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The object of the present note is to develop further the ideas initiated by

Embry [41.

In what follows, by an operator on a complex Hilbert space $H$, we mean a
bounded linear transformation on $H$. Let $\sigma(A),$ $W(A)$ and $W_{\epsilon}(A)$ denote respec-
tively, the spectrum, the numerical range and the essential numerical range of
an operator $A$ . We write $ClW(A)$ to denote the closure of $W(A)$ . The notation
$D$ will be used for the collection of all operators $A$ such that either $O\not\in W(A)$ or
$\sigma(A)\cap\sigma(-A)=\emptyset$ . A unitary operator is called a cramed unitary operator if its
spectrum is contained in an arc of the unit circle with central angle less than $\pi$ .
If $P$ is a positive operator such that $\langle P_{x}, x\rangle>0$ for all $x$ in $H$, then it is called
a strictly positive operator. The operator having zero kernel (or null space) and
dense range is defined to be quasi-invertible or quasi-regular. It is obvious that
strictly positive operators are quasi-regular. A regular positive operator is said
to be positive definite.

In [41, Embry proved the following

Theorem A. If $F$ and $G$ are commuting normal operators and $AF=GA$

where $O\not\in W(A)$ , then $F=G$ .
Our first result will show that under the suitable relaxation of hypothesis in

Theorem $A,$ $F-G$ turns out to be compact. Before proving this result, we state
the following Lemma whose proof is kindly provided by Professor C. R. Putnam
in his private communication to the author. Throughout the present note, $\alpha$

will denote the Borel set in the complex plane.

Lemma. Let $f$ and $g$ denote the spectral resolutions of normal operators
$F$ and $G$ respectively. Then $AF-GA$ is compact whenever $Af(\alpha)-g(\alpha)A$ is
compact for each $\alpha$ . However, the converse may not hold.

Proof. We know that $F=uniform$ limit of (finite) sum $S_{F}=\sum z_{\ell}f(\alpha_{i})$ and $G=$

uniform limit of (finite) 8um $S_{o}=z_{\ell}g(\alpha_{\ell})$ . Then, by our hypothesis, $AS_{F}-S_{O}A$ is
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compact. Consequently, being the uniform limit of compact operators, $AF-GA$

is a compact operator.
To show that the converse may not be true, we produce the following example:

Let $H$ be the Hilbert space of square summable sequences. Let $A=I,$ $F=diag$

$\{1,1/2,1/3, \cdots\}$ and G$=0onH$. $ThenAF-GA=FwhichIscompact$ . But if a $=\{0\}$ ,

then $Af(\alpha)=0$ and $g(\alpha)A=I$. Thus, for $\alpha=\{0\},$ $Af(\alpha)-g(\alpha)A$ fails to be compact.

Theorem 1. Let $F$ and $G$ be normal operators with spectral resolfations $f$

and $g$ . If (1) $f(\alpha)g(\alpha)-g(\alpha)f(\alpha)$ is compact for each $\alpha$ , and (2) there exists an
operator $A$ such that $0\not\in W_{e}(A)$ and $AF=GA$ , then $F-G$ is compact.

Proof. We shall use the argument similar to that given in Theorem 1 [41.

Since $AF=GA,$ $Af(\alpha)-g(\alpha)A$ for each $\alpha$ and so by (1),

$(1^{*})p(\alpha)^{*}Ap(\alpha)$ and $q(\alpha)^{*}Aq(\alpha)$ are compact for each $\alpha$ , where
$(2^{*})p(\alpha)=(I-f(\alpha))Af(\alpha)$ and $q(\alpha)=f(\alpha)A(I-f(\alpha))$ , are compact.

We claim that $p(\alpha)$ and $q(\alpha)$ are compact for each $\alpha$ . Assume to the contrary

that for some $\alpha,$
$p(\alpha)$ fails to be compact. Then, by virtue of [6, Corollary to

Theorem 2.5], one can find an orthonormal sequence $\{e_{n}\}(n=1,2,3,\cdots)$ in $H$ such
that $\Vert p(\alpha)e_{n}\Vert>M$ for some positive reaI number $M$. Let $ x_{n}=p(\alpha)e_{n}/\Vert p(\alpha)e_{n}\Vert$ . Then,

since $e_{n}\rightarrow 0$ weakly in $H$, we have

$|\langle x_{n\prime}x\rangle|=|\langle e_{n\prime}p(\alpha)x\rangle|/\Vert p(\alpha)e_{n}||$

$<(1/M)|\langle e_{n}, p(\alpha)x\rangle|\rightarrow 0$ for each $x$ .
Thus $x_{n}\rightarrow 0$ weakly in $H$. Next $|\langle Ax_{n}, x_{n}\rangle|=|\langle Ap(\alpha)e_{n},$ $p(\alpha)e,>|/\Vert p(\alpha)e_{n}||^{2}<(1/M^{g})|$

$\langle p(\alpha)^{*}Ap(\alpha)e_{n}, e_{n}\rangle|$ . Consequently the compactness of $p(\alpha)^{*}Ap(\alpha)$ implies $\langle Ax_{n},$ $x>$

