nabla F_{1}\right)(X)=0, \quad \text { b }\right) \operatorname{div}\left(\nabla F_{2}\right)(Y)=0 ;
\end{gathered}
$$

(2.12)a

$$
\left(D_{x} F_{1}\right)(Y)+\left(D_{r_{1}(x)} F_{1}\right)\left(F_{1}^{\prime}(Y)\right)=0,
$$

$$
\begin{equation*}
\left(D_{x} F_{\mathrm{z}}\right)(Y)+\left(D_{F_{2}(X)} F_{z}^{\prime}\right)\left(F_{\mathrm{z}}(Y)\right)=0 . \tag{2.12}
\end{equation*}
$$

the structure $\left\{F_{1}, F_{2}, g\right\}$ is said to be almost Quaternion Kähler, almost Quaternion Tachibana, almost Quaternion almost Kähler, almost Quaternion semi-Kähler and almost Quaternion almost O-structure respectively.

Theorem (2.3). Let the structure $\left\{F_{1}, F_{2}, g\right\}$ define an almost Quaternion Kähler, almost Quaternion Tachibana, almost Quaternion almost Kähler, almost quaternion semi-Kähler or almost Quaternion almost O-structure, then the structures $\left\{F_{1}, F_{8}, g\right\}$ and $\left\{F_{2}, F_{8}, g\right\}$ separately define the same almost Quaternion Kähler, almost Quaternion Tachibana, almost Quaternion almost Kähler, almost Quaternion semi or almost Quaternion O-structure.

Proof. The structure $\left\{F_{1}, F_{2}, g\right\}$ defines almost Quaternion Riemannian structure in V_{n}. Therefore in consequence of (2.1)a, (2.4) and Theorem (2.2).

$$
\begin{align*}
& F_{1}^{2}(X)+X=0, \tag{2.13}\\
& F_{8}^{2}(X)+X=0,
\end{align*}
$$

$$
\begin{equation*}
g\left(F_{8}(X), F_{8}(Y)\right)=g(X, Y) . \tag{2.13}
\end{equation*}
$$

Now in consequence of (2.8)a

$$
\left(D_{x} F_{3}\right)(Y)=+F_{1}\left(D_{x} F_{2}\right)(Y)+\left(D_{x} F_{1}\right)\left(F_{2}(Y)\right)=0 .
$$

Hence if the structure $\left\{F_{1}, F_{2}, g\right\}$ defines an almost Quaternion Kähler manifold the structure $\left\{F_{1}, F_{8}, g\right\}$ defines an almost Quaternion Kähler manifold.

The proof of the remaining cases follows the same pattern.

3. Almost $f-3$-structure.

We will now have the following definition
Definitoin (3.1). Let $F_{\lambda}(\lambda=1,2,3)$ be an f-structure in V_{n} that is

$$
\begin{equation*}
F_{\lambda}^{3}(X)+F_{\lambda}(X)=0 \tag{3.1}
\end{equation*}
$$

and rank $(F)=r$ everywhere. Let

$$
\begin{equation*}
F_{1}\left(F_{8}(X)\right) \stackrel{\text { dof }}{=} F_{1}^{2}\left(F_{2}(X)\right), \tag{3.2}
\end{equation*}
$$

$$
\begin{equation*}
F_{2}\left(F_{8}(X)\right) \stackrel{d \rho f}{=}-F_{2}^{2}\left(F_{1}(X)\right), \tag{3.2}
\end{equation*}
$$

$$
\begin{equation*}
F_{8}\left(F_{1}(X)\right) \stackrel{\text { def }}{=}-F_{2}\left(F_{1}^{2}(X)\right), \tag{3.2}
\end{equation*}
$$

$$
\begin{equation*}
F_{8}\left(F_{2}(X)\right) \stackrel{\text { dof }}{=} F_{1}\left(F_{2}^{2}(X)\right), \tag{3.2}
\end{equation*}
$$

be satisfied at every point of $V_{n} . \quad$ Then $\left\{F_{\lambda}\right\}$ is called an almost f-3-structure.
Remark (3.1). F_{2} is a vector valued linear function on V_{n}. We do not put any further restriction on F_{λ} regarding its symmetry or skew-symmetry.

Theorem (3.1). Let $\left\{F_{\lambda}\right\}$ be an almost f-3-structure. Then the following are also satisfied:

$$
\begin{gather*}
F_{1}^{2}\left(F_{8}(X)\right)=F_{8}\left(F_{2}^{2}(X)\right)=-F_{1}\left(F_{2}(X)\right), \tag{3.3}\\
F_{2}^{2}\left(F_{8}^{\prime}(X)\right)=F_{8}^{\prime}\left(F_{1}^{2}(X)\right)=F_{2}\left(F_{1}(X)\right) . \tag{3.4}
\end{gather*}
$$

Proof. Premultiplying (3.2)a, b by F_{1}, F_{2} respectively and substituting from (3.1), we obtain

$$
\begin{aligned}
& F_{1}^{2}\left(F_{8}(X)\right)=-F_{1}\left(F_{2}(X)\right) \\
& F_{2}^{2}\left(F_{8}(X)\right)=F_{2}\left(F_{1}(X)\right) .
\end{aligned}
$$

Putting $F_{1}(X), F_{2}(X)$ for X in (3.2)c, d respectively and substituting from (3.1), we obtain

$$
\begin{gathered}
F_{8}\left(F_{1}^{2}(X)\right)=F_{2}\left(F_{1}(X)\right), \\
F_{8}\left(F_{2}^{2}(X)=-F_{1}\left(F_{2}(X)\right) .\right.
\end{gathered}
$$

Hence we have (3.3) and (3.4).
Thorem (3.2). Let $r=n$. Then the almost f-3-structure reduces to almost Quaternion structure and $n=4 m$.

