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The following considerations are based upon the semi-linear point of view.
Throughout this paper a surface means a connected closed 2-submanifold in
Euclidean 3-space E® unless otherwise stated. The author studied the 7sotopy
sum of surfaces and its prime decomposition, and proved that the prime decom-
position of any surface of genus 2 is unique up to isomorphism [2].

The purpose of this paper is to prove the theorem 1, which gives a necessary
and sufficient condition for a surface of genus 2 to be prime. is also
an affirmative answer for special case n=2 of the conjecture [2, (7,2)]. In §4
we discuss homeomorphic splitting of 3-sphere S® by a prime surface and prove
theorem 2. Finally in §5 we give an interesting example, which makes clear a
little the relation of this field between knot types and homeomorphic complement-
ary domains.

Theorem 1. Any surface M of genus 2 is prime if and only if either
group m(IntM) or =, (ExtM) is indecompesable with respect to free product.

Corollary to theorem 1. There is no prime surface of genus 2 in S* which
separates S® homeomorphically.

Theorem 2. For any integer n+2, there exists a surface of genus n in S°
which splits S® homeomorphically.

1. Definitions and notations

In this paper we will use the same definitions and notations as [2]. We des-
cribe here some of them. The isotopy sum M#% M’ of two surfaces M and M’
is a surface which is connected of M and M’ by a thin pipe in natural way [2,
definition 1]. Surfaces M and M’ are said to be isomorphic, denoted by M~M’,
if there exists an isotopy of E® throwing M onto M’. A surface M is trivial if
M is isomorphic to 2-sphere S? in E®. A surface M is prime if either M, or M,
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is trivial for any decomposition M~M,# M, of M. We use IntM and ExtM to
be denoted the closures of bounded and un-bounded components, respectively, of
E*—M for a surface M. Also denote intM:IntM—M, ﬁxtM:ExtM—M and
ExtM means a one-point compactification of ExtM. A surface M is I-free (or
E-free) if n;(IntM) (or =, (ExtM), respectively) is a free group.

A loop (simple closed polygonal curve) J on a surface M is said to be I-
unknotted or E-unknotted if J is trivial (i.e. J~1) in IntM or in ExtM, respec-
tively, and bi-unknotted if both I- and E- unknotted. By Dehn’s lemma, an
unknotted loop bounds a non-singular proper 2-disk in respective region. Using
these termes, we can prove that a non-trivial surface M is prime if and only
if any bi-unknotted loop on M is trivial on M [2, (3,2)]. Two sets X and Y
of disjoint loops on a surface M are said to be normal on M, if the number of
points in XNY is minimum with respect to any isotopy of X in M. ~, ~, and
= mean homotopic, homologues, and homeomorphic or algebraicaly isomorphic,
respectively. dX, )2', and X(cl(X)) mean boundary, interior, and closure, respec-
tively, of X. #(X) means the number of connected components of a set X.

Suppose D is a 2-disk and Z={B,, B;,- -, B} is a finite set of disjoint proper
arcs in D. <2 separates D into interior disjoint 2-disks D,, D,,---,D,. We say an
arc B; (and a disk D;) to be outer most in D if D,NF=0D,;N #=4,.

2. Preliminary lemmas

Lemma (2,1). If there exist disjoint proper 2-disks D and C in IntM and
ExtM, respectively, for a surface M of genus 2 such that dD-0 and 3C+0 on
M, then M is non-prime.

Proof. It is obvious that there are disjoint loops J and J’ on M such that
J and J’ are crossing 6D and 9C, respectively, at a point and (JUAD)N(J' U3C)
=@. Let N=N(JUJD; M) and N'=N’(J’UdC; M) be disjoint regular neigh-
borhoods of JUOD and J’UdC, respectively, in M. N and N’ are both surfaces
of genus 1 with connected boundaries. Then N””=M—N—N’ is an annulus and
ON~0N’ on M. Obviously aN~1 in IntM and dN’~1 in ExtM. Hence N is a
non-trivial bi-unknotted loop on M and M is non-prime.

