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0. Summary. Let $\{x_{j}, -\infty<j<\infty\}$ be a strictly stationary sequence of

random variables satisfying some mixing condition with mixing coefficient $\phi(n)$

or $\alpha(n)$ . Let $F.(t)$ be the empirical distribution function of $x_{1},\cdots,$ $x_{\iota}$ and $Y_{*}(, \omega)$

$=n^{1/2}(F_{n}(t, \omega)-F(t))$ . In [11, Billingsley proved the weak convergence theorem on
$\{Y_{n}\}$ under the condition $\Sigma n^{2}\phi^{1/2}(n)<\infty$ . (cf. Theorem 22.1 in [11). Recently, in
[5], Sen proved the result under the condition $\Sigma n\phi^{1/2}(n)<\infty$ and in [61 Yokoyama

proved it under the condition $\Sigma n\alpha^{\beta}(n)<\infty(0<\beta<1/2)$ . In this note, we shall show

that Billingsley’s theorem remains true under a less restrictive condition $\alpha(n)=$

$O(n^{-8-\delta})(\delta>0)$ . A theorem corresponding to Theorem 22.2 in [11 is also proved

(Section 4).

1. The main result. Let $\{x_{j}, -\infty<j<\infty\}$ be a strictly stationary sequence

of random variables defined on a probability space $(\Omega, \mathfrak{B}, P)$ . Suppose that the
process satisfies one of the following conditions:
for all $B\in \mathfrak{M}_{k+n}^{\infty}$ with probability one

(1) $|P(B|\mathfrak{M}_{-\infty}^{k})-P(B)|\leqq\phi(n)\downarrow 0$ $(n\rightarrow\infty)$

(the $\phi$-mixing condition) and

(2) $sup|P(A\cap B)-P(A)P(B)|\leqq\alpha(n)\downarrow 0$ $(n\rightarrow\infty)$

(the strong mixing (s.m.) condition). Here the supremum is taken over all $A\in \mathfrak{M}_{-\infty}^{k}$

and $B\in \mathfrak{M}_{k+n}^{\infty},$ $\mathfrak{M}_{a}^{b}$ denotes the a-algebra generated by events of the form

$\{(x_{\ell_{1}},\cdots, x_{\ell_{k}})eE\}$

where $a\leqq i_{1}<i_{2}<\cdots<i_{k}\leqq b$ and $E$ is a k-dimensional Borel set. The difference
between the s.m. and $\phi$-mixing conditions is explained in [41.

Let

(3) $c(u)=\left\{\begin{array}{ll}1 & if u\geqq 0\\0 & if u<0.\end{array}\right.$
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SuPpose that $x_{\ell}$ has a continuous distribution function $F(u)$ . Put $x_{l}^{*}=F(x_{\ell})$ for
any $i$ and define the empirical distribution function by

(4) $F_{n}(t)=n^{-1}\sum_{=:1}c(t-x_{i}^{*})$ , $0\leqq t\leqq 1$ .

In [1], Billingsley proved that if $\{x\}$ is a strictly stationary $\phi$-mixing sequence
of random variables, then the sequence $\{Y_{n}\}$ of random elements in $D[0,1]$ defined
by

(5) $Y_{n}(t)=n^{1/2}\{F_{n}(t)-t\}$ , $0\leqq t\leqq 1$

converges weakly to a Gaussian random function under the condition $\Sigma n^{2}\phi^{1/g}(n)<\infty$

(cf. Theorem 22.1 in [11). In [51, Sen proved the same result under the condition
$\Sigma n\phi^{1/2}(n)<\infty$ . On the other hand, in [61, Yokoyama showed that the theorem
holds under the condition $\Sigma n\alpha^{\beta}(n)<\infty(0<\beta<1/2)$ , which is extensions of Billingsley’s
and Deo’s results. The following theorem is a generalization of the results which
are obtained by Billingsley, Sen, Deo and Yokoyama, respectively.

