ON A PRIME SURFACE OF GENUS 2 AND HOMEOMORPHIC SPLITTING OF 3-SPHERE

By
Yasuyuki Tsukui

(Received December 13, 1973)

The following considerations are based upon the semi-linear point of view. Throughout this paper a surface means a connected closed 2 -submanifold in Euclidean 3 -space E^{8} unless otherwise stated. The author studied the isotopy sum of surfaces and its prime decomposition, and proved that the prime decomposition of any surface of genus 2 is unique up to isomorphism [2].

The purpose of this paper is to prove the theorem 1 , which gives a necessary and sufficient condition for a surface of genus 2 to be prime. Theorem 1 is also an affirmative answer for special case $n=2$ of the conjecture [2, (7,2)]. In §4 we discuss homeomorphic splitting of 3 -sphere S^{8} by a prime surface and prove theorem 2. Finally in $\S 5$ we give an interesting example, which makes clear a little the relation of this field between knot types and homeomorphic complementary domains.

Theorem 1. Any surface M of genus 2 is prime if and only if either group $\pi_{1}(\operatorname{Int} M)$ or $\pi_{1}(\operatorname{Ext} M)$ is indecompesable with respect to free product.

Corollary to theorem 1. There is no prime surface of genus 2 in S^{8} which separates S^{8} homeomorphically.

Theorem 2. For any integer $n \neq 2$, there exists a surface of genus n in S^{s} which splits S^{8} homeomorphically.

1. Definitions and notations

In this paper we will use the same definitions and notations as [2]. We describe here some of them. The isotopy sum $M \# M^{\prime}$ of two surfaces M and M^{\prime} is a surface which is connected of M and M^{\prime} by a thin pipe in natural way [2, definition 1]. Surfaces M and M^{\prime} are said to be isomorphic, denoted by $M \approx M^{\prime}$, if there exists an isotopy of E^{8} throwing M onto M^{\prime}. A surface M is trivial if M is isomorphic to 2 -sphere S^{2} in E^{3}. A surface M is prime if either M_{1} or M_{2}
is trivial for any decomposition $M \approx M_{1} \# M_{2}$ of M. We use $\operatorname{Int} M$ and $\operatorname{Ext} M$ to be denoted the closures of bounded and un-bounded components, respectively, of $E^{3}-M$ for a surface M. Also denote $\operatorname{Int} M=\operatorname{Int} M-M$, $\stackrel{\circ}{\operatorname{Ext}} M=\operatorname{Ext} M-M$ and Ext M means a one-point compactification of $\operatorname{Ext} M$. A surface M is I-free (or E-free) if $\pi_{1}(\operatorname{Int} M)$ (or $\pi_{1}(\operatorname{Ext} M)$, respectively) is a free group.

A loop (simple closed polygonal curve) J on a surface M is said to be Iunknotted or E-unknotted if J is trivial (i.e. $J \simeq 1$) in $\operatorname{Int} M$ or in Ext M, respectively, and bi-unknotted if both I- and E- unknotted. By Dehn's lemma, an unknotted loop bounds a non-singular proper 2 -disk in respective region. Using these termes, we can prove that a non-trivial surface M is prime if and only if any bi-unknotted loop on M is trivial on $M[2,(3,2)]$. Two sets X and Y of disjoint loops on a surface M are said to be normal on M, if the number of points in $X \cap Y$ is minimum with respect to any isotopy of X in $M . \simeq, \sim$, and \cong mean homotopic, homologues, and homeomorphic or algebraicaly isomorphic, respectively. $\partial X, \stackrel{\circ}{X}$, and $\bar{X}(c l(X))$ mean boundary, interior, and closure, respectively, of X. \#(X) means the number of connected components of a set X.

Suppose D is a 2 -disk and $\mathscr{B}=\left\{\beta_{1}, \beta_{2}, \cdots, \beta_{k}\right\}$ is a finite set of disjoint proper arcs in D. \mathscr{B} separates D into interior disjoint 2-disks $D_{0}, D_{1}, \cdots, D_{k}$. We say an arc β_{i} (and a disk D_{j}) to be outer most in D if $D_{j} \cap \mathscr{B}=\partial D_{j} \cap \mathscr{B}=\beta_{i}$.

2. Preliminary lemmas

Lemma (2,1). If there exist disjoint proper 2-disks D and C in $\operatorname{Int} M$ and Ext M, respectively, for a surface M of genus 2 such that $\partial D \nsim 0$ and $\partial C \nsim 0$ on M, then M is non-prime.

Proof. It is obvious that there are disjoint loops J and J^{\prime} on M such that J and J^{\prime} are crossing ∂D and ∂C, respectively, at a point and $(J \cup \partial D) \cap\left(J^{\prime} \cup \partial C\right)$ $=\varnothing$. Let $N=N(J \cup \partial D ; M)$ and $N^{\prime}=N^{\prime}\left(J^{\prime} \cup \partial C ; M\right)$ be disjoint regular neighborhoods of $J \cup \partial D$ and $J^{\prime} \cup \partial C$, respectively, in $M . N$ and N^{\prime} are both surfaces of genus 1 with connected boundaries. Then $N^{\prime \prime}=\overline{M-N-N^{\prime}}$ is an annulus and $\partial N \simeq \partial N^{\prime}$ on M. Obviously $\partial N \simeq 1$ in $\operatorname{Int} M$ and $\partial N^{\prime} \simeq 1$ in $\operatorname{Ext} M$. Hence ∂N is a non-trivial bi-unknotted loop on M and M is non-prime.

Following two lemmas are useful in some special situations. Their proofs are essencially the same to $[2,(6.2)]$ and $[2,(6,3)]$, and we drop them here.