Following two lemmas are useful in some special situations. Their proofs are
essencially the same to [2, (6.2)] and [2, (6, 3)], and we drop them here.

2,2). If 7,(IntM)=G,*G; is a non-trivial free product, where G, is

indecomposable and G;#Z, i=1, 2, then there exists a unique proper 2-disk D in
IntM, up to isotopy, so that 9D~0 but dD#1 on M.
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(2, 3). If my(IntM)=G*Z (or =,(ExtM)=%G*Z) is non-trivial free pro-
duct, where G is indecomposable and G#Z, then there exists a unique proper 2-
disk D in IntM (or in ExtM), up to isotopy, so that D40 on M.

For ExtM we get a unique proper 2-disk D, up to isotopy of dD in M, in
(2,2). The isotopy classes of D in ExtM are just two.

(2,4). Suppose both z,(IntM)=2A4,*A4, and =, (ExtM)=¢As*A, are non-
trivial free products for a surface M of genus 2. If A,%Z, i=1,2, then M is
non-prime.

Proof. From (2,2) there must be a unique proper 2-disk D in IntM such
that 0D#1 but dD~0 on M. If 9D~1 in ExtM, 0D is a non-trivial bi-unknotted
loop on M and M is non-prime. Hence, from now on, we suppose dD#1 in ExtM.

Let h:DXI-IntM be an embedding such that A(DXx{1/2})=D and h(DXI)NM
=h(@DXI). IntM—h(DX I ) must consist of two components of 3-manifolds, say
V, and V,, so that h(Dx{0})cadV, and h(Dx{1})cdV,. M,=0V, is an I-nonfree
surface of genus 1, 1=1, 2, since we may assume that =,(IntM,)=A4,, 1=1,2. Let
us note that M, and M, are separated in E*® (that is, there is a 3-ball B® in E®
such that IntMlcﬁs and B*NIntM,=¢), for ViNV.= and A;ZZ% A,. Then
there exists a unique proper 2-disk E; in ExtM, up to isotopy, i=1,2. We can
take E; and E; so that E\N(IntM,UE,)=2=E,N(IntM,UE),).

If Fj',ﬂInthE',ﬂh(Dx I)=g, for some j=1 or 2, the regular neighborhood
N=N(E,UIntM;; E®*) of E;UIntM, in E® is a 8-ball so that NNM is a loop
which is a boundary of a regular neighborhood of (M;NM) in M. This loop is
non-trivial bi-unknotted, so M is non-prime.

Hence we assume that (I;“lUﬁz)ﬂlntM=(E1UE2)ﬂh(DxI ) consists of finite
number #0 of disjoint 2-disks H,, H,,---, H,, which are all isotopic to above D
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in IntM. (E?,_Ui‘z) cut IntM into m-+1 interior disjoint connected 8-manifolds
Wi, Wayo ooy Waer. Wy's are all 3-balls for j+1,2, and W, is isotopic to IntM; in
B, 1=1,2.

On the other hand, from [2, (4,2)] there exists a proper 2-disk C in ExtM
such that dC%1 but dC~0 on M. If 9DNaC=o we will get dD~3C on M as in
(2,1) and this is a contradiction. Hence we suppose that D and dC are normal
and also oC and {0H.,---,0H,} are normal on M so that dCNJdH; has a same
number of crossing points for all 2=1,2,---,m. Then we may assume that CN
(EIUE'z——h(ISxI )) consists of finite number=0 of disjoint proper arcs 8i, B2, ) Ba»
since loops are negligible by the general way as in [2, (4,6)]. We may also assume
that oC and {90F,, 9E,} are normal on M.