We use the same notations and definitions in [1]. Let

(6) $g_{t}(x_{\ell}^{*})=c(t-x_{\ell}^{*})-t$ , $0\leqq t\leqq 1$ , $i\geqq 0$ .
Theorem 1. Suppose that $\{x_{j}\}$ is a strictly stationary $s.m$ . sequence of

random variables with mixing coefficient $\alpha(n)$ and suppose $x_{0}$ has a continuous
distribution function $F$ on $[0,1]$ . If $\alpha(n)=O(n^{-8-\delta})$ for some $\delta>0$ , then

(7) $Y_{\hslash}\rightarrow Y\ovalbox{\tt\small REJECT}$

where $Y_{n}$ is defined by (5) and $Y$ is the Gaussian random function specified
$by$

(8) $EY(t)=0$

and

$EY(s)Y(t)=Eg.(x_{0}^{*})g_{t}(x_{0}^{*})$

(9)
$+\sum_{k=1}^{\infty}Eg_{e}(x_{0}^{*})g_{t}(x_{k}^{*})+\sum_{k=1}^{\infty}Eg.(x_{k}^{*})q_{\iota}(x_{0}^{*})$ .

These series converge absolutely and $P(YeC)=1$ . (cf. Theorem 22.1 in [1],

Theorem 3.1 in [51, Theorem in [71.)

2. A lemma. In this section, we assume that $\{z_{i}\}$ is a strictly stationary
sequence of Bernoullian variables, centered at expectation, satisfying the s.m.
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condition with mixing coefficient $\alpha(n)$ . Put $ Ez_{1}^{2}=\tau$ . Then $ E|z_{1}|=2\tau$ .
We shall use the following

Lemma (Davydov). Let the process $\{x_{n}\}$ satisfy the $s.m$ . condition, and let
the random variables $\xi$ and $\eta$ , respectively, be measurable with respect to $\mathfrak{M}_{-\infty}^{k}$

and $\mathfrak{M}_{k+n}^{\infty}$ ; moreover, assume that $ E|\xi|^{p}<\infty$ for $p>1$ and $|\eta|<Ca.s$ . Then
$|E\xi\eta-E\xi E\eta|\leqq 6C\{E|\xi 1^{p}\}^{1/p}\{\alpha(n)\}^{1-1/p}$ .

(cf. Lemma 2.1 in [3]).

In what follows, by the letter $K$, we shall denote any positive quantity (not

alway8 the same) which is bounded and does not depend on $n$ .
Lemma. If $\alpha(j)=O(j^{-3-\delta})$ for some $\delta>0$ , then

(10) $ES_{n}^{4}\leqq K$($n^{2}\tau^{4/8}+\tau^{\delta/(\theta+\delta)}n$ log $n$),

where $S_{n}=z_{1}+\cdots+z_{n}$ .
Proof. We follow the proof of Lemma 2.1 in [51, (cf. [71). We denote by

$\Sigma_{n}$ the summation over all $i,$ $j,$ $k\geqq 0$ for which $i+j+k\leqq n$ , and let $\Sigma_{n}^{(1)},$ $\Sigma_{n}^{(2)}$ and
$\Sigma_{n}^{(3)}$ be, respectively, the components of $\Sigma_{*}$ for which $i\geqq(j, k),$ $j\geqq(i, k)$ and $ k\geqq$

$(i, j)$ . Then, we have

(11) $ES_{n}^{4}\leqq 24n\{\Sigma_{n}^{(1)}+\Sigma^{(2)}+\Sigma_{n}^{(3)}\}|Ez_{0}z_{\ell}z_{\ell+j}z_{i+j+k}|$ .
Since $\alpha(j)=O(j^{-8-\delta})$ ,

(12) $\sum_{j=1}(j+1)^{2}\{\alpha(j)\}^{\theta/(8+\delta)}\leqq K$ log $n$ .

Hence, from (12), the assumption $P(|z_{\ell}|>1)=0$ and Davydov’s lemma, we have the
following inequalities:

$\Sigma_{n}^{(1)}|Ez_{0}z_{\ell}z_{\ell+j}z_{\ell+j+k}|$

$\leqq 6\Sigma_{n}^{(1)}\{\alpha(i)\}^{8/(8+\delta)}\{E|z_{0}|^{(8+\delta)/\delta}\}^{\delta/(3+\delta)}$

(13)
$\leqq 6\{E|z_{0}|\}^{\delta/(+\delta)}\Sigma_{n}^{(1)}\{\alpha(i)\}^{8/(8+\delta)}$

$\leqq K\tau^{\delta/(0+\delta)}\sum_{\ell=\iota}(i+1)^{2}\{\alpha(\ell i)\}^{\epsilon/(t+\delta)}\leqq K\tau^{\delta/(\epsilon+\delta)}$ log $n$ ;

