BILLINGSLEY'S THEOREMS ON EMPIRICAL PROCESSES OF STRONG MIXING SEQUENCES

By

KEN-ICHI YOSHIHARA

(Received December 27, 1973)

0. Summary. Let $\{x_j, -\infty < j < \infty\}$ be a strictly stationary sequence of random variables satisfying some mixing condition with mixing coefficient $\phi(n)$ or $\alpha(n)$. Let $F_n(t)$ be the empirical distribution function of x_1, \dots, x_n and $Y_n(, \omega) = n^{1/2}(F_n(t, \omega) - F(t))$. In [1], Billingsley proved the weak convergence theorem on $\{Y_n\}$ under the condition $\sum n^2 \phi^{1/2}(n) < \infty$. (cf. Theorem 22.1 in [1]). Recently, in [5], Sen proved the result under the condition $\sum n \phi^{1/2}(n) < \infty$ and in [6] Yokoyama proved it under the condition $\sum n \alpha^{\beta}(n) < \infty (0 < \beta < 1/2)$. In this note, we shall show that Billingsley's theorem remains true under a less restrictive condition $\alpha(n) = O(n^{-s-\delta})$ ($\delta > 0$). A theorem corresponding to Theorem 22.2 in [1] is also proved (Section 4).

1. The main result. Let $\{x_j, -\infty < j < \infty\}$ be a strictly stationary sequence of random variables defined on a probability space $(\Omega, \mathfrak{B}, P)$. Suppose that the process satisfies one of the following conditions:

for all $B \in \mathfrak{M}_{k+n}^{\infty}$ with probability one

$$(1) \qquad |P(B|\mathfrak{M}_{-\infty}^k) - P(B)| \leq \phi(n) \downarrow 0 \quad (n \to \infty)$$

(the ϕ -mixing condition) and

(2)
$$\sup |P(A \cap B) - P(A)P(B)| \leq \alpha(n) \downarrow 0 \quad (n \to \infty)$$

(the strong mixing (s.m.) condition). Here the supremum is taken over all $A \in \mathfrak{M}_{-\infty}^{k}$ and $B \in \mathfrak{M}_{k+n}^{\infty}$, \mathfrak{M}_{a}^{b} denotes the σ -algebra generated by events of the form

$$\{(x_{i_1},\cdots,x_{i_k})\in E\}$$

where $a \leq i_1 < i_2 < \cdots < i_k \leq b$ and E is a k-dimensional Borel set. The difference between the s.m. and ϕ -mixing conditions is explained in [4].

Let

(3)
$$c(u) = \begin{cases} 1 & \text{if } u \ge 0 \\ 0 & \text{if } u < 0 \end{cases}.$$

KEN-ICHI YOSHIHARA

Suppose that x_i has a continuous distribution function F(u). Put $x_i^* = F(x_i)$ for any *i* and define the empirical distribution function by

(4)
$$F_n(t) = n^{-1} \sum_{i=1}^n c(t-x_i^*), \quad 0 \leq t \leq 1.$$

In [1], Billingsley proved that if $\{x_i\}$ is a strictly stationary ϕ -mixing sequence of random variables, then the sequence $\{Y_n\}$ of random elements in D[0, 1] defined by

(5)
$$Y_n(t) = n^{1/2} \{F_n(t) - t\}, \quad 0 \le t \le 1$$

converges weakly to a Gaussian random function under the condition $\Sigma n^2 \phi^{1/2}(n) < \infty$ (cf. Theorem 22.1 in [1]). In [5], Sen proved the same result under the condition $\Sigma n \phi^{1/2}(n) < \infty$. On the other hand, in [6], Yokoyama showed that the theorem holds under the condition $\Sigma n \alpha^{\beta}(n) < \infty$ ($0 < \beta < 1/2$), which is extensions of Billingsley's and Deo's results. The following theorem is a generalization of the results which are obtained by Billingsley, Sen, Deo and Yokoyama, respectively.