Lemma (2,2). If $\pi_{1}(\operatorname{Int} M) \cong G_{1} * G_{2}$ is a non-trivial free product, where G_{i} is indecomposable and $G_{i} \not \not Z Z, i=1,2$, then there exists a unique proper 2 -disk D in Int M, up to isotopy, so that $\partial D \sim 0$ but $\partial D \neq 1$ on M.

Lemma (2,3). If $\pi_{1}(\operatorname{Int} M) \cong G^{*} Z$ (or $\left.\pi_{1}(\operatorname{Ext} M) \cong G^{*} Z\right)$ is non-trivial free product, where G is indecomposable and $G \neq Z$, then there exists a unique proper 2disk D in $\operatorname{Int} M$ (or in $\operatorname{Ext} M$), up to isotopy, so that $\partial D \nsucc 0$ on M.

For $\operatorname{Ext} M$ we get a unique proper 2 -disk D, up to isotopy of ∂D in M, in $(2,2)$. The isotopy classes of D in $\operatorname{Ext} M$ are just two.

Lemma (2,4). Suppose both $\pi_{1}(\operatorname{Int} M) \cong A_{1} * A_{2}$ and $\pi_{1}(\operatorname{Ext} M) \cong A_{8} * A_{4}$ are nontrivial free products for a surface M of genus 2. If $A_{i} \not \nexists Z, i=1,2$, then M is non-prime.

Proof. From (2,2) there must be a unique proper 2 -disk D in $\operatorname{Int} M$ such that $\partial D \neq 1$ but $\partial D \sim 0$ on M. If $\partial D \simeq 1$ in $\operatorname{Ext} M, \partial D$ is a non-trivial bi-unknotted loop on M and M is non-prime. Hence, from now on, we suppose $\partial D \neq 1$ in $\operatorname{Ext} M$.

Let $h: D \times I \rightarrow \operatorname{Int} M$ be an embedding such that $h(D \times\{1 / 2\})=D$ and $h(D \times I) \cap M$ $=h(\partial D \times I)$. Int $M-h(D \times I)$ must consist of two components of 3-manifolds, say V_{1} and V_{2}, so that $h(D \times\{0\}) \subset \partial V_{1}$ and $h(D \times\{1\}) \subset \partial V_{2} . \quad M_{i} \equiv \partial V_{i}$ is an I-nonfree surface of genus $1, i=1,2$, since we may assume that $\pi_{1}\left(\operatorname{Int} M_{i}\right) \cong A_{i}, i=1,2$. Let us note that M_{1} and M_{2} are separated in E^{8} (that is, there is a 3-ball B^{3} in E^{8} such that $\operatorname{Int} M_{1} \subset \stackrel{\circ}{B}^{3}$ and $B^{3} \cap \operatorname{Int} M_{2}=\varnothing$), for $V_{1} \cap V_{2}=\varnothing$ and $A_{1} \neq Z \neq A_{2}$. Then there exists a unique proper 2 -disk E_{i} in $\operatorname{Ext} M_{i}$ up to isotopy, $i=1,2$. We can take E_{1} and E_{2} so that $E_{1} \cap\left(\operatorname{Int} M_{2} \cup E_{2}\right)=\varnothing=E_{2} \cap\left(\operatorname{Int} M_{1} \cup E_{1}\right)$.

If $E_{j}^{\circ} \cap \operatorname{Int} M=E_{j} \cap h(D \times I)=\varnothing$, for some $j=1$ or 2, the regular neighborhood $N=N\left(E_{j} \cup \operatorname{Int} M_{j} ; E^{3}\right)$ of $E_{j} \cup \operatorname{Int} M_{j}$ in E^{3} is a 3-ball so that $\partial N \cap M$ is a loop which is a boundary of a regular neighborhood of $\left(M_{j} \cap M\right)$ in M. This loop is non-trivial bi-unknotted, so M is non-prime.

Hence we assume that $\left(\stackrel{\circ}{E}_{1} \cup \stackrel{\circ}{E}_{2}\right) \cap \operatorname{Int} M=\left(E_{1} \cup E_{2}\right) \cap h(D \times I)$ consists of finite number $\neq 0$ of disjoint 2-disks $H_{1}, H_{2}, \cdots, H_{m}$ which are all isotopic to above D

Fig. 1.
in $\operatorname{Int} M$. ($\left.\stackrel{\circ}{1}_{1} \cup \stackrel{\circ}{E}_{2}\right)$ cut $\operatorname{Int} M$ into $m+1$ interior disjoint connected 3-manifolds $W_{1}, W_{2}, \cdots, W_{m+1}$. W_{j} 's are all 3-balls for $j \neq 1,2$, and W_{i} is isotopic to $\operatorname{Int} M_{i}$ in $E^{s}, i=1,2$.

On the other hand, from [2, (4,2)] there exists a proper 2-disk C in ExtM such that $\partial C \nsucceq 1$ but $\partial C \sim 0$ on M. If $\partial D \cap \partial C=\varnothing$ we will get $\partial D \simeq \partial C$ on M as in $(2,1)$ and this is a contradiction. Hence we suppose that ∂D and ∂C are normal and also ∂C and $\left\{\partial H_{1}, \cdots, \partial H_{m}\right\}$ are normal on M so that $\partial C \cap \partial H_{i}$ has a same number of crossing points for all $i=1,2, \cdots, m$. Then we may assume that $C \cap$ $\left(E_{1} \cup E_{2}-h(\stackrel{\circ}{D} \times I)\right.$) consists of finite number $\neq 0$ of disjoint proper arcs $\beta_{1}, \beta_{2}, \cdots, \beta_{n}$, since loops are negligible by the general way as in $[2,(4,6)]$. We may also assume that ∂C and $\left\{\partial E_{1}, \partial E_{2}\right\}$ are normal on M.

