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Summary: In this paper, I have studied almost contact 3-structures and
almost Quaternion structures in a differentiable manifold and generalised them
to an almost f-8-structure.

1. Almost contaet 3-structure.

Definition (1.1). An odd dimensional diﬁ'erential mantfold V,, (n=2m+1)
is said to be an almost contact manifold if there exist in V, a temsor field
F of the type (1, 1), a vector field T, and a 1-form A satisfying

(1.1) FYX)EF(F(X)=—X+AX)T,
1.2)a F(T)=0,

1.2)b rank (F)=2m ,

1.2)¢ A(F(X))=0,

(1.2)d A(T)=1.

The structure {F, T, A} is called an almost contact structure.

Mishra (1972) showed that (1.2) are the consequences of [(1.1). Hence (1.2) are
redundant in the [Definition] (L.1) of an almost contact manifold.

Let {F,, T,, A} be an almost contact structure in V,. Let g# be a non-
singular tensor field of the type (1, 1) in V,. Let us define

def

(1.8)a p(Fo(X)) = Fy(( X))
(1.8)b A(X)= A (X)),
a3e T3 def ~1(T)) .

Then it can be easily verified that {F,, T,, A,} is also an almost contact struc-
ture.

» Definition (1.2). Let {F, T., A}, {F., T,, A;} be two almost contact struc-
tures in V, and satisfy

(1.4) F(Fy( X))+ Fo(F((X))=A(X) To+ A(X) Ty,
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(1.5)a F(T)+Fy(T)=0,
(1.5)b A1(F2(X))+A2(F1(X))=O ’
(1.5)c A(T,) =A,(T))=0 ’

Then {Fi, T,, A}, {F., T,, A.} are said to define an almost contact 3-structure
tn V, (Yano, Ishihara and Konishi (1978)).

Theorem (1.1). The equations (1.1) and (1.4) imply (1.5)a, b.
Proof. Substituting Fo(X) for X in and using (1.2)c, we get
FAFYX))+ Fy(F(Fy(X)))=A((Fo(X))T,
Using and (1.2) in this equation we get
F(FYX)—FYF(X)+ A X)F(T,)=A(Fo(X)T, .
In consequence of and (1.2)c this equation takes the form
Af(XHF(T)+ Fo( T} ={A(FU X))+ A(FX)NT, .

This equation holds for n linearly independent vector fields X. Since A,(X)+0,
we have (1.5)a,b.

Remark (1.1). Substituting T, and T, for X in (1.5)b, we incidentally have
(1.6)a A(Fy(T)=0, b) A (F\(T:))=0.
Theorem (1.2). The equations (1.1) and (1.4) imply
(1.7 A(Ty)+A(T)=0.
Proof. Putting T, for X in and using (1.2)a, d we get
F(F(T))=T,+A(T)T,
whence, in consequence of (1.2)e, we have [(1.7).

Remark (1.2). From the above we see that we need not have (1.5)c.
will suffice instead of (1.5)c. The conditions (1.5)c are additional requirements,
which will be seen further.

Remark (1.3). Yano, Ishihara and Konisht (1973) had defined almost con-
tact 3-structures in terms of and (1.5)a,b,c. From the discussion it follows
that and (1.5)c suffice to define an almost contact 3-structure. The equa-
tions (1.5)a,b are consequences of [(1.4). The justification for the assumption of
(1.5)c comes from through which is implied by [1.4).
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Theorem (1.3). The structure {F, T, A, p} defines an almost contact 3-
structure if {F, T, A} is an almost contact structure and if
(1.8) p(F (p(F (X)) +F ((F (X)) = AX) T+ AU X)N(T) .

Proof. Substituting from (1.3) in and writing {F, T, A} for {F,, T, A,}
we get [(1.8). : :

Theorem (1.4). If {F, T, A, p} defines an almost contact 3-structure im
Va then

(1.9)a p(F TN+ F (i(T))=0
(1.9b A p(F (i X))+ A(p(F (X)) =0
(1.9)c AC'u(T)=A(T)=0.

Proof. Substituting from in (1.5) and writing {F, T, A} for {F,, T,,
A} we get (1.9).
It is well known (Yano, Ishihara and Konishi, 1973) that if we put

(1.10)a FyX) = Fy(Fy(X)— A X) T,E — Fy(FyX )+ A(X)T, ,
(1.10)b T, F(T,) = — Fy(T))
(1.10)c A X)EA(FUX)E — A(F (X)) ,

then any two of the three structures {F;, T, A;, 2=1, 2, 3} define an almost
contact 3-structure.

Remark [(1.4). From (1.10)b and (1.2)c, we easily see that
(1.11) A (Ts)=A(T:)=0.