We use the same notations and definitions in [1]. Let

(6)
$$g_t(x_i^*) = c(t-x_i^*)-t, \quad 0 \leq t \leq 1, \quad i \geq 0$$

Theorem 1. Suppose that $\{x_j\}$ is a strictly stationary s.m. sequence of random variables with mixing coefficient $\alpha(n)$ and suppose x_0 has a continuous distribution function F on [0, 1]. If $\alpha(n)=O(n^{-s-\delta})$ for some $\delta>0$, then

$$(7) Y_n \to Y$$

where Y_n is defined by (5) and Y is the Gaussian random function specified by

$$(8) EY(t) = 0$$

and

(9)
$$EY(s)Y(t) = Eg_{s}(x_{0}^{*})g_{t}(x_{0}^{*}) + \sum_{k=1}^{\infty} Eg_{s}(x_{0}^{*})g_{t}(x_{k}^{*}) + \sum_{k=1}^{\infty} Eg_{s}(x_{k}^{*})g_{t}(x_{0}^{*}).$$

These series converge absolutely and $P(Y \in C) = 1$. (cf. Theorem 22.1 in [1], Theorem 3.1 in [5], Theorem in [7].)

2. A lemma. In this section, we assume that $\{z_i\}$ is a strictly stationary sequence of Bernoullian variables, centered at expectation, satisfying the s.m.

condition with mixing coefficient $\alpha(n)$. Put $Ez_1^2 = \tau$. Then $E|z_1| = 2\tau$.

We shall use the following

Lemma (Davydov). Let the process $\{x_n\}$ satisfy the s.m. condition, and let the random variables ξ and η , respectively, be measurable with respect to $\mathfrak{M}_{-\infty}^k$ and $\mathfrak{M}_{k+n}^{\infty}$; moreover, assume that $E|\xi|^p < \infty$ for p>1 and $|\eta| < C$ a.s. Then $|E\xi\eta - E\xi E\eta| \leq 6C\{E|\xi|^p\}^{1/p}\{\alpha(n)\}^{1-1/p}$.

(cf. Lemma 2.1 in [3]).

In what follows, by the letter K, we shall denote any positive quantity (not always the same) which is bounded and does not depend on n.

,

n .

(10) Lemma. If
$$\alpha(j) = O(j^{-s-\delta})$$
 for some $\delta > 0$, then
 $ES_n^4 \leq K(n^2 \tau^{4/8} + \tau^{\delta/(8+\delta)} n \log n)$

where $S_n = z_1 + \cdots + z_n$.

Proof. We follow the proof of Lemma 2.1 in [5], (cf. [7]). We denote by \sum_n the summation over all $i, j, k \ge 0$ for which $i+j+k \le n$, and let $\sum_n^{(1)}, \sum_n^{(2)}$ and $\sum_n^{(3)}$ be, respectively, the components of \sum_n for which $i \ge (j, k), j \ge (i, k)$ and $k \ge (i, j)$. Then, we have

(11)
$$ES_n^4 \leq 24n\{\sum_{n=1}^{(1)} + \sum_{n=1}^{(2)} + \sum_{n=1}^{(3)}\}|Ez_0 z_i z_{i+j} z_{i+j+k}|.$$

Since $\alpha(j) = O(j^{-8-\delta})$,

(12)
$$\sum_{j=1}^{n} (j+1)^{2} \{\alpha(j)\}^{\beta/(\beta+\delta)} \leq K \log \alpha(j)$$

Hence, from (12), the assumption $P(|z_i|>1)=0$ and Davydov's lemma, we have the following inequalities:

(13)

$$\begin{split} & \sum_{n}^{(1)} |Ez_0 z_i z_{i+j} z_{i+j+k}| \\ & \leq 6 \sum_{n}^{(1)} \{\alpha(i)\}^{\beta/(8+\delta)} \{E|z_0|^{(8+\delta)/\delta}\}^{\delta/(8+\delta)} \\ & \leq 6 \{E|z_0|\}^{\delta/(8+\delta)} \sum_{n}^{(1)} \{\alpha(i)\}^{\beta/(8+\delta)} \\ & \leq K \tau^{\delta/(8+\delta)} \sum_{i=1}^{n} (i+1)^2 \{\alpha(i)\}^{\beta/(8+\delta)} \leq K \tau^{\delta/(8+\delta)} \log n ; \\ & \sum_{n}^{(2)} |Ez_0 z_i z_{i+j} z_{i+j+k}| \\ & \leq \sum_{n}^{(2)} |Ez_0 z_i| |Ez_0 z_k| + 6 \sum_{n}^{(2)} \{\alpha(j)\}^{\beta/(8+\delta)} \{E|z_0 z_i|^{(8+\delta)/\delta}\}^{\delta/(8+\delta)} \end{split}$$