Now, if M is prime, there exist D, E_{1}, E_{2}, C, and h as above so that $\#\left\{\left(E_{1}^{\circ} \cup E_{2}^{\circ}\right)\right.$ $\cap \operatorname{Int} M\}=\#\left\{\left(E_{1} \cup E_{2}\right) \cap h(D \times I)\right\} \geqq 2$ is minimum.
β_{i} 's separate C into interior disjoint finite 2 -disks $C_{1}, C_{2}, \cdots, C_{n+1}$. There must be at least two pairs of outer-most arc and disk, say β_{1} and C_{1} to be one of them; $C_{1} \cap\left(E_{1} \cup E_{2}\right)=\partial C_{1} \cap E_{1}=\beta_{1}$. Following four cases are considerable for β_{1}.
(Case 1) β_{1} connects H_{i} and H_{j} in $\stackrel{\circ}{E}_{1} \cap \operatorname{Int} M, i \neq j$.
The arc $\overline{\partial C_{1}-\beta_{1}}$ must be contained in $\partial W_{k} \cap M$ for some k. Let $N=N\left(C_{1} \cup W_{k}\right.$; $\left.E^{8}\right)$ be a regular neighborhood of $C_{1} \cup W_{k}$ in E^{8} relative to E_{1} so that $N \cap E_{1}=$ $\partial N \cap \stackrel{\circ}{E}_{1}$ is a regular neighborhood of $\left(C_{1} \cup W_{k}\right) \cap E_{1}=H_{i} \cup H_{j} \cup \beta_{1}$ in $E_{1} . \quad E_{1}^{\prime}=\overline{\left(E_{1}-N\right)}$ $\overline{U\left(\partial N-E_{1}\right)}$ is a 2-disk so that $\partial E_{1}^{\prime}=\partial E_{1}$ and $E_{1}^{\prime} \cap\left(\operatorname{Int} M_{2} \cup E_{2}\right)=\varnothing$. It is noted that \#($\left.E_{1}^{\prime} \cap h(D \times I)\right) \leqq \#\left(E_{1} \cap h(D \times I)\right)-2$. Let $E_{2}^{\prime}=E_{2}$, so we have new pair of disks E_{1}^{\prime} and E_{2}^{\prime} so that $\#\left\{\left(E_{1}^{\prime} \cup E_{2}^{\prime}\right) \cap h(D \times I)\right\} \leqq \#\left\{\left(E_{1} \cup E_{2}\right) \cap h(D \times I)\right\}-2$. (See figure 2).

(Case 2) β_{1} connects some H_{i} in $E_{1}^{\circ} \cap \operatorname{IntM}$ and ∂E_{1}.
We note that the arc $\overline{\partial C_{1}-\beta_{1}}$ is contained in $\partial W_{1} \cap M$ and $\overline{W_{1}-V_{1}}$ is a 3-ball. Let $N=N\left(C_{1} \cup \overline{W_{1}-V_{1}} ; \operatorname{Ext} M_{1}\right)$ be a regular neighborhood of $C_{1} \cup \overline{W_{1}-V_{1}}$ in $\operatorname{Ext} M_{1}$
relative to E_{1} so that $N \cap E_{1}=\partial N \cap E_{1}$ is a regular neighborhood of ($C_{1} \cup \overline{W_{1}-V_{1}}$) $\cap E_{1}=\left(H_{i} \cup \beta_{1}\right)$ in E_{1} relative to ∂E_{1}. Then $\overline{\partial N-\left(E_{1} \cup V_{1}\right)}$ is a 2-disk and $\partial N \cap$ $\overline{E_{1}-\partial N}$ is a proper arc in $E_{1} . \quad E_{1}^{\prime}=\left(\overline{\left.E_{1}-N\right) \cup\left(\partial N-\left(E_{1} \cup V_{1}\right)\right.}\right)$ is a proper 2-disk in Ext M_{1} and $E_{1}^{\prime} \cap\left(V_{2} \cup E_{2}\right)=\varnothing$. Since M_{1} is I-nonfree of genus 1 and $\partial E_{1}^{\prime} \nsucc 0$, ∂E_{1}^{\prime} is isotopic to ∂E_{1} in M_{1} (also in M). Let $E_{2}^{\prime}=E_{2}$, then it is obvious that \# $\#\left\{\left(E_{1}^{\prime} \cup E_{2}^{\prime}\right) \cap h(D \times I)\right\} \leqq \#\left\{\left(E_{1} \cup E_{2}\right) \cap h(D \times I)\right\}-1$. (See figure 3.)
(Case 3) $\partial \beta_{1}$ is contained in some ∂H_{j}.
The arc $\overline{\partial C_{1}-\beta_{1}}$ must be contained in $M \cap \partial W_{k}$ for some k, but k can not be $3,4, \cdots$, or $m+1$. First we suppose $k=1$ (figure 4-1). $H_{j} \cup \beta_{1}$ cuts a 2-disk U off from $\overline{E_{1}-H_{j}}$ so that $\partial E_{1} \cap U=\varnothing$ and $\partial U \subset \beta_{1} \cup \partial H_{j} . \quad U \cup C_{1}$ is a proper 2-disk in $E^{8}-\stackrel{\circ}{W}_{1}$. It is noted that \#($\left.E_{1} \cap h(D \times I)\right)=\#\left\{\left(E_{1}-\left(H_{j} \cup U\right)\right) \cap h(D \times I)\right\}+\#\left({ }^{\circ} \cap\right.$ $h(D \times I))+1$. We take E_{1}^{\prime} by slight deformation of $U \cup C_{1}$ away from $C \cup \overline{W_{1}-V_{1}}$ so that $\partial E_{1}^{\prime} \subset M_{1}$. From the normality of ∂C and $\partial E_{1}, \partial E_{1}^{\prime} \nsucc 0$ on M_{1}. Hence, let $E_{2}^{\prime}=E_{2}$, then $\#\left\{\left(E_{1}^{\prime} \cup E_{2}^{\prime}\right) \cap h(D \times I)\right\} \leqq \#\left\{\left(E_{1} \cup E_{2}\right) \cap h(D \times I)\right\}-1$.