Now, if M is prime, there exist D, E;, E;, C, and h as above so that #{(E, U Ey)
NIntM}=#{(E, U E;) Nh(DxI)}=2 is minimum. |

B’s separate C into interior disjoint finite 2-disks C,, C;,+-, Cps1. There
must be at least two pairs of outer-most arc and disk, say B, and C; to be one of
them; C;N(E,UE;)=0C,N E,=p4;. Following four cases are considerable for j;.

(Case 1) pB; connects H; and H, in Eo'lr']IntM, 1#7.

The arc dC,— B, must be contained in dW,N M for some k. Let N=N(C,U W,;
E®) be a regular neighborhood of C,U W, in E® relative to E; so that NNE,=
dNN i‘l is a regular neighborhood of (C,U W) N E,=H;UH,UB, in E,. E{=(E,— (E.—N)
UG@N=E)) is a 2-disk so that dE/=9E, and E/N(IntM,UE,)=@. It is noted
that #(E/NADXD)ZHE,NKDXI))—2. Let E}=FE,, so we have new pair of
disks E! and E) so that #(E.UE)NKDXI)I<#{(E,UE)NKDXI)}—2. (See
figure 2).

NV WV s ExtM)
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Fig. 2. Fig. 3.

(Case 2) p; connects some H,; in EolnlntM and 0F;.
We note that the arc dC,—B, is contained in dW,N M and W,—V, is a 3-ball.
Let N=N(C,U W,— Vy; ExtM,) be a regular neighborhood of C,U W,—V, in ExtM,
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relative to E, so that NN E,=oNnN E, is a regular neighborhood of (C,U W,— V,)
NE,=(H;UB,) in E, relative to dE,. Then oN—(E&,U V,) is a 2-disk and dNN
E,—9N is a proper arc in E,. E!=(E.—N)U@N—(E,U V) is a proper 2-disk
in Ext M, and E{N(V,UE)=g. Since M, is I-nonfree of genus 1 and 9E/+0,
oE] is isotopic to 0K, in M, (also in M). Let E/=E,, then it is obvious that

HETUEDNMDXD}<#{(E,UE)NKDxI)}—1. (See figure 3.)

(Case 3) 0B, is contained in some 9H,.

The arc dC,—p; must be contained in MNdW, for some k, but k can not be
3,4,---, or m+1. First we suppose k=1 (figure 4-1). H,Up, cuts a 2-disk U
off from E,—H, so that dE,N U= and dUCB,UdH,;. UUC, is a proper 2-disk
in E%— v°V1. It is noted that #(E,NA(DXI))=%#{(E,—(H,U U) NDXI)}+#UN
h(DxI))+1. We take E! by slight deformation of UUC, away from CU W,— V,
so that dE{c M,. From the normality of dC and 0E,, dE/.0 on M,. Hence, let

y=FE,, then #{(E/UE)NMDXI)}<#{(E,UE,) Nh(DXI)}—1.

Secondary, suppose k=2 (figure 4-2). Since W, is isotopic to IntM, in E®
and 0D and oC are normal on M, a(UUC,) is isotopic to dE, on MNaW,. If
#(E,,nh(DXI))>#(Ugﬁ h(DxI)), we take E, by slightly deforming C,UU away
from W,—V,UC. Then 9E}+<0 on M, and #(E! ﬂ,h(DxI))zﬁ(I}ﬂh(D><I))<#(E’,ﬂ
h(DxI)). Also if #(E.Nh(DXx I))é#(l}ﬂ h(DxI)), there is a 8-ball B} in E*— Wo’l
—Vf’, such that dB;c UUC,UE,U@W,N M), since d(UUC,) is isotopic to dE, on
oW.NM. Let N=N(W.UBS; E® be a regular neighborhood of W,UB:? in E*
relative to K, so that NN E,=dNnN 151 is a regular neighborhood of UU Hj in E,.
Set B{=E,—@NNE,)UdN—E,. Then dE!=3E, and $(E;N k(DX I))=#{(E,— UU H,)
Nh(DXD}+#E.NR(DXI)<HE,Nh(DXxI))—1. Obviously, E! is a proper 2-disk,
since N is a 3-ball. Also, set E}=F,. Hence, #{(E/UE)NMDXI)}<H#(E.U E,)
Nk(DXI)}—1.

f&“’\"l'i;;‘
?,A*I/ ‘

Fig. 4-1. Fig. 4-2. Fig. b.
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(Case 4) 9B, is contained in 9FE,.