Corollary (1.1). When any two of the three structures {F;, T A, 2=1,
2, 3} related by (1.4) and (1.10) define an almost contact 3-structure in V,

(1.12) a) A(T)=0, b) A(T))=0.
Proof. Putting T, for X in (1.10)a and using (1.10)b, we get
Fs(T1)+F1(Ts)="A2(T1)T1 .
But
Fs(T1)+F1(Ts)=0 .
Therefore
A(T)=0
Similarly we can prove that
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Al(Tg)=0 .

Remark (1.5). From the above discussion we see that the conditions (1.5)

are redundant. When {F,, T, 4;}, {F., T,, A.} define an almost contact 3-structure
then

A1( Tz) + Az(Tx) =0,

When any two of the three structures {Fy, T,, A.}l, {F, T, As}, {Fy Ty, As}
define an almost contact 3-structure and {F,, T;, As} are given by (1.10), then

A(Ty)=AxT))=0.

Theorem (1.5). Let ¢ be a mon-singular tewnsor of the type (1, 1). Let
{F, T, A} be an almost contact structure in V,. Then any two of the follow-
ing

{F, T, A},
{CuF @), “wT), AW},
{FCOUF (@))—AWRT , FC'u(T), ACHE@N,
define the same almost contact 3-structure, provided
(1.13) - FC'uF@O)+ W F(F)=AQ  w(T)+ AT .

The proof is obvious.

Definition (1.3). Let {Fy, T,, Ai}, {F:, T., A} define an almost eontact 8-
structure in V,. Let there be defined in V, a metric tensor g such that

(1.14)a g(F(X), F(Y))=¢(X, Y)—A(X)A(Y),
(1.19b g(Fo(X) , Fo(Y))=g(X, Y)—A(X)A:(Y) .

Then {{F,, T, A}, {F;, T:, A:}, g} is said to deﬁne an almost contact Rieman-
nian 3-structure in V,

Theorem (106)' {{Fu Tl’ A1}9 {Fsy TM Aa}, g}’ {{Fz, Tzs Az}: {FM Ts: Aa}: g}
separately define the same almost contact Riemannian S-structure in V,

Proof. In consequence'of (1.10)a,c (1.2)e, (1.14)a,b we have

9(F(X), Fy(Y))=g(F(Fy(X))—A(X)T,, Fy(Fy(Y))—A(Y)T)
=g(F(Fy(X)), Fy(F(Y)))+ Ax(X)A,(Y)
=9(Fy(X), Fy(Y))— As(X)As(Y)+ Ax(X)Ax(Y)
=g(X, Y)—Ax(X)A:(Y) .
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Remaining part of the proof is obvious.
Corollary (1.2). We have

(1.15)a 9(F(X), F(Y)=g(X, Fy(Y))—AX)A:(Y)=—9g(F:(X), Y)
' —A(X)A(Y) ,

(1.16)b 9(Fy(X), F)=—g(X, F(Y))—A(X)A(Y)=9(F:(X), T)
—Ay(X)A(Y) .

Proof. In consequence of (1.10)a, (1.10)c

g(Fi(X), Fy(Y)=g(Fi(X), F(F(Y))—AxY)g(Fy(X), Ty
=g(X, Fy(Y))—A(X)A(F(Y))
=g(X, Fy(Y))—A,(X)As(Y)
=—g(fui(X), ¥)—A,(X)A(Y)

g(Fy(X), FY)=g(Fy(X), —Fy(Fy(Y)+A(V)g(F(X), Ts)
=—g(X, Fy(Y))+AX)A:(F(Y))
=-—g(X, Fx(Y))'_‘Az(X)As(Y)

Definition (1.4). Let {{F\, Ty, Ay}, {F: T:, As), g} define an almost con-
tact Riemannian 3-structure in V,. Let

(1.16)a 'FUX, Y)E g(F(X), Y)=#dA)X, Y),
(1.16)b 1Fy(X, Y)E g(Fy(X), V)=4d4:)X, Y).
Then {{Fy, T, A1}, {Fe, T: Aj}, g} i8 called contact 8-structure.

Theorem (1.7). When {Fi, T:, A}, {F., T, A,}, g} i8 a contact 3-structure
an V,, we have

1.17) (AN F(X), Y)+@ANF(X), YV)=2{A(X)A(Y)+ A(X)A(Y)} .
Proof. In consequence of (1.10)a, (1.16)a we have

'Fy(X, Y)=g(FyX), Y)=g(F(Fy(X))—Ay(X)T,, Y)
=’F1(F2(X), Y)—- Az(X)A1(Y)
=}dA)(Fy(X), Y)—A:(X)A(Y)

Similarly we have

'Fy(X, Y)=—3dA)(Fy(X), YV)+A(X)AL(Y) .