Secondary, suppose $k=2$ (figure 4-2). Since W_{2} is isotopic to $\operatorname{Int} M_{2}$ in E^{8} and ∂D and ∂C are normal on $M, \partial\left(U \cup C_{1}\right)$ is isotopic to ∂E_{2} on $M \cap \partial W_{2}$. If \#($\left.E_{2} \cap h(D \times I)\right)>\#(U \circ \cap h(D \times I))$, we take E_{2}^{\prime} by slightly deforming $C_{1} \cup U$ away from $\overline{W_{2}-V_{2}} \cup C$. Then $\partial E_{2}^{\prime} \nsucc 0$ on M_{2} and $\#\left(E_{2}^{\prime} \cap h(D \times I)\right)=\#(\stackrel{\circ}{U} \cap h(D \times I))<\#\left(E_{2} \cap\right.$ $h(D \times I))$. Also if $\left.\#\left(E_{2} \cap h(D \times I)\right) \leqq \#(U \cap) h(D \times I)\right)$, there is a 3-ball B_{0}^{s} in $E^{s}-W_{1}^{\circ}$ $-\stackrel{\circ}{W}_{2}$ such that $\partial B_{0}^{3} \subset U \cup C_{1} \cup E_{2} \cup\left(\partial W_{2} \cap M\right)$, since $\partial\left(U \cup C_{1}\right)$ is isotopic to ∂E_{2} on $\partial W_{2} \cap M$. Let $N=N\left(W_{2} \cup B_{0}^{3} ; E^{s}\right)$ be a regular neighborhood of $W_{2} \cup B_{0}^{8}$ in E^{s} relative to E_{1} so that $N \cap E_{1}=\partial N \cap E_{1}^{\circ}$ is a regular neighborhood of $U \cup H_{j}$ in E_{1}. Set $E_{1}^{\prime}=\overline{E_{1}-\left(\partial N \cap E_{1}\right.} \cup \overline{\partial N-E_{1}}$. Then $\partial E_{1}^{\prime}=\partial E_{1}$ and $\#\left(E_{1}^{\prime} \cap h(D \times I)\right)=\#\left(E_{1}-\overline{U \cup H_{j}}\right)$ $\cap h(D \times I)\}+$ 肘 $\left(E_{2} \cap h(D \times I)\right) \leqq \neq \#\left(E_{1} \cap h(D \times I)\right)-1$. Obviously, E_{1}^{\prime} is a proper 2-disk, since N is a 3-ball. Also, set $E_{2}^{\prime}=E_{2}$. Hence, \# $\left\{\left(E_{1}^{\prime} \cup E_{2}^{\prime}\right) \cap h(D \times I)\right\} \leqq \#\left\{\left(E_{1} \cup E_{2}\right)\right.$ $\cap h(D \times I)\}-1$.

(Case 4) $\partial \beta_{1}$ is contained in ∂E_{1}.
In this case the arc $\overline{\partial C_{1}-\beta_{1}}$ is contained in $M \cap M_{1}$ and β_{1} separates E_{1} into 2-disks U_{1} and U_{2} such that $U_{1} \cup U_{2}=E_{1}$ and $U_{1} \cap U_{2}=\partial U_{1} \cap \partial U_{2}=\beta_{1}$ (figure 5). It is noted that \#($\left.E_{1} \cap h(D \times I)\right)=\#\left(U_{1} \cap h(D \times I)\right)+\#\left(U_{2} \cap h(D \times I)\right)$. $\partial\left(U_{i} \cup C_{1}\right)$ is Eunknotted loop on M_{1} and non-trivial on $M, i=1,2$, for ∂E_{1} and ∂C are normal on M. If $\partial\left(U_{i} \cup C_{1}\right) \nsucc 0$ on M_{1}, then $\partial\left(U_{j} \cup C_{1}\right) \simeq \partial D$ on $M, i \neq j, i, j=1,2$. Suppose $\#\left(U_{2} \cap h(D \times I)\right)=0, \partial\left(U_{2} \cup C_{1}\right)$ is E-unknotted loop on M and also ∂D is. This is a contradiction. Hence, assume $\#\left(U_{2} \cap h(D \times I)\right) \neq 0$. We will take E_{1}^{\prime} by slightly deforming $U_{1} \cup C_{1}$ away from C. Then $\#\left(E_{1}^{\prime} \cap h(D \times I)\right)=\#\left(U_{1} \cap h(D \times I)\right) \leqq \#\left(E_{1} \cap\right.$ $h(D \times I))-1$ and ∂E_{1}^{\prime} is isotopic to ∂E_{1} on $M \cap M_{1}$.

For each of above cases, we get new pair of 2-disks E_{1}^{\prime} and E_{2}^{\prime} so that \#f(E_{1}^{\prime} $\left.\left.\cup E_{2}^{\prime}\right) \cap h(D \times I)\right\}<\#\left\{\left(E_{1} \cup E_{2}\right) \cap h(D \times I)\right\}$. If necessary, we can set again loops in normal position on M, where no new intersection appear. This is a contradiction to the minimality of the number $\#\left\{\left(E_{1} \cup E_{2}\right) \cap h(D \times I)\right\}$. Hence the proof of $(2,4)$ was completed.