$\rightarrow 0$. Thus we are able to find out a sequence $\{x_{n}\}$ of unit vectors such that $x.\rightarrow 0$

weakly in $H$ and $\langle Ax_{n}, x_{n}\rangle\rightarrow 0$ . But, then in view of [10, Theorem 91, $0eW_{e}(A)$ ,

which contradicts our hypothesis and hence we conclude that $p(\alpha)$ is compact for
each $\alpha$ . Similarly, it can be shown that $q(\alpha)$ is compact for each $\alpha$ . Therefore,

by $(2^{*}),$ $Af(\alpha)-f(\alpha)A$ is compact and hence invoking (2), $(g(\alpha)-f(\alpha))A$ is compact

for each $\alpha$ . Since $0\not\in W_{e}(A)$ , there exists a compact operator $K$ such that $ 0\not\in$

$ClW(A+K)$ [$10$ , Theorem 9]. If $B=A+K$, then the compactness of $(g(\alpha)-f(\alpha))A$

implies $(g(\alpha)-f(\alpha))B$ is compact for each $\alpha$ . Since $B$ is non-singular, we conclude
that $g(\alpha)-f(\alpha)$ is compact for each $\alpha$ and hence an application of Lemma shows
that $F-G$ is compact.

Remark. It is now easy to show that in the preceeding result, one can
replace the hypothesis “ $AF=GA$ “ by the another hypothesis “ $Af(\alpha)-g(\alpha)A$ is
compact for each $\alpha$

” without affecting the conclusion.
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Next, we shall obtain several results parallel to those established in [41.

Theorem 2. If for a non-singular operator $E$, there exists an operator $A$

in $D$ such that $AE=E^{-1}A$ , where either $E$ is normal or $A$ is a non-singular

normal operator, then $E^{2}=I$.
Proof. Since $A\in D$, either $O\not\in W(A)$ or $\sigma(A)\cap\sigma(-A)=\emptyset$ .
Assume first that $O\not\in W(A)$ . If $E$ is normal, then the result follows im-

mediately from Theorem A. If $A$ is a non-singular normal operator, then by
hypothesis, $E^{-1}A^{-1}=A^{-1}E$. Therefore $AE^{-1}A=AE^{2}$ and so on substitution $E^{-1}A$

$=AE$ , we obtain $A^{2}E=EA^{2}$ . By [4, Corollary 5], $AE=EA$ . Since $AE=E^{-1}A$ ,

we have $E^{2}=I$.
Next, assume that $\sigma(A)\cap\sigma(-A)=\emptyset$ . Obviously then $A$ is non-singular. Again

arguing as before, one has $A^{2}E=EA^{2}$ and hence by [4], $AE=EA$ . This equation

together with that given in hypothesis yields $E^{2}=I$. This finishes the proof of
theorem.

Remark. The conclusion of the above result cannot be strengthend to $E=\pm I$.
To see this, consider $A=I$ and $E=\left\{\begin{array}{ll}1 & 0\\0 & -1\end{array}\right\}$ .

Next, we shall obtain several corollaries of Theorem 2.

Corollary 1. If for a non-singular operator $E$ , there exists an operator
$A$ in $D$ such that $AE^{-1}=E^{*}A$ and $AE^{*}=E^{-1}A$ , then $E$ is a unitary operator.

Proof. Since $AE^{-1}=E^{*}A$ , we have

(1) $AEA^{-1}=(EE^{*})A$ .
Now the second equation of hypothesis is equivalent to

(2) $EA=AE^{*-1}$

Then by (1) and (2), we have $(EE^{*})A=A(EE^{*})^{-1}$ . An application of Theorem 2
yields $(EE^{*})^{2}=I$ and hence $EE^{*}=I$ or $E^{*}=E^{-1}$ . This shows that $E$ is unitary.

Recently, U. N. Singh and Kanta Mangla have shown in [91 that if $E$ is a
non-singular operator for which there exists a cramed unitary operator $A$ 8uch
that $AE^{*}=E^{-1}A$ , then $E$ is unitary. To put this result in a more general form,

we prove

Corollary 2. If for a non-singular operator $E,$ $AE^{*}=E^{-1}A$ where A $eD$

and either $A$ is unitary or $E$ is normal, then $E$ is unitary.

Proof. If $A$ is unitary, then the equation $AE^{*}=E^{-1}A$ given in hypothesis
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reduces to $EA=AE^{*-1}$ . Multiplying both sides of this by $A^{*}$ and then taking

adjoint, we get $E^{*}A=AE^{-1}$ . If $E$ is normal, then in view of [81, the equation

given in hypothesis takes the form $AE=E^{*-1}A$ and hence $E^{*}A=AE^{-1}$ . Thus in
either case, Corollary 1 is applicable.

Remark. If $A\not\in D$, then Corollary 2 is not valid even if $A$ is unitary or $E$

is normal. To illustrate this point, we sketch a simple example as follows: Let
$A=\left\{\begin{array}{l}01\\10\end{array}\right\}$ and $E=\left\{\begin{array}{l}02\\01/2\end{array}\right\}$ . Then $A\not\in D$ and $AE^{*}=E^{-1}A$ . However, as $\sigma(E)$ does

not lie on the unit circle, $E$ cannot be unitary.