In this case the arc 9C;,—pB; is contained in M N M, and B, separates E, into
2-disks U, and U, such that U,UU,=F, and U,NU,=0U,NoU,=B, (figure 5).
It is noted that B(E, NADXI)=#U,NKDXI))+&U.NA(DXI)). a(U,UC,) is E-
unknotted loop on M; and non-trivial on M, 1=1,2, for dE, and 9C are normal
on M. If 8U.,UC)#0 on M,, then o(U;UC,)~0D on M, 1+jJ, i, j=1,2. Suppose
#U,NR(DxI))=0, 3(U,UC,) is E-unknotted loop on M and also 9D is. This is a
contradiction. Hence, assume #(U,NA(DXI))#0. We will take E! by slightly
deforming U,UC, away from C. Then #(E NA(DXID)=#U.NKDXI)<H(E.N
r(DxI))—1 and dE! is isotopic to dE; on MN M,.

For each of above cases, we get new pair of 2-disks E{ and E7 so that #{(&!
UENDNKDXD}<B(E,UE)Nh(DXI)}. If necessary, we can set again loops in
normal position on M, where no new intersection appear. This is a contradiction
to the minimality of the number #{(E,U E,)Nh(DxI)}. Hence the proof of (2, 4)
was completed.

Corollary (2,5). Suppose m,(IntM)=A;xA, and = (ExtM)=A+A, are both
non-trivial free products for a surface M of genus 2. Then they are knot
groups and at least two of them are infinite cyclic.

Above corollary is an immediate consequence of (2,4) but it is very basic to
prove theorem 1.

3. Proof of the main theorem

Theorem (3,1). If both zn,(IntM) and =, (ExtM) are non-trivial free pro-
ducts for a surface M of genus 2, then M ts mon-prime.

Proof. From (2, 5) it is sufficient to prove the theorem for the following
different four cases;

3,2) m(IntM)=ZxZ m(ExtM)=ZxZ
3,3) K«K’ ZxZ
8,4) ZxK ZxZ
(3,5) ZxK ZxK'

where K and K’ mean any non-trivial knot groups, since the proof of the theorem
for the case (r(IntM)==ZxZ and =,(ExtM)=K*K’) is the same as that for the
case (3,3) and so on.

For case (3,2) the theorem is a direct consequence of the theorem (Wald-
hausen) [3] [2, §7], and for case (3,3) it was proved in (2, 4).
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For every case of (3,4) and (3,5), from (2, 3) there exists a unique proper 2-

disk D in IntM up to isotopy such that dD70 on M. In case (3,4), if there is
a proper 2-disk A in ExtM such that dANdD is a crossing point then M is
obviously non-prime. Hence we suppose that there is no such a disk as A in
ExtM.
Let h:DXI-IntM be an embedding of a 3-ball such that h(DXx{1/2})=D and
hDXHNM=h@DXxI). Vy=IntM—h(DX I ) is a 3-manifold with connected bound-
ary 0V,=M, and =,(IntM,)==,(V,)=K2Z. Then there is a unique proper 2-disk
E in ExtM, up to isotopy such that dE+0 on M, and dECMNM,. If E NIntM
(=EnmDxD)=@, M is non-prime by (2, 1).

h(DxT)

2 D

Fig. 6.