Corollary (2,5). Suppose $\pi_{1}(\operatorname{Int} M) \cong A_{1} * A_{2}$ and $\pi_{1}(\operatorname{Ext} M) \cong A_{3} * A_{4}$ are both non-trivial free products for a surface M of genus 2 . Then they are knot groups and at least two of them are infinite cyclic.

Above corollary is an immediate consequence of $(2,4)$ but it is very basic to prove theorem 1.

3. Proof of the main theorem

Theorem (3,1). If both $\pi_{1}(\operatorname{Int} M)$ and $\pi_{1}(\operatorname{Ext} M)$ are non-trivial free products for a surface M of genus 2, then M is non-prime.

Proof. From (2,5) it is sufficient to prove the theorem for the following different four cases;

$(3,2)$	$\pi_{1}(\operatorname{Int} M) \cong Z * Z$	$\pi_{1}(\operatorname{Ext} M) \cong Z * Z$
$(3,3)$	$K * K^{\prime}$	$Z * Z$
$(3,4)$	$Z * K$	$Z * Z$
$(3,5)$	$Z * K$	$Z * K^{\prime}$

where K and K^{\prime} mean any non-trivial knot groups, since the proof of the theorem for the case $\left(\pi_{1}(\operatorname{Int} M) \cong Z * Z\right.$ and $\left.\pi_{1}(\operatorname{Ext} M) \cong K * K^{\prime}\right)$ is the same as that for the case $(3,3)$ and so on.

For case $(3,2)$ the theorem is a direct consequence of the theorem (Waldhausen) [3] [2, §7], and for case (3,3) it was proved in (2,4).

For every case of $(3,4)$ and $(3,5)$, from $(2,3)$ there exists a unique proper 2 disk D in $\operatorname{Int} M$ up to isotopy such that $\partial D \nsucc 0$ on M. In case $(3,4)$, if there is a proper 2 -disk A in $\operatorname{Ext} M$ such that $\partial A \cap \partial D$ is a crossing point then M is obviously non-prime. Hence we suppose that there is no such a disk as A in ExtM.
Let $h: D \times I \rightarrow \operatorname{Int} M$ be an embedding of a 3-ball such that $h(D \times\{1 / 2\})=D$ and $h(D \times I) \cap M=h(\partial D \times I) . \quad V_{0}=\operatorname{Int} M-h(D \times I)$ is a 3-manifold with connected boundary $\partial V_{0}=M_{0}$ and $\pi_{1}\left(\operatorname{Int} M_{0}\right)=\pi_{1}\left(V_{0}\right) \cong K \nsubseteq Z$. Then there is a unique proper 2-disk E in $\operatorname{Ext} M_{0}$ up to isotopy such that $\partial E \nsucc 0$ on M_{0} and $\partial E \subset M \cap M_{0}$. If $\dot{E} \cap \operatorname{Int} M$ $(=E \cap h(D \times I))=\varnothing, M$ is non-prime by $(2,1)$.

Fig. 6.
Hence we assume that $E \cap h(D \times I)$ consists of finite number $\neq 0$ of disjoint 2-disks which are isotopic to above D in $\operatorname{Int} M$. Since $\pi_{1}(\operatorname{Ext} M)$ has an infinite cyclic group Z as a free factor, there exists a proper 2 -disk C in $\operatorname{Ext} M$ such that $\partial C \nprec 0$ on M. If $\partial C \cap \partial D=\varnothing M$ is also non-prime by $(2,1)$. Hence we may assume that ∂C and $\partial D \cup \partial E$ are normal on M, and $C \cap E$ consists of finite number $\neq 0$ of arcs.

Now it is sufficient to prove the following;
$(3,6)$ Suppose, (i) $\stackrel{\circ}{E} \cap \operatorname{IntM}$ consists of finite number of disjoint 2-disks $H_{1}, H_{2}, \cdots, H_{m}$, which are proper in IntM, such that some H_{i} 's of them are isotopic to above D and the others H_{j} 's are isotopic to each other and $\partial H_{j} \neq 1$ on M; $\partial D \simeq \partial H_{i} \not \subset 0, \partial H_{j} \sim 0$ on M,
(ii) ∂C and $\left\{\partial E, \partial H_{1}, \partial H_{2}, \cdots, \partial H_{m}\right\}$ are normal on M, and
(iii) $C \cap E=C \cap(E-\operatorname{In}(M)$ consists of finite number $\#(C \cap E)$ of disjoint arcs $\beta_{1}, \beta_{2}, \cdots, \beta_{n}$.

Then we can take another proper 2-disk E^{\prime} in $\operatorname{Ext} M_{0}$ with $\partial E^{\prime} \subset M \cap M_{0}$ and $\partial E^{\prime} \nsucc 0$ on M such that E^{\prime} has properties (i), (ii) and (iii) as above but \#($\left.\dot{E}^{\prime} \cap \operatorname{Int} M\right)<\#\left({ }^{\circ} \cap \operatorname{Int} M\right)$.

The H_{j} 's in the above will appear by an operation for (case 1) in the later. The proof of $(3,6)$ will proceed as same as that of $(2,4)$ but slightly modified.