As an immediate consequence of Lemma 4.1 of [21 together with the preceed-

ing corollary, one has the following result which is parallel to that obtained by

Beck and Putnam [11.

Corollary 3. Let $A$ be a quasi-invertible operator with the polar decom-
position UP where $P$ is positive and $U$ is a unitary operator such that $U\in D$.
If $E$ is a non-singular normal operator such that $AE^{*}=E^{-1}A$ , then $E$ is
unitary.

For an another application of Corollary 2, we prove

Corollary 4. Let $A$ be a non-singular normal operator with the polar
decomposition UP, where $P$ is positive definite and $U$ is a unitary operator
in D. If $E$ is a non-singular operator such that $AE^{*n}=E^{-n}A$ for some in-
teger $n$ , then $E$ is similar to a unitary operator.

Proof. Since $P$ is positive definite, it has the unique positive definite square
$rtQ$ . Therefore, as $A$ is normal, $UP=PU$ and hence $UQ=QU$. Now, under
the hypothesis, $E^{*n}=A^{-1}E^{-n}A=P^{-1}(U^{*}E^{-n}U)P=Q^{-1}(U^{*}Q^{-1}E^{-n}QU)Q$ . Consequent-
ly, $(Q^{-1}E^{n}Q)^{*}=U^{*}(Q^{-1}E^{n}Q)^{-1}U$. Invoking Corollary 2, we come to the conclusion
that $Q^{-1}E^{n}Q$ is unitary. By [7, Corollary 11, $Q^{-1}EQ$ is similar to a unitary
operator and hence the result follows.

In [91, the following result is established.

Theorem B. If $E$ is a non-singular operator such that $AE^{*}=E^{-1}A$ , where
$O\not\in ClW(A)$ , then $E$ is similar to a unitary operator.

Here we would like to note that the condition ‘ $O\not\in ClW(A)$ ‘ cannot be replaced
by the weaker condition ‘ $\sigma(A)\cap\sigma(-A)=\emptyset$ ’, even if $A$ is normal. To see this,

consider the following example:

Let $A=\left\{\begin{array}{l}1-1\\-1 0\end{array}\right\}$ and $E=[2031\}_{2}^{4}]$ .
Since $\sigma(E)$ is not on the unit circle, $E$ cannot be similar to a unitary operator.
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With the disposal of the case $\sigma(A)\cap\sigma(-A)=\emptyset$ , it is natural to raise the question

whether the another condition ‘
$O\not\in W(A)$ ’ is sufficiently strong in Theorem $B$ to

guarantee that $E$ is similar to a unitary operator. Here, we are able to solve

this question only under the particular situation when $E$ is a spectral operator

and $A$ is self adjoint.

Theorem 3. Let $E$ be a non-singular spectral operator. If $AE^{*}=E^{-1}A$ ,

where $A$ is self adjoint such that $O\not\in W(A)$ , then $E$ is similar to a unitary

operator.

Proof. Since $O\not\in W(A),$ $A$ is strictly positive. Let $Y$ be the positive square
root of $A$ . Then $Y$ is also strictly positive and hence, in particular, it is quasi-

invertible. Now the hypothesis $AE^{*}=E^{-1}A$ implies $EAE*=A$ . Then

$\Vert YE^{*}x\Vert^{2}=\langle Y^{2}E^{*}x, E^{*}x\rangle=\langle AE^{*}x, E^{*}x\rangle=\langle EAE^{*}x, x\rangle=\Vert Yx||^{2}$

In particular, for every $x$ in the domain of $Y^{-1}$ , $\Vert YE^{*}Y^{-1}x\Vert=\Vert x\Vert$ . Since this
domain is dense in $H,$ $YE^{*}Y^{-1}$ can be extended by continuity to an isometry $U$

on $H$ such that $YE^{*}=UY$. This equation together with the non-singularity of
$E$ yields

$U(H)=U\overline{(Y(H))}=\overline{UY(H)}=\overline{YE^{*}(H})=\overline{Y\overline{(E^{*}(H})})=\overline{Y(H})=H$ ;

thus $U$ is onto and hence it turns out to be unitary. Let $Y=U^{*}$ . Then equation
$YE^{*}=UY$ reduces to
(1) $EY=YV$.

Since $E$ is spectral, it has the unique canonical decomposition of the form
$N+S$ where $N$ is the scalar part and $S$ is a quasinilpotent operator commuting

with N. APplying [6, Theorem 2.2] to (1), we have $N=R^{-1}VR$ for some non-
singular operator $R$ and $SY=0$ . Since $Y$ is quasi-invertible, $SY=0$ implies $S=0$ .
Thus $E=N=R^{-1}VR$ , which completes the proof.

The author wishes to thank Dr. B. S. Yadav for his encouragement and
guidance. Also he wishes to express his gratitude to the referee for suggesting

some improvement over the original text of this paper.
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