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The following considerations are based upon the semi-linear point of view.
Throughout this paper a surface means a connected closed 2-submanifold in

Euclidean 3-space $E^{8}$ unless otherwise stated. The author studied the isotopy

sum of surfaces and its prime decomposition, and proved that the prime decom-

position of any surface of genus 2 is unique up to isomorphism [21.

The purpose of this paper is to prove the theorem 1, which gives a necessary

and sufficient condition for a surface of genus 2 to be prime. Theorem 1 is also

an affirmative answer for special case $n=2$ of the conjecture [2, $(7, 2)$1. In \S 4

we discuss homeomorphic splitting of 3-sphere $S^{3}$ by a prime surface and prove

theorem 2. Finally in \S 5 we give an interesting example, which makes clear a
little the relation of this field between knot types and homeomorphIc complement-

ary domains.

Theorem 1. Any surface $M$ of genus 2 is prime if and only if either
group $\pi_{1}(IntM)$ or $\pi_{1}(ExtM)$ is indecompesable with respect to free product.

Corollary to theorem 1. There is no prime surface of genus 2 in $S^{\epsilon}$ which
separates $S^{\epsilon}$ homeomorphically.

Theorem 2. For any integer $n\neq 2$ , there exists a surface of genus $n$ in $S^{\epsilon}$

which splits $S^{f}$ homeomorphically.

1. Definitions and notations

In this paper we will use the same definitions and notations as [2]. We des-
cribe here some of them. The isotopy sum $M\# M^{\prime}$ of two surfaces $M$ and $M^{\prime}$

is a surface which is connected of $M$ and $M^{\prime}$ by a thin pipe in natural way [2,

definition 11. Surfaces $M$ and $M^{\prime}$ are said to be isomorphic, denoted by $M\approx M^{\prime}$ ,

if there exists an isotopy of $E^{8}$ throwing $M$ onto $M^{\prime}$ . A surface $M$ is trivial if
$M$ is isomorphic to 2-sphere $S^{2}$ in $E^{8}$ . A surface $M$ is prime if either $M_{1}$ or $M_{2}$
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is trivial for any decomposition $M\approx M_{1}\# M_{2}$ of $M$. We use IntM and ExtM to
be denoted the closures of bounded and un-bounded components, respectively, of
$E^{3}-M$ for a surface $M$. Also denote Int$M=IntM-M$, Ext$M=ExtM-M$ and
ExtM means a one-point compactification of $ExtM$. A surface $M$ is I-free (or
E-free) if $\pi_{1}(IntM)$ (or $\pi_{1}(ExtM)$ , respectively) is a free group.

A loop (simple closed polygonal curve) $J$ on a surface $M$ is said to be I-
unknotted or E-unknotted if $J$ is trivial (i.e. $J\simeq 1$ ) in Int$M$ or in $ExtM$, respec-
tively, and bi-unknotted if both I- and E- unknotted. By Dehn’s lemma, an
unknotted loop bounds a non-singular proper 2-disk in respective region. Using
these termes, we can prove that a non-trivial surface $M$ is prime if and only
if any bi-unknotted loop on $M$ is trivial on $M[2, (3,2)]$ . Two sets $X$ and $Y$

of disjoint loops on a surface $M$ are said to be normal on $M$, if the number of
points in $X\cap Y$ is minimum with respect to any isotopy of $X$ in M. $\simeq,$ $\sim$ , and
$\cong$ mean homotopic, homologues, and homeomorphic or algebraicaly isomorphic,
respectively. $\partial X,$

$X^{o}$, and $\overline{X}(cl(X))$ mean boundary, interior, and closure, respec-
tively, of X. $\#(X)$ means the number of connected components of a set $X$.

Suppose $D$ is a 2-disk and $\mathcal{B}=\{\beta_{1}, \beta_{2}, \cdots, \beta_{k}\}$ is a finite set of disjoint Proper

arcs in D. $\mathcal{B}$ separates $D$ into interior disjoint 2-disks $D_{0},$ $D_{1},$
$\cdots,$

$D_{k}$ . We say an
arc $\beta_{i}$ (and a disk $D_{j}$) to be outer most in $D$ if $D_{j}\cap \mathcal{B}=\partial D_{j}\cap \mathcal{B}=\beta_{\ell}$ .

2. Preliminary lemmas

Lemma $(2, 1)$ . If there exist disjoint proper 2-disks $D$ and $C$ in Int$M$ and
$ExtM$, respectively, for a surface $M$ of genus 2 such that $\partial D\star O$ and $\partial C+0$ on
$M$, then $M$ is non-prime.

Proof. It is obvious that there are disjoint loops $J$ and $J^{\prime}$ on $M$ such that
$J$ and $J^{\prime}$ are crossing $\partial D$ and $\partial C$, respectively, at a point and $(J\cup\partial D)\cap(J^{\prime}\cup\partial C)$

$=\emptyset$ . Let $N=N(J\cup\partial D;M)$ and $N^{\prime}=N^{\prime}(J^{\prime}\cup\partial C;M)$ be disjoint regular neigh-
borhoods of $J\cup\partial D$ and $J^{\prime}\cup\partial C,$ respectively, in M. $N$ and $N^{\prime}$ are both 8urfaces
of genus 1 with connected boundaries. Then $N^{\prime\prime}=\overline{M-N-N}^{\prime}$ is an annulus and
$\partial N\simeq\partial N^{\prime}$ on $M$. Obviously $\partial N\simeq 1$ in Int$M$ and $\partial N^{\prime}\simeq 1$ in $ExtM$. Hence $\partial N$ is a
non-trivial bi-unknotted loop on $M$ and $M$ is non-prime.