Proof of (3,6). As $(2,4) E$ separates $\operatorname{Int} M$ into finite number of connected 3 -manifolds $W_{0}, W_{1}, \cdots, W_{p}$, so that W_{0} is isotopic to $\operatorname{Int} M_{0}=V_{0}$ in E^{8} and the others are all 3-balls. β_{i} 's also separate C into finite number of 2 -disks C_{1}, C_{2}, \cdots, C_{n+1}, whose interiors are mutually disjoint. Then there must be a pair of outer most arc and 2-disk, say β_{1} and C_{1}, so that $C_{1} \cap E=\partial C_{1} \cap E=\beta_{1}$. Hence following four cases are considerable as in (2,4).
(Case 1) β_{1} connects distinct components H_{i} and H_{j} in E.
In this case, the arc $\overline{\partial C_{1}-\beta_{1}}$ must be contained in $\partial W_{k} \cap M$ for some k. If $\partial\left(\partial W_{k} \cap M\right)=\partial H_{i} \cup \partial H_{j}$ and $k \neq 0$, we take an operation as same as (case 1) in (2,4), and we will get a desired 2-disk E^{\prime}. Hence we suppose now that $\partial\left(\partial W_{k} \cap M\right)$ $\partial H_{i}-\partial H_{j} \neq \varnothing$ or $k=0$. (If $k=0, \partial H_{i} \nsucc 0$ on M for all $i=1,2, \cdots, m$.)
Let $N=N\left(C_{1} \cup H_{i} \cup H_{j} ; E^{3}\right)$ be a regular neighborhood of $C_{1} \cup H_{i} \cup H_{j}$ in E^{8} relative to E so that $N \cap E=\partial N \cap E$ is a regular neighborhood of $\beta_{1} \cup H_{i} \cup H_{j}$ in E° and $N \cap W_{k}$ is a regular neighborhood of $\overline{\partial C_{1}-\beta_{1}} \cup H_{i} \cup H_{j}$ in $W_{k} . N$ is a 3-ball. We take newly $E^{\prime}=\overline{E-N} \cup \overline{\partial N-E}$. Note that $\overline{(\partial N-E) \cap W_{k}}$ is a proper 2-disk in Int M whose boundary is non-trivial on $M, \partial E^{\prime}=\partial E$ and $\dot{E}^{\prime} \cap \operatorname{Int} M=\{(\stackrel{\circ}{E} \cap \operatorname{Int} M)$ $\left.-H_{i}-H_{j}\right\} \cup\left(\overline{\partial N-E) \cap W_{k}}\right.$. Obviously E^{\prime} satisfy the conditions (i), (ii) and (iii), and $\#\left(E^{\circ} \cap \operatorname{Int} M\right) \leqq \#\left(E^{\circ} \cap \operatorname{Int} M\right)-1$. (See figure 7).

In the following three cases, we may assume that $\overline{\partial C_{1}-\beta_{1}} \subset \partial W_{0} \cap M$. For, if $\partial H_{i} \sim 0$ on M then the proofs are the same as cases 2 and 3 in (2,4). So, in cases 2 and 3 there are 3-balls V_{i} and V_{j} in $h(D \times I)$ and intersection H_{j} such that $\overline{\partial V_{i}-M} \subset H_{i} \cup h(D \times\{0\})$ and $\overline{\partial V_{j}-M} \subset H_{j} \cup h(D \times\{1\})$. (If necessary we can change h to $h^{\prime}: D \times I \rightarrow \operatorname{Int} M$ with $h(\partial D) \simeq h^{\prime}(\partial D)$ on M.)

Fig. 7.

Fig. 8.
(Case 2) β_{1} connects some H_{i} and ∂E.
Let $N=N\left(C_{1} \cup V_{i} ; \operatorname{Ext} M_{0}\right)$ be a regular neighborhood of $C_{1} \cup V_{i}$ in $\operatorname{Ext} M_{0}$ relative to E so that $N \cap E=\partial N \cap E$ is a regular neighborhood of $\left(C_{1} \cup V_{t}\right) \cap E=$ $\left(\beta_{1} \cup H_{i}\right) \cap E$ in E relative to ∂E (figure 8). The rest of proof is the same as that of case 2 in (2,4).
(Case 3) $\partial \beta_{1} \subset \partial H_{i}$
$\beta_{1} \cup H_{i}$ cuts a 2 -disk U off from $\overline{E-H_{i}}$ so that $\partial E \cap U=\varnothing$ and $\partial U \subset \beta_{1} \cup \partial H_{i}$. Since ∂C and ∂D are normal on $M, \partial\left(C_{1} \cup U\right) \neq 1$ on M. If $\partial\left(C_{1} \cup U\right) \nsucc 0$ on $\partial\left(V_{i} \cup V_{0}\right)$ the proof is also the same as case 3 in (2,4). Suppose $\partial\left(C_{1} \cup U\right) \sim 0$ on $\partial\left(V_{i} \cup V_{0}\right)$, then $\partial\left(U \cup C_{1}\right)$ bounds a 2-disk A on $\partial\left(V_{i} \cup V_{0}\right)-H_{i}$ and $A \circ h(D \times\{1\})$. Hence $\#(U \circ \cap h(D \times I)) \geqq 1$. (figure 9). $U \cup C_{1} \cup A$ is a non-singular 2-sphere in $\operatorname{Ext}\left\{\partial\left(V_{i} \cup\right.\right.$ $\left.\left.V_{0}\right)\right\}$ and it bounds a 3 -ball B_{*}^{3} in $\operatorname{Ext}\left\{\partial\left(V_{i} \cup V_{0}\right)\right\}$.
Let $N=N\left(B_{*}^{s} ; E^{s}\right)$ be a regular neighborhood of B_{*}^{3} in E^{8} relative to E so that $N \cap E=\partial N \cap \stackrel{\circ}{E}$ is a regular neighborhood of U in $\stackrel{\circ}{E}$ and that $N \cap \partial\left(V_{i} \cup V_{0}\right)$ is a regular neighborhood of A in $\left(V_{i} \cup V_{0}\right)$. Note that $\overline{\partial N-E}$ is a 2-disk and $\overline{\partial N-E} \cap$ Int $M=N \cap \partial\left(V_{i} \cup V_{0}\right)$. Now we set newly $E^{\prime}=\overline{E-N} \cup \partial \overline{N-E}$. Then $\partial E^{\prime}=\partial E$ and $\#\left({ }^{\circ} \cap \operatorname{Int} M\right)=\#(E \cap h(D \times I))-\#(\stackrel{\circ}{U} \cap h(D \times I)) \leqq \#(E \cap \operatorname{Int} M)-1$.