Hence we assume that ENA(DXI) consists of finite number #0 of disjoint
2-disks which are isotopic to above D in IntM. Since =,(ExtM) has an infinite
cyclic group Z as a free factor, there exists a proper 2-disk C in ExtM such that
9C40 on M. If 6CNoD=@ M is also non-prime by (2,1). Hence we may assume
that 8C and 6DUGE are normal on M, and CNE consists of finite number +#0
of arcs.

Now it is sufficient to prove the following ;

(3,6) Suppose, (i) Eo' NIntM consists of finite number of disjoint 2-disks
H,, H,,---,H,, which are proper in IntM, such that some H/s of them are
isotopic to above D and the others H,’s are isotopic to each other and 6H,#1
on M; dD~0H,;+0, dH;~0 on M,

(ii) oC and {0F,oH,,oH,,---,0H,} are normal on M, and
(iii) Cn E=Cn(E—I°ntM) consists of finite number $(CNE) of disjoint arcs
By By -+ B
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Then we can take another proper 2-disk E' in ExtM, with 0E'CcMN M,
and OE'+0 on M such that E’' has properties (i), (ii) and (iii) as above but
#(E" N Int M) <#(E N IntM).

The H/’s in the above will appear by an operation for (case 1) in the later.
The proof of (3,6) will proceed as same as that of (2,4) but slightly modified.

Proof of (3,6). As (2,4) E:') separates IntM into finite number of connected
3-manifolds W,, W,,---, W,, so that W, is isotopic to IntMy=7V, in E® and the
others are all 3-balls. B,’s also separate C into finite number of 2-disks C;, C,,

-+, Cps1, whose interiors are mutually disjoint. Then there must be a pair of
outer most arc and 2-disk, say B, and C,, so that C,NE=40C,N E=B,. Hence fol-
lowing four cases are considerable as in (2, 4).

(Case 1) B, connects distinct components H; and H, in E.

In this case, the arc 9C;—pB, must be contained in dW,NM for some k. If

0@W,NM)=0H,;UdH; and k+0, we take an operation as same as (case 1) in (2, 4),
and we will get a desired 2-disk E’. Hence we suppose now that d@W,NM)—
0H,—0H;+ @ or k=0. (If k=0, 0H;#0 on M for all 1=1,2,---,m.)
Let N=N(C,UH;UH,; E*) be a regular neighborhood of C,U H;U H, in E® relative
to K so that NN E=dNNE is a regular neighborhood of B,UH;UH, in E and
NN W, is a regular neighborhood of 3C;—pB,UH,UH, in W,. N is a 3-ball. We
take newly E'l=E—NUGN—E. Note that GN—E)N W, is a proper 2-disk in
IntM whose boundary is non-trivial on M, 3E'=0E and E ﬂIntM={(ﬁ NIntM)
—H—~H}U@N—E)N W,. Obviously E’ satisfy the conditions (i), (ii) and (iii),
and #(E" N IntM)<#(ENIntM)—1. (See figure 7).

In the following three cases, we may assume that aC,—pg,coW,N M. For, if
0H,~0 on M then the proofs are the same as cases 2 and 3 in (2, 4). So, in cases
2 and 3 there are 3-balls V, and V, in A(DXI) and intersection H; such that
dVi—McCH,UDX{0}) and dV,—McCH,Uh(Dx{1}). (If necessary we can change
h to h/: DX I—-Int M with h(@D)~h’(@D) on M.)

NCCVV,: EstMe)

n(ox{1})
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(Case 2) B, connects some H; and JFE.

Let N=N(C,U V,; ExtM,) be a regular neighborhood of C;UV; in ExtM,
relative to E so that NN E=dNNE is a regular neighborhood of (C,U V)N E=
(8. UH)N E in E relative to dE (figure 8). The rest of proof is the same as that
of case 2 in (2, 4).

(Case 3) 0B,CdH,

B, UH, cuts a 2-disk U off from E—H, so that dENU=¢ and dUCB,UdH,.