(14)

$$+6\sum_{n}^{(2)} \{\alpha(j)\}^{8/(8+\delta)} \{E|z_0|\}^{\delta/(8+\delta)} \\ \leq K\tau^{4/8} \sum_{n}^{(2)} \{\alpha(i)\}^{1/8} \{\alpha(k)\}^{1/8} + K\tau^{\delta/(8+\delta)} \sum_{n}^{(2)} \{\alpha(j)\}^{8/(8+\delta)}$$

 $\leq 36 \sum_{n}^{(2)} \{\alpha(i)\}^{1/8} \{E|z_0|^{8/2}\}^{2/8} \{\alpha(k)\}^{1/8} \{E|z_0|^{8/2}\}^{2/8}$

$$\leq Kn\tau^{4/8} [\sum_{i=1}^{n} \{\alpha(i)\}^{1/8}]^2 + K\tau^{\delta/(8+\delta)} \sum_{i=1}^{n} (j+1)^2 \{\alpha(j)\}^{3/(8+\delta)}$$

KEN-ICHI YOSHIHARA

 $\leq K(n\tau^{4/3} + \tau^{\delta/(3+\delta)}\log n);$

 $\sum_{n}^{(3)} |E z_0 z_i z_{i+j} z_{i+j+k}|$

(15)

$$\begin{split} 5) & \leq 6 \sum_{n}^{(3)} \{\alpha(k)\}^{3/(3+\delta)} \{E|z_0|^{(3+\delta)/\delta}\}^{\delta/(3+\delta)} \\ & \leq K \tau^{\delta/(3+\delta)} \sum_{k=1}^n (k+1)^2 \{\alpha(k)\}^{3/(3+\delta)} \leq K \tau^{\delta/(3+\delta)} \log n \; . \end{split}$$

Thus, (10) follows from (11), (13), (14) and (15), and the proof is completed.

3. Proof of Theorem 1. Let

$$z_i = g_i(x_i^*) - g_s(x_i^*)$$
 $(0 \le s < t \le 1)$.

Then, the sequence $\{z_i\}$ satisfies the conditions of Lemma and

$$Ez_{i}^{2} = (t-s)(1-t+s) \leq t-s$$
.

Moreover,

$$Y_n(t) - Y_n(s) = n^{-1/2} \sum_{i=1}^n z_i$$
.

Thus, if $\varepsilon(0 < \varepsilon < 1)$ is a fixed number such that

$$\frac{\varepsilon}{n} \leq t-s$$
,

we have

$$E|Y_{n}(t)-Y_{n}(s)|^{4} \leq K \left\{ (t-s)^{4/3} + \frac{\log n}{n} (t-s)^{\delta/(8+\delta)} \right\}$$

$$\leq K \{ (t-s)^{4/3} + n^{-(1-2\delta/3(8+\delta))} (t-s)^{\delta/(8+\delta)} \}$$

$$\leq K \{ (t-s)^{4/3} + \varepsilon^{-(1-2\delta/3(8+\delta))} (t-s)^{1+\delta/8(8+\delta)} \}$$

$$\leq K_{0}(t-s)^{1+\delta/8(8+\delta)}$$

for all n sufficiently large. Hence, the method of the proof of Theorem 22.1 in [1] can be completely carried over to this case and the proof is obtained.

4. Functions of strong mixing processes. Let $\{x_n\}$ be a strictly stationary sequence of random variables satisfying the s.m. condition. Let f be a measurable mapping from the space of doubly infinite sequences $(\dots, \alpha_{-1}, \alpha_0, \alpha_1, \dots)$ of real numbers into the real line. Define random variables

(16)
$$\eta_n = f(\dots, x_{n-1}, x_n, x_{n+1}, \dots), \quad n = 0, \pm 1, \pm 2, \dots$$

where x_n occupies the 0-th place in the argument of f.

Suppose now that

(17) $0 \leq \eta_n(\omega) \leq 1$

and let $F_n(t, \omega)$ be the empirical distribution function of $\eta_1(\omega), \dots, \eta_n(\omega)$ and define Z_n by

(18)
$$Z_n(t, \omega) = n^{1/2} (F_n(t, \omega) - F(t))$$

where F is the distribution function for η_0 . Let f_k be a measurable mapping from R^{2k+1} into R^1 . Moreover, let

(19) $\eta_{kn} = f_k(x_{n-k}, \cdots, x_n, \cdots, x_{n+k})$

for which

 $0 \leq \eta_{kn}(\omega) \leq 1$.