Fig. 9.
(Case 4) $\partial \beta_{1} \subset \partial E$.
β_{1} cuts E into two 2-disks U_{1} and U_{2} so that $U_{1} \cup U_{2}=E$ and $U_{1} \cap U_{2}=\partial U_{1} \cap$ $\partial U_{2}=\beta_{1}$. Since $\partial E \nsucc 0$ and $\partial\left(U_{i} \cup C_{1}\right) \neq 1$ on M, one of $\partial\left(U_{1} \cup C_{1}\right)$ and $\partial\left(U_{2} \cup C_{1}\right)$, say $\partial\left(U_{1} \cup C_{1}\right)$, is not null-homologues and another is null-honologues; $\partial\left(U_{1} \cup C_{1}\right) \nsucc 0$
and $\partial\left(U_{2} \cup C_{1}\right) \sim 0$ on M_{0}. Hence $\partial\left(U_{2} \cup C_{1}\right) \simeq 1$ on M_{0} and $\partial\left(U_{2} \cup C_{1}\right)$ must bound a 2-disk A on M_{0}. Since the normality of ∂C and $\partial E, ~ \AA \cap h(D \times \partial I) \neq \varnothing$ and $\#\left(\stackrel{\circ}{U}_{2} \cap\right.$ $h(D \times I)) \geqq 1$. And the rest of proof is the same as case 4 in $(2,4)$.

Hence these complete the proof of $(3,6)$ and so that of $(3,1)$. If a surface M is non-prime then obviously both $\pi_{1}(\operatorname{Int} M)$ and $\pi_{1}(\operatorname{Ext} M)$ are non-trivial free products. So, theorem 1 is trivial from (3,1).

4. Homeomorphic splitting of $\boldsymbol{S}^{\mathbf{8}}$ by a prime surface

Now we will extend the primeness to surfaces in 3-manifolds. Suppose V and M be a 3-manifold and its boundary component, a loop L on M is said to be V unknotted if L bounds a non-singular proper 2 -disk in V. Let N be a connected orientable 3-manifold with boundary (may empty) and M be a surface in $\stackrel{\circ}{N}$ which separates N into two components V and W so that $V \cup W=N$ and $V \cap W=\partial V=M$.

Definition (4,1). A surface M is said to be prime if L is trivial on M for any V - and W - unknotted (abbreviately, bi-unknotted) loop L such that $L \sim 0$ in M.

This definition coincides with the primeness defined before for surfaces in E^{3}. Through the natural inclusion $i: E^{8} \rightarrow S^{8}$ such that $S^{3}-i\left(E^{8}\right)=\infty$ is an infinite point of E^{8}, the phenomena of surfaces in S^{3} are similar to that in E^{3}. In this section we will consider with prime surfaces in S^{s}.

There is only one isotopy class of prime surfaces of genus 1 which split S^{8} homeomorphically. For such a property of prime surfaces of genus greater than 1 , following is a special case which is easily derived from theorem 1.

Corollary (4,2). There is no prime surface of genus 2 in S^{8} which separates S^{8} homeomorphically.

Proof. Suppose a surface M of genus 2 splits S^{8} homeomorphically. $S^{3}-p$ $\cong E^{3}$ for any point p in $S^{8}-M$, and we can consider M a surface in E^{s}. From [2, (4,3)] there is a non-trivial I- or E- unknotted loop, say I-unknotted, and $\pi_{1}(\operatorname{Int} M)$ is non-trivial free product. Hence $\pi_{1}(\operatorname{Ext} M)$ is so, since $\pi_{1}(\operatorname{Int} M) \cong$ $\pi_{1}(\operatorname{Ext} M)$. By theorem $1 M$ is non-prime and also non-prime in S^{3}.

For prime surfaces of genus greater than 2, we have following.
Theorem 2. For any positive integer $n \neq 2$, there exists a prime surface of genus n which separates S^{s} homeomorphically.

The theorem is obviously true for $n=1$ and we prove the theorem by constructing examples. At first we recall a group theoretic theorem which is derived
from the "Kurosh subgroup theorem" [1, p. 246].
Proposition (4,3). If A and B are indecomposable groups and H and K are non-trivial normal subgroups of A and B, respectively, such that $H \cong K$, then the free product of A and B with amalgamation $H(\cong K)$ is also indecomposable.

The auther wish to thank S. Suzuki who informed me the existence of this proposition.

Lemma (4,4). There exists a proper embedding $g: I \rightarrow H_{n}$ of an arc I into a solid torus H_{n} of genus n for any n such that $\pi_{1}\left(H_{n}-g(I)\right)$ is indecomposable.