$\Sigma_{n}^{(2)}|Ez_{0}z_{\ell}z_{\ell+j}z_{+f+k}|$

$\leqq\Sigma_{n}^{(2)}|Ez_{0}z_{\ell}||Ez_{0}z_{l}|+6\Sigma_{n}^{(2)}\{\alpha(j)\}^{\epsilon/(8+\delta)}\{E|z_{0}z|^{(\epsilon+\delta)/\delta}\}^{\delta/(+\delta)}$

$\leqq 36\Sigma_{n}^{(2)}\{\alpha(i)\}^{1/\epsilon}\{E|z_{0}|^{3/2}\}^{2/\epsilon}\{\alpha(k)\}^{1/}\{E|z_{0}|^{\prime 2}\}^{/\epsilon}$

(14) $+6\Sigma_{n}^{(2)}\{\alpha(j)\}^{\epsilon/(\epsilon+\delta)}\{E|z_{0}|\}^{\delta/(8+\delta)}$

$\leqq K\tau^{4/}\Sigma_{n}^{(2)}\{\alpha(i)\}^{1/\epsilon}\{\alpha(k)\}^{1/}+K\tau^{\delta/(+\delta)}\Sigma_{n}^{(2)}\{\alpha(j)\}^{\epsilon/(\epsilon+\delta)}$

$\leqq Kn\tau^{/\epsilon}[\sum_{i=\iota}\{\alpha(i)\}^{1/\epsilon}]^{2}+K\tau^{\delta/(8+\delta)}\sum_{j=1}(j+1)^{f}\{\alpha(j)\}^{8/(+\delta)}$
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$\leqq K$( $n\tau^{4/3}+\tau^{\delta/(3+\delta)}$ log $n$) ;

$\Sigma_{n}^{(3)}|Ezzzz|$

(15) $\leqq 6\Sigma_{n}^{(3)}\{\alpha(k)\}^{3/(8+\delta)}\{E|z_{0}|^{(3+\delta)/\delta}\}^{\delta/(3+\delta)}$

$\leqq K\tau^{\delta/(3+\delta)^{n}}\sum_{k=1}(k+1)^{2}\{\alpha(k)\}^{3/(8+\delta)}\leqq K\tau^{\delta/(3+\delta)}$ log $n$ .

Thus, (10) follows from (11), (13), (14) and (15), and the proof is completed.

3. Proof of Theorem 1. Let

$z_{i}=g_{t}(x_{i}^{*})-g.(x_{i}^{*})$ $(0\leqq s<t\leqq 1)$ .
Then, the sequence $\{z_{i}\}$ satisfies the conditions of Lemma and

$Ez_{i}^{2}=(t-s)(1-t+s)\leqq t-s$ .
Moreover,

$Y_{n}(t)-Y_{n}(s)=n^{-1/2}\sum_{t=1}^{n}z_{\ell}$ .
Thus, if $\epsilon(0<\epsilon<1)$ is a fixed number such that

$\frac{\epsilon}{n}\leqq t-s$ ,

we have

$E|Y_{n}(t)-Y_{n}(s)|^{4}\leqq K\{(t-s)^{/s}+\frac{\log n}{n}(t-s)^{\delta/(\theta+\delta)}\}$

$\leqq K\{(t-s)^{4/\epsilon}+n^{-(1-2\delta/8(\epsilon+\delta))}(t-s)^{\delta/(\epsilon+\delta)}\}$

$\leqq K\{(t-s)^{4/\theta}+\epsilon^{-(1-2\delta/3(8+\delta))}(t-s)^{1+\delta/8(8+\delta)}\}$

$\leqq K_{0}(t-s)^{1+\delta/3(8+\delta)}$

for all $n$ sufficiently large. Hence, the method of the proof of Theorem 22.1 in
[1] can be completely carried over to this case and the proof is obtained.

4. Functions of strong mixing processes. Let $\{x_{n}\}$ be a strictly stationary
sequence of random variables satisfying the s.m. condition. Let $f$ be a measura-
ble mapping from the space of doubly infinite sequences $(\cdots, \alpha_{-1}, \alpha_{0}, \alpha_{1}, \cdots)$ of
real numbers into the real line. Define random variables

(16) $\eta_{n}=f(\cdots, x_{n-1}, x_{n}, x_{n+1},\cdots)$ , $n=0,$ $\pm 1,$ $\pm 2,\cdots$

where $x,$. occupies the O-th place in the argument of $f$.
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Suppose now that