Finally, we shall suppose that there exist sets H_k in [0, 1] with the following properties;

(i) If $t \in H_k$, then

$$I_{[0,t]}(\eta_0) = I_{[0,t]}(\eta_{k,0})$$

with probability one, where $I_E(.)$ is the indicator of the set E.

(ii) If $J_k = \{F(t): t \in H_k\}$, then J_k is a ρ_k -net in [0, 1],

where ρ_k goes to zero exponentially.

(iii) We have $H_k \subset H_{k+1}$.

Define g_i by (6) as before.

Theorem 2. Suppose that $\{x_n\}$ is a strictly stationary s.m. sequence with mixing coefficient $\alpha(n)$, that η_0 has a continuous distribution function F on [0, 1], and that there exist sets H_k with the three properties just described. If $\alpha(n)=O(n^{-3-\delta})$ for some $\delta>0$, then

$$Z_n \xrightarrow{\mathscr{D}} Z$$

where Z is the Gaussian random function specified by

$$EZ(t)=0$$

and

$$EZ(s)Z(t) = Eg_s(\eta_0)g_t(\eta_0) + \sum_{k=1}^{\infty} Eg_s(\eta_0)g_t(\eta_k) + \sum_{k=1}^{\infty} Eg_s(\eta_k)g_t(\eta_0) .$$

The series converge absolutely and $P(Z \in C) = 1$. (cf. Theorem 22.2 in [1]).

Proof. As in the proof of Theorem 22.2 in [1], we can show that it suffices

KEN-ICHI YOSHIHARA

to consider the case in which η_0 is uniformly distributed. So, we assume that η_0 is uniformly distributed. If s and t both lie in H_k , then the process

$$g_{\iota}(\eta_{n}) - g_{s}(\eta_{n}) = g_{\iota}(\eta_{kn}) - g_{s}(\eta_{kn}), \quad n = 0, \pm 1, \pm 2, \cdots$$

is strong mixing with mixing coefficient $\alpha^{(k)}(n)$ where

$$lpha^{(k)}(n) = egin{cases} 1 & ext{if } n \leq 2k \ lpha(n-2k) & ext{if } n > 2k \end{cases}.$$

Let n be arbitrarily fixed. Since η_0 is uniformly distributed and since

$$\sum_{j=0}^n {\{\alpha^{(k)}(j)\}^{1/8} \leq Kk}$$

and

$$\sum_{j=0}^{n} (j\!+\!1)^2 \{ lpha^{(k)}(j) \}^{8/(8+\delta)} \leq Kk^3 \log n$$
 ,

so by the analogous method of the proof of Lemma we can prove that

$$E |\sum_{i=1}^{n} (g_{i}(\eta_{i}) - g_{s}(\eta_{i}))|^{4}$$

$$\leq Kk^{3} (n^{2} |t - s|^{4/3} + |t - s|^{3/(3+\delta)} n \log n)$$

where K depends on α alone. Therefore

$$s, t \in H_k$$
, $\frac{\varepsilon}{n} \leq t-s$ (0< ε <1)

imply

$$P(|Z_n(t)-Z_n(s)| \ge \lambda) \le K_1 \frac{k^3}{\lambda^4} (t-s)^{1+\beta}$$

for some $\beta > 0$ where K_1 depends only on α and ε . The rest of the proof is identical to that of Theorem 22.2 in [1] and so is omitted.

REFERENCES

- [1] Billingsley, P., Convergence of probability measures, Wiley, New York (1968).
- [2] Davydov, Yu. A., Convergence of distributions generated by stationary stochastic processes, Theory Probab. Appli. 12 (1968) 691-696.
- [3] Deo, C. M., Empirical processes of strong-mixing stationary sequences (abstract). The Institute of Mathematical Statistics Bulletin 1 (1972) 251.
- [4] Ibragimov, I. A. and Yu. V. Linnik, Independent and stationary sequences of random variables, Woltes-Noordhoff Publishing, Groningen (1971).
- [5] Sen, P.K., A note on weak convergence of empirical processes for sequences of ϕ -

mixing random variables, Ann. Math. Statist. 42 (1971) 2131-2133.

- [6] Yokoyama, R., Weak convergence of empirical processes for strong mixing sequences of random variables (To appear).
- [7] Yoshihara, K., Extensions of Billingsley's theorems on weak convergence of empirical processes (To appear).

Department of Mathematics, Faculty of Engineering, Yokohama National University, Tokiwadai, Hodogaya-ku, Yokohama 240 Japan.