Proof. Figure 2 in [2] is an example satisfying above conditions for $n=1$. We will proceed by induction on genus n.
Suppose $g_{1}: I \rightarrow H_{1}$ and $g_{n}: I \rightarrow H_{n}$ are embeddings of arc such that $\pi_{1}\left(H_{1}-g_{1}(I)\right)$ and $\pi_{1}\left(H_{n}-g_{n}(I)\right)$ are both indecomposable. Let D_{1} and D_{n} be 2 -disks on boundaries ∂H_{1} and ∂H_{n}, respectively, such that $g_{1}(\{1\})=\stackrel{\circ}{D}_{1} \cap g_{1}(I), \quad g_{n}(\{0\})=\stackrel{\circ}{D}_{n} \cap g_{n}(I)$ and $h g_{1}(\{1\})=g_{n}(\{0\})$ for an orientation reversing homeomorphism $h: D_{1} \rightarrow D_{n}$. Then $H_{1} \bigcup_{h} H_{n} \cong H_{n+1}$ and $g_{1}(I) \bigcup_{h} g_{n}(I)$ is a proper arc in H_{n+1} so that $\pi_{1}\left(H_{n+1}-\left(g_{1}(I) \cup_{n} g_{n}(I)\right)\right)$ $\cong \pi_{1}{ }^{h}\left(H_{1}-g_{1}(I)\right) * \pi_{1}\left(H_{n}-. g_{n}^{h}(I)\right) /\left\langle\partial D_{1}\right\rangle$, where $\left\langle\partial D_{1}\right\rangle$ means a normal subgroup generated by a homotopy class of ∂D_{1} which is infinite cyclic (figure 10). Hence by $(4,3) \pi_{1}\left(H_{n+1}-\left(g_{1}(I) \bigcup_{h} g_{n}(I)\right)\right)$ is indecomposable.

Fig. 10.
Proof of theorem 2. Let $g_{n}: I \rightarrow H_{n}$ be an embedding of an arc I into solid torus H_{n} of genus n which satisfies (4,4), and let $g_{n}^{\prime}: I \rightarrow H_{n}^{\prime}$ be a copy of g_{n} and H_{n}. We choose a homeomerphism $\varnothing: \partial H_{n} \rightarrow \partial H_{n}^{\prime}$ so that $\left(H_{n} \cup H_{n}^{\prime}\right) \cong S^{8}$ and $\varnothing g_{n}(\partial I)$ $\cap g_{n}^{\prime}(\partial I)=\varnothing$. Let $N=N\left(g_{n}(I) ; H_{n}\right)$ and $N^{\prime}=N\left(g_{n}^{\prime}(I) ; H_{n}^{\prime}\right)$ be regular neighborhoods of $g_{n}(I)$ and $g_{n}^{\prime}(I)$ in H_{n} and H_{n}^{\prime}, respectively. Set $V=\left(\overline{H_{n}-N}\right) \cup{ }_{\varnothing} N^{\prime}$. Obviously
$V \cong S^{3}-\stackrel{\circ}{V}$ and $M \equiv \partial V$ is of genus $n+2$. It will complete the proof if we show M prime. For this, note that $\pi_{1}(V) \cong \pi_{1}\left(H_{n}-g_{n}(I)\right) * Z$, where $\pi_{1}\left(H_{n}-g_{n}(I)\right)$ is indecomposable. We can see M a surface in E^{8} by removing a point from $S^{8}-M$. Suppose M has a non-trivial decomposition $M \approx M_{1} \# M_{2}$, then the genus of M_{1} or M_{2} is 1 , say the genus of M_{1} equal 1. Hence $\pi_{1}\left(\operatorname{Int} M_{2}\right) \cong \pi_{1}\left(\operatorname{Ext} M_{2}\right) \cong \pi_{1}\left(H_{n}-g_{n}(I)\right)$, which is indecomposable. It means that there is no I- or E-unknotted loop on M_{2}. This is a contradiction and completed the proof of theorem 2. Figure 11 shows an example of this theorem for $n=5$.

Fig. 11.

5. Homeomorphic complements and isomorphism

It is a problem if knot types of two knots K and K^{\prime} are the same, for $S^{3}-K$ $\cong S^{3}-K^{\prime}$. Analogous problem for links have been solved negatively. The following example (figure 12) show the situation of surfaces in E^{8} for above problem.

It is obvious that $\operatorname{Int} M_{1} \cong \operatorname{Int} M_{2}$ are solid tori of genus 3 for surfaces M_{1} and M_{2} in figure 12. Also $\operatorname{Ext} M_{1} \cong \operatorname{Ext} M_{2}$ and M_{2} is non-prime. We will show M_{1}

Fig. 12.
prime. It is noted that $\pi_{1}\left(\operatorname{Ext} M_{1}\right) \cong \pi_{1}\left(\operatorname{Ext} H_{2}\right) * Z$, where H_{2} is "Homma's example" of genus 2 [2, p. 99], and $\pi_{1}\left(E x t H_{2}\right)$ is indecomposable. By (2,3) non-trivial Eunknotted loop of M_{1} is unique up to isotopy. Hence, if M_{1} is non-prime, $M_{1} \approx$ $M_{1}^{\prime \prime} \#_{\#} T$, where T is a unique bi-free surface of genus 1 , and $M_{1}^{\prime} \approx \partial\left(\operatorname{Int} M_{1} \cup N\left(D_{1}\right.\right.$; $\left.\operatorname{Ext} M_{1}\right)$). (D_{1} is as in the figure and $N\left(D_{1} ; \operatorname{Ext} M_{1}\right)$ is a regular neighborhood.) But we can see from the figure that ($\operatorname{Int} M_{1} \cup N\left(D_{1} ; \operatorname{Ext} M_{1}\right)$) is not a solid torus. This is a contradiction to $\pi_{1}\left(\operatorname{Int} M_{1}^{\prime}\right) \cong Z$ and M_{1} is prime. Hence, M_{1} and M_{2} are not isomorphic.

REFERENCES

[1] W. Magnus, A. Karrass and D. Solitar, Combinatorial Group Theory, John Wiley and Sons, 1961.
[2] Y. Tsukui, On surfaces in s-space, Yokohama Math. Jour. 18 (1970) 93-104.
[3] F. Waldhausen, Heegaard-Zerlegungen der 3-Sphäre, Topology 7 (1968) 196-203.
Department of Mathematical Engineering, Sagami Institute of Technology, Fujisawa-city, Kanagawa, Japan.