Since 9C and 8D are normal on M, 8(C;UU)=1on M. If d(C,UU)#0on d(V,U V)
the proof is also the same as case 3 in (2,4). Suppose 3(C,U U)~0 on (V,U V),
then UUC,) bounds a 2-disk A on 8(V,UVy)—H; and ADR(Dx{l}). Hence
#(I}ﬂ r(DxI)=1. (figure 9. UUC,UA is a non-singular 2-sphere in Ext{3(V,U
V,)} and it bounds a 3-ball B% in Ext{d(V,U V,)}.
Let N=N(B%; E®) be a regular neighborhood of B% in E® relative to E so that
NNE=0N ﬂlf’ is a regular neighborhood of U in E and that N Na(V.U V) is
a regular neighborhood of A in (V,UV,. Note that IN—E is a 2-disk and
IN—ENInt M=Nna&V,UV,). Now we set newly E/l=E—NUON—E. Then
0E’'=0FE and #(E"nInt M)=8#(ENh(Dx I))—#(lofﬂ h(DxI))<#(ENInt M)—1.

Fig. 9.

(Case 4) 0p,COE.

8. cuts E into two 2-disks U, and U, so that U,UU;=FE and U,NU,=aU.N
dU,=p;,. Since dE+0 and §(U,UC;)#1 on M, one of &(U,UC;) and &(U.UC)), say
a(U,UC,), is not null-homologues and another is null-honologues; AU, UC)#0



72 YASUYUKI TSUKUI

and o(U.UC,)~0 on M,. Hence d(U,UC;)~1 on M, and a(U,UC,) must bound a
2-disk A on M,. Since the normality of dC and oF, fiﬂh(DxaI)#Q) and #(ﬁzﬂ
h(DxI))=1. And the rest of proof is the same as case 4 in (2, 4).

Hence these complete the proof of (8,6) and so that of (8,1). If a surface
M is non-prime then obviously both z,(IntM) and =,(ExtM) are non-trivial free
products. So, theorem 1 is trivial from (8, 1).

4. Homeomorphic splitting of S® by a prime surface

Now we will extend the primeness to surfaces in 8-manifolds. Suppose V and
M be a 3-manifold and its boundary component, a loop L on M is said to be V-
unknotted if L bounds a non-singular proper 2-disk in V. Let N be a connected
orientable 3-manifold with boundary (may empty) and M be a surface in lc\)f which
separates N into two components ¥V and W so that VU W=Nand VN W=0V=M.

Definition (4,1). A surface M is said to be prime if L 1is trivial on M
Jor any V- and W- unknotted (abbreviately, bi-unkmnotted) loop L such that
L~0 in M.

This definition coincides with the primeness defined before for surfaces in E®.
Through the natural inclusion %:E®—>S? such that S®—i(E®=co is an infinite
point of E*®, the phenomena of surfaces in S® are similar to that in E?. In this
section we will consider with prime surfaces in S&.

There is only one isotopy class of prime surfaces of genus 1 which split S
homeomorphically. For such a property of prime surfaces of genus greater than
1, following is a special case which is easily derived from theorem 1.

Corollary (4,2). There i1s mo prime surface of genus 2 in S® which sepa-
rates S® homeomorphically.

Proof. Suppose a surface M of genus 2 splits S* homeomorphically. S®—p
=FE* for any point p in S®*—M, and we can consider M a surface in E:. From
[2, (4,3)] there is a non-trivial I- or E- unknotted loop, say I-unknotted, and
71(IntM) is non-trivial free product. Hence =, (ExtM) is so, since =, (IntM)=
7 (ExtM). By theorem 1 M is non-prime and also non-prime in S3.

For prime surfaces of genus greater than 2, we have following.

Theorem 2. For any positive integer n+2, there exists a prime surface
of genus n which separates S® homeomorphically.

The theorem is obviously true for m=1 and we prove the theorem by con-
structing examples. At first we recall a group theoretic theorem which is derived
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from the “ Kurosh subgroup theorem” [1, p. 246].