From the last two equations, we have (1.17).
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2. Almost Quaternion structure.

Definition (2.1). Let there be given in a 4m-dimensional differential
manifold V,, (n=4m) tensor fields F,, F, of the type (1, 1) satisfying

2.1) a) Fi(X)+X=0, b) F}(X)+X=0,
2.2) F(F(X))=—Fy(F(X)) .
Then {Fy, F,} 18 called an almost Quaternion structure in V,.

Theorem (2.1). Let us put

2.3) FyX)Z F(Fy(X))=—Fy(F\(X)) .

Then

2.4) xX)+X=o0,

2.5)a FyX)=Fy(Fy(X))=—Fy(FyX)) . .
2.5)b FyX)=Fy(F(X))=—F(Fy(X)) .

Consequently any two of the three structures F,, F,, F; define an almost
Quaternion structure.

Proof. In consequence of and (2.1)a, b, we have
(X)=—F(FYF\(X))=FiX)=—X.
Also from and (2.1)b
Fy(Fy(X))=—F}F(X))=F\(X),
Fy(Fy(X)=F(FiX))=—Fy(X) .

We can similarly prove (2.5)b.
Remaining part of the proof is obvious.

Corollary (2.1). Let F be an almost complex structure in V,,. Let p be
a non-singular tensor field of the type (1, 1). Then any two of the three
structures

F, “uF (), FCuF @),
define an almost Quaternion structure in V,,, provided
(2.6) FCuF @)+ (F(u(F))=0 .

Proof. The proof is obvious.

Definition (2.2). Let {F,, Fy} define an almost Quaternion structure in
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V., (n=m). Let there be defined in V, a metric tensor g satisfying
2.7 g(Fy(X), Fi(Y)=9(X, Y),
2.7b g(Fy(X), Fo(Y)=9(X, Y).

Then {Fy, F,, g} are said to define an almost Quaternion Riemannian struc-
ture in V,

Theorem (2.2). {F., F, g}, {F:, Fs, g} separately define the same almost
Quaternion Riemannian structure in V,.

Proof. In consequence of and (2.7)a, b

g(F(X) , F(Y))=g(Fy(Fy(X)), Fi(Fy(Y)))
=g(F(X), Fi(Y))
=g(X, Y).

Also, since we have assumed in (1.1)a that
F¥X)+X=0,
and proved in and (2.5)b that

Fi(X)+X=0
and
F(Fy(X))=—Fy(F(X)),
the structure {F,, F3, g} defines the same almost Quaternion Riemannian struc-
ture in V,.

The fact that {F,, F; g} defines the same almost Quaternion Riemannian
structure in V,, can be proved similarly.

Definition (2.3). Let {F,, F,, g} define an almost Quaternion Riemannian
structure in V,. Then if

(2.8)a (DF)(Y)=0, b) (DxF:)(Y)=0;

(2.9)a (D2 F)(Y)+(De F)(X)=0, b) (DeF:)(Y)+(DeFy)(X)=0:
(2.10)a (D' F)Y, Z)+(Dy'F)(Z, X)+(D/F)(X, Y)=0,
(2.10)b (D' F)Y, Z)+(Dy F)(Z, X)+(D/F)(X, Y)=0;
where

(2.10)c 'F(X, V) g(F(X), Y),

2.11)a div(FF\)(X)=0, b) div(FF)(Y)=0;
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(2.12)a (DzF1)(Y)+(Dn(x)F1)(Fx(Y))=0 ’
(2.12)b (DFo) (Y )+ (Dpyny Fo)(Fy(Y))=0 .

the structure {F,, F,, g} is said to be almost Quaternion Kdihler, almost
Quaternion Tachibana, almost Quaternion almost Kihler, almost Quaternion
semi-Kahler and almost Quaternion almost O-structure respectively.

Theorem (2.3). Let the structure {Fy, F, g} define an almost Quaternion
Kahler, almost Quaternion Tachibana, almost Quaternion almost Kihler,
almost quaternion semi-Kihler or almost Quaternion almost O-structure,
then the structures {Fy, Fs, g} and {F,, F,, g} sevarately define the same
almost Quaternion Kahler, almost Quaternion Tachibana, almost Quaternion
almost Kihler, almost Quaternion semi or almost Quaternion O-structure.

Proof. The structure {F,, F,, g} defines almost Quaternion Riemannian
structure in V,. Therefore in consequence of (2.1)a, (2.4) and 2.2).