(17) $0\leqq\eta_{n}(\omega)\leqq 1$

and let $F_{n}(t, \omega)$ be the empirical distribution function of $\eta_{1}(\omega),$
$\cdots,$

$\eta_{n}(\omega)$ and define
$Z_{n}$ by

(18) $Z_{n}(t, \omega)=n^{1/2}(F_{n}(t, \omega)-F(t))$

where $F$ is the distribution function for $\eta_{0}$ . Let $f_{k}$ be a measurable mapping

from $R^{2k+1}$ into $R^{1}$ . Moreover, let

(19) $\eta_{kn}=f_{k}(x_{n-k}, \cdots, x_{n}, \cdots, x_{n+k})$

for which

$0\leqq\eta_{kn}(\omega)\leqq 1$ .
Finally, we shall suppose that there exist sets $H_{k}$ in $[0,1]$ with the following

properties;
(i) If $t\in H_{k}$ , then

$I_{[0,t]}(\eta_{0})=I_{[0,t]}(\eta_{k,0})$

with probability one, where $I_{E}(.)$ is the indicator of the set $E$ .
(ii) If $J_{k}=\{F(t):t\in H_{k}\}$ , then $J_{k}$ is a $\rho_{k}$-net in $[0,1]$ ,

where $\rho_{k}$ goes to zero exponentially.
(iii) We have $H_{k}\subset H_{k+1}$ .

Define $g_{t}$ by (6) as before.

Theorem 2. Suppose that $\{x_{n}\}$ is a strictly stationary $s.m$ . sequence with
mixing coefficient $\alpha(n)$ , that $\eta_{0}$ has a continuous distribution function $F$ on
$[0,1]$ , and that there exist sets $H_{k}$ with the three properties just described. If
$\alpha(n)=O(n^{-\S-\delta})$ for some $\delta>0$ , then

$z_{n^{\rightarrow}}^{\mathcal{D}}z$

where $Z$ is the Gaussian random function specified by

$EZ(t)=0$

and

$EZ(s)Z(t)=Eg.(\eta_{0})g_{t}(\eta_{0})+\sum_{k=1}^{\infty}Eg.(\eta_{0})g_{t}(\eta_{k})+\sum_{k- 1}^{\infty}Eg.(\eta_{k})g_{t}(\eta_{0})$ .
The series converge absolutely and $P(Z\in C)=1$ . (cf. Theorem 22.2 in [1]).

Proof. As in the proof of Theorem 22.2 in [1], we can show that it suffices
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to consider the case in which $\eta_{0}$ is uniformly distributed. So, we assume that $\eta_{0}$

is uniformly distributed. If $s$ and $t$ both lie in $H_{k}$ , then the process

$g_{t}(\eta_{n})-g_{\iota}(\eta_{n})=g_{t}(\eta_{kn})-g.(\eta_{kn})$ , $n=0,$ $\pm 1,$ $\pm 2,$ $\cdots$

is strong mixing with mixing coefficient $\alpha^{(k)}(n)$ where

$\alpha^{(k)}(n)=\left\{\begin{array}{ll}1 & if n\leqq 2k\\\alpha(n-2k) & if n>2k.\end{array}\right.$

Let $n$ be arbitrarily fixed. Since $\eta_{0}$ is uniformly distributed and since

$\sum_{j=0}\{\alpha^{(k)}(j)\}^{1/8}\leqq Kk$

and

$\sum_{j=0}^{n}(j+1)^{2}\{\alpha^{(k)}(j)\}^{8/(8+\delta)}\leqq Kk^{8}$ log $n$ ,

so by the analogous method of the proof of Lemma we can prove that

$E|\sum_{i=1}^{n}(g_{\ell}(\eta_{i})-g.(\eta_{\ell})|$

$\leqq Kk^{\epsilon}$ ($n^{2}|t-s|^{4/8}+|t-s|^{\delta/(\epsilon+\delta)}n$ log $n$)

where $K$ depends on $\alpha$ alone. Therefore

$s,$ $t\in H_{k}$ , $\frac{\epsilon}{n}\leqq t-s$ $(0<\epsilon<1)$

imply

$P(|Z_{n}(t)-Z_{n}(s)|\geqq\lambda)\leqq K_{1}\frac{k^{\epsilon}}{\lambda}(t-s)^{1+\beta}$

for some $\beta>0$ where $K_{1}$ depends only on $\alpha$ and $\epsilon$ . The rest of the proof is identi-
cal to that of Theorem 22.2 in [11 and so is omitted.
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