Proposition (4,3). If A and B are indecomposable groups and H and K
are mon-trivial normal subgroups of A and B, respectively, such that H=K,
then the free product of A and B with amalgamation H(=K) is also indecom-
posable.

The auther wish to thank S. Suzuki who informed me the existence of this
proposition.

Lemma (4,4). There exists a proper embedding g:I—>H, of an arc I into
a solid torus H, of genus n for any n such that =,(H,—g(I)) is indecomposable.

Proof. Figure 2 in [2] is an example satisfying above conditions for n=1.
We will proceed by induction on genus .
Suppose ¢;:I->H,; and g,: I>H, are embeddings of arc such that =;(H,—g.(I))
and 7,(H,—g.(I)) are both indecomposable. Let D, and D, be 2-disks on boundaries
0H, and 0H,, respectively, such that gl({l})zﬁlﬂgl(I ), gn({O})=13nﬂgn(I ) and
hg.{1)=g.({0}) for an orientation reversing homeomorphism Ak :D;—D,. Then
H,U H,=H,,, and 9:(1) U g.(I) is a proper arc in Hyys 80 that 7:(Haw—(g:(1) U ga(1))
s, (Hy—g1(I))*ny(H,—g,(1))/<0D,>, where <8D,> means a normal subgroup gener-
ated by a homotopy class of 8D, which is infinite cyclic (figure 10). Hence by
4,3) nl(H,.H—(g,(I)L’{q,.(I ))) is indecomposable.

Proof of theorem 2. Let g,:I—>H, be an embedding of an arc I into solid
torus H, of genus » which satisfies (4, 4), and let g, : I->H/, be a copy of g, and
H,. We choose a homeomerphism @& :0H,—0H/, so that (H,U H,)==S®* and @g,.@I)
NgiL@)=@. Let N=N(g.(I); H,) and N'=N(g.(I); H,) beﬁregular neighborhoods
of g.(I) and g.(I) in H, and H’, respectively. Set V=(E:IV)8N’. Obviously
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Vgss—ff and M=0V is of genus n+2. It will complete the proof if we show
M prime. For this, note that =(V)=r,(H,—g.(I))*Z, where 7,(H,—g.(I)) is in-
decomposable. We can see M a surface in E® by removing a point from S®— M.
Suppose M has a non-trivial decomposition M~M$M,, then the genus of M, or
M, is 1, say the genus of M, equal 1. Hence =,(IntM,)=r,(ExtM,)=sr,(H,—g.(I)),
which is indecomposable. It means that there is no I- or E-unknotted loop on
M,. This is a contradiction and completed the proof of theorem 2. Figure 11
shows an example of this theorem for n=5.

5. Homeomorphic complements and isomorphism

It is a problem if knot types of two knots K and K’ are the same, for S?—K
=S°—K’. Analogous problem for links have been solved negatively. The follow-
ing example (figure 12) show the situation of surfaces in E® for above problem.

It is obvious that IntM;=IntM, are solid tori of genus 8 for surfaces M,
and M, in figure 12. - Also ExtM,=ExtM, and M, is non-prime. We will show M,

Fig. 12.
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prime. It is noted that =,(ExtM,)=¢r,(ExtH,)*Z, where H, is “ Homma’s example”
of genus 2 [2, p. 99], and =,(ExtH,) is indecomposable. By (2, 3) non-trivial E-
unknotted loop of M, is unique up to isotopy. Hence, if M, is non-prime, M,~
M&T, where T is a unique bi-free surface of genus 1, and M{=~d(IntM, U N(D;;
ExtM,). (D, is as in the figure and N(D;; ExtM,) is a regular neighborhood.)
But we can see from the figure that (IntM,U N(D;; ExtM,)) is not a solid torus.
This is a contradiction to z;(IntM{)=Z and M, is prime. Hence, M, and M, are
not isomorphic.
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