(2.19)a FYX)+X=0,
(2.18)b HX)+X=0,
(2.19)¢ 9(Fy(X), F(Y)=g(X, Y).

Now in consequence of (2.8)a
(DeF)(Y)=~+F (D Fy)(Y)+(D:F)(Fy(Y))=0 .

Hence if the structure {F,, F, g} defines an almost Quaternion Kihler manifold
the structure {F,, F%, g} defines an almost Quaternion Kdhler manifold.
The proof of the remaining cases follows the same pattern.

3. Almost f-3-structure.
We will now have the following definition

Definitoin (3.1). Let F;(1=1, 2, 8) be an f-structure in V, that is

38.1) UX)+Fy(X)=0
and rank (F)=r everywhere. Let

(3.2)a F(Fy(X))Z FYFy(X)),
8.2)b Fy(Fy(X)E —FYF(X)),
8.2) FyF(X))= —Fy(F¥X)),

8.2)d F(F(X)Z F(FYX)),
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be satisfied at every point of V,. Then {F;} is called an almost f-3-structure.

Remark (3.1). F;, is a vector valued linear function on V,. We do not put
any further restriction on F, regarding its symmetry or skew-symmetry.

Theorem (3.1). Let {F;} be an almost f-3-structure. Then the following
are also satisfied:

(3.3) Fi(Fy(X)=Fy(FYX))=—F(Fy(X)),
(3.4) FUF(X)=Fy(FX))=F(F(X)) .

Proof. Premultiplying (3.2)a, b by F,, F, respectively and substituting from
(3.1), we obtain

Fi(Fy(X))=—F(Fy(X))
H(Fy(X))=Fy(F(X)) .
Putting Fy(X), Fi(X) for X in (8.2)c, d respectively and substituting from (8.1),
we obtain
Fy(FiX)=F(F(X)),
Fy(F}(X)=—F(Fy(X)) .
Hence we have and [(3.4).

Thorem (8.2). Let r=n. Then the almost f-3-structure reduces to almost
Quaternion structure and n=4m.

Proof. When r=n, inverse of (F') exists and (8.1), (8.2), [3.3) and [(8.4)

reduce to

(3.5) 4 X)+X=0,

(3.6)a Fy(X)=—F(Fy(X))=Fy(F\(X)) ,
(8.6)b FyU(X)=Fy(Fy(X))=—Fy(Fy(X)) ,
(3.6)c Fy(X)=F|(Fy(X))=—Fy(Fy(X)) .

These equations prove the statement.

Theorem (3.3). Let r=n—1. Then the almost f-3-structure reduces to an
almost contact 3-structure.

Proof. When r=n—1, (8.1), (3.2), (8.3) and reduce to
8.7 (XN +X=AXT;,
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where A, are 1-forms and T; are vector fields,
(8.8)a Fy(X)=—F((Fy(X))+ Ai(F(X) T, =Fy(Fi\(X))+ A (X)Fy(T)) ,
(8.8)b FyX)=Fy(Fy(X))+ Au(Fy(X) To=—Fo(Fy(X)) + Ay X)F(T) ,

8.8)c FyX)=F(FyX))+ A(F( X)) T, =F(Fy(X))+ A(X)Fy(T,)
= "'Fz(F1(X)) +A2(F3(X)) Tz= "Fz(F1(X)) +A1(X)F3(T1) .

Substituting T,, T,, T for X in (8.8) and assuming

(3.9)a AT)=AyT)=A(T)=AT)=Ax(Ty)=A(T,)=0,
we get

(3.9b F(Ty)=—F(T)=T;,,

(8.9)c, Fy(Ty)=—Fy(To)=T,,

(3.9)c, Fy(T)=—F(T)=T, .

Since A,(F,)=A,(F,)=AsF3)=0, the equations (3.8) yield

(3.10)a A(Fy)=—A,(F))=A,,

3.10)b —A(F)=AyF)=4,,

@10 AF)=—A(F)=4, .

In consequence of (3.9) and (3.10), the equations (8.8) assume the forms
(8.11)a FyX)=—F\(Fy(X))+ Ay X) T, =Fy(F (X))~ A(X)Ts ,
(8.11)b F(X)=Fy(Fy(X))— A(X)T,=—Fy(Fy(X))+ A(X)Ts ,
8.11)c FyX)=Fi(FX))— Ay(X)T1=—Fy(F\(X))+ A(X) T, .

The equations and (3.11) prove the statement.
Remark (38.1). Putting T, in (3.8)c we immediately get
A (Ty)=Ay(Ts)=0
Remaining equations (3.9)a are assumed in consideration of these two equations.

I am thankful to Professor D. S. Singh for his guidance in the preparation
of this paper.
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