Proof. When $r=n$, inverse of (F) exists and (3.1), (3.2), (3.3) and (3.4) reduce to

$$
\begin{equation*}
F_{\lambda}^{2}(X)+X=0, \tag{3.5}
\end{equation*}
$$

$$
\begin{equation*}
F_{2}(X)=-F_{1}\left(F_{8}(X)\right)=F_{8}\left(F_{1}(X)\right), \tag{3.6}
\end{equation*}
$$

$$
\begin{equation*}
F_{1}(X)=F_{2}\left(F_{8}(X)\right)=-F_{8}\left(F_{2}(X)\right), \tag{3.6}
\end{equation*}
$$

(3.6)c

$$
F_{8}(X)=F_{1}^{\prime}\left(F_{2}(X)\right)=-F_{2}\left(F_{1}(X)\right)
$$

These equations prove the statement.
Theorem (3.3). Let $r=n-1$. Then the almost f-3-structure reduces to an almost contact 3-structure.

Proof. When $r=n-1$, (3.1), (3.2), (3.3) and (3.4) reduce to

$$
\begin{equation*}
F_{\lambda}^{2}(X)+X=A_{2}(X) T_{\lambda}, \tag{3.7}
\end{equation*}
$$

where A_{λ} are 1-forms and T_{λ} are vector fields,
(3.8) $\mathrm{a} \quad F_{2}(X)=-F_{1}\left(F_{8}(X)\right)+A_{1}\left(F_{2}(X)\right) T_{1}=F_{8}\left(F_{1}(X)\right)+A_{1}(X) F_{2}\left(T_{1}\right)$,
(3.8)b $\quad F_{1}(X)=F_{2}\left(F_{8}(X)\right)+A_{2}\left(F_{1}(X)\right) T_{2}=-F_{8}\left(F_{2}(X)\right)+A_{2}(X) F_{1}\left(T_{2}\right)$,
(3.8)c

$$
\begin{aligned}
F_{8}(X) & =F_{1}\left(F_{2}(X)\right)+A_{1}\left(F_{8}(X)\right) T_{1}=F_{1}\left(F_{2}(X)\right)+A_{2}(X) F_{8}\left(T_{2}\right) \\
& =-F_{2}\left(F_{1}(X)\right)+A_{2}\left(F_{8}(X)\right) T_{2}=-F_{2}\left(F_{1}(X)\right)+A_{1}(X) F_{8}\left(T_{1}\right) .
\end{aligned}
$$

Substituting T_{1}, T_{2}, T_{8} for X in (3.8) and assuming

$$
\begin{equation*}
A_{1}\left(T_{2}\right)=A_{2}\left(T_{1}\right)=A_{1}\left(T_{8}\right)=A_{8}\left(T_{1}\right)=A_{2}\left(T_{8}\right)=A_{8}\left(T_{2}\right)=0, \tag{3.9}
\end{equation*}
$$

we get
(3.9)b

$$
F_{1}\left(T_{2}\right)=-F_{2}\left(T_{1}\right)=T_{8},
$$

(3.9) c_{1}
$F_{2}\left(T_{8}\right)=-F_{8}\left(T_{2}\right)=T_{1}$,
(3.9) c_{2}

$$
F_{8}\left(T_{1}\right)=-F_{1}\left(T_{8}\right)=T_{2} .
$$

Since $A_{1}\left(F_{1}\right)=A_{2}\left(F_{2}\right)=A_{8}\left(F_{3}\right)=0$, the equations (3.8) yield

$$
\begin{align*}
& A_{1}\left(F_{2}\right)=-A_{2}\left(F_{1}\right)=A_{8}, \tag{3.10}\\
& -A_{1}\left(F_{8}\right)=A_{8}\left(F_{1}\right)=A_{2}, \tag{3.10}\\
& A_{2}\left(F_{3}\right)=-A_{8}\left(F_{2}\right)=A_{1} . \tag{3.10}
\end{align*}
$$

In consequence of (3.9) and (3.10), the equations (3.8) assume the forms

$$
\begin{align*}
& F_{2}(X)=-F_{1}\left(F_{8}(X)\right)+A_{8}(X) T_{1}=F_{8}\left(F_{1}(X)\right)-A_{1}(X) T_{3}, \tag{3.11}\\
& F_{1}(X)=F_{2}\left(F_{3}(X)\right)-A_{8}(X) T_{2}=-F_{8}\left(F_{2}(X)\right)+A_{2}(X) T_{3}, \tag{3.11}\\
& F_{8}(X)=F_{1}\left(F_{2}(X)\right)-A_{2}(X) T_{1}=-F_{2}\left(F_{1}(X)\right)+A_{1}(X) T_{2} .
\end{align*}
$$

The equations (3.7) and (3.11) prove the statement.
Remark (3.1). Putting T_{8} in (3.8)c we immediately get

$$
A_{1}\left(T_{8}\right)=A_{2}\left(T_{8}\right)=0
$$

Remaining equations (3.9)a are assumed in consideration of these two equations.
I am thankful to Professor D. S. Singh for his guidance in the preparation of this paper.

REFERENCES

[1] Mishra, R. S. (1972). Almost complex and almost contact submanifolds, Tensor, N. S. 25. 419-433.
[2] Yano, K. Ishihara, S. and Konishi, S., (1973): Normality of almost contact 3structure, Tohoku Mathematical Journal, Second Series, 25, (2), 167-176.

Magadh University Bodh-Gaya Bihar, India