Following two lemmas are useful in some special situations. Their proofs are
essencially the same to [2, (6. 2)1 and [2, $(6, 3)$1, and we drop them here.

Lemma $(2, 2)$ . If $\pi_{1}(IntM)\cong G_{1}^{*}G_{2}$ is a non-trivial free product, where $G_{\ell}$ is
indecomposable and $G_{i}\not\cong Z,$ $i=1,2$ , then there exists a unique proper 2-disk $D$ in
Int$M$, up to isotopy, so that $\partial D\sim O$ but $\partial D\not\simeq 1$ on $M$.
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Lemma $(2, 3)$ . If $\pi_{1}(IntM)\cong G^{*}Z$ (or $\pi_{1}(ExtM)\cong G^{*}Z$ ) is non-trivial free pro-
duct, where $G$ is indecomposable and $G\not\cong Z$, then there exists a unique proper 2-
disk $D$ in IntM (or in $ExtM$), up to isotopy, so that \partial D&O on $M$.

For ExtM we get a unique proper 2-disk $D$, up to isotopy of $\partial D$ in $M$, in
$(2, 2)$ . The isotopy classes of $D$ in ExtM are iust two.

Lemma $(2, 4)$ . Suppose both $\pi_{1}(IntM)\cong A_{\iota^{*}}A_{2}$ and $\pi_{1}(ExtM)\cong A_{\epsilon^{*}}A_{4}$ are non-
trivial free products for a surface $M$ of genus 2. If $A_{i}$: $Z,$ $i=1,2$ , then $M$ is
non-prime.

Proof. From $(2, 2)$ there must be a unique proper 2-disk $D$ in Int$M$ such
that $\partial D\not\simeq 1$ but $\partial D\sim O$ on $M$. If $\partial D\simeq 1$ in $ExtM,$ $\partial D$ is a non-trivial bi-unknotted
loop on $M$ and $M$ is non-prime. Hence, from now on, we suppose $\partial D$ tl in $ExtM$.

Let $h:D\times I\rightarrow IntM$ be an embedding such that $h(D\times\{1/2\})=D$ and $h(D\times I)\cap M$

$=h(\partial D\times I)$ . $IntM-h(D\times\mathring{I})$ must consist of two components of 3-manifolds, say
$V_{1}$ and $V_{2}$ , so that $h(D\times\{0\})\subset\partial V_{1}$ and $h(D\times\{1\})\subset\partial V_{2}$ . $M_{i}\equiv\partial V_{\ell}$ is an I-nonfree
surface of genus 1, $i=1,2$ , since we may assume that $\pi_{1}(IntM_{\ell})\cong A_{\ell},$ $i=1,2$ . Let
us note that $M_{1}$ and $M_{2}$ are separated in $E^{3}$ (that is, there is a 3-ball $B^{8}$ in $E^{3}$

such that $IntM_{1}\subset B^{3}\circ$ and $ B^{8}\cap IntM_{2}=\emptyset$ ), for $ V_{1}\cap V_{2}=\emptyset$ and $A_{1}\not\cong Z\not\cong A_{2}$ . Then
there exists a unique proper 2-disk $E_{\ell}$ in $ExtM_{\ell}$ up to isotopy, $i=1,2$ . We can
take $E_{1}$ and $E_{2}$ so that $E_{1}\cap(IntM_{2}\cup E_{2})=\emptyset=E_{2}\cap(IntM_{1}\cup E_{1})$ .

If $\mathring{E}_{j}\cap IntM=E_{j}\cap h(D\times I)=\emptyset$ , for some $j=1$ or 2, the regular neighborhood
$N=N(E_{j}\cup IntM_{j};E^{\epsilon})$ of $E_{j}\cup IntM_{j}$ in $E^{8}$ is a 3-ball so that $\partial N\cap M$ is a loop
which is a boundary of a regular neighborhood of $(M_{j}\cap M)$ in $M$. This loop is
non-trivial bi-unknotted, so $M$ is non-prime.

Hence we assume that $(E_{1}^{o}\cup E_{2}^{o})\cap IntM=(E_{1}\cup E_{2})\cap h(D\times I)$ consists of finite
number $\neq 0$ of disjoint 2-disks $H_{1},$ $H_{2},$

$\cdots,$
$H_{m}$ which are all isotopic to above $D$

Fig. 1.
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in IntM. $(\mathring{E}_{1}\cup\mathring{E}_{2})$ cut Int$M$ into $m+1$ interior disjoint connected 8-manifolds
$W_{1},$ $W_{2},$

$\cdots,$ $W_{m+1}$ . $W_{j}’ s$ are all 3-balls for $j\neq 1,2$ , and $W_{i}$ is isotopic to $IntM_{\ell}$ in
$E^{8},$ $i=1,2$ .

On the other hand, from [2, $(4, 2)$ 1 there exists a proper 2-disk $C$ in Ext$M$

such that $\partial C\not\simeq 1$ but $\partial C\sim O$ on $M$. If $\partial D\cap\partial C=\emptyset$ we will get $\partial D\simeq\partial C$ on $M$ as in
$(2, 1)$ and this is a contradiction. Hence we suppose that $\partial D$ and $\partial C$ are normal
and also $\partial C$ and $\{\partial H_{1}, \cdots, \partial H_{m}\}$ are normal on $M$ so that $\partial C\cap\partial H$ has a same
number of crossing points for all $i=1,2,$ $\cdots,$ $m$ . Then we may assume that $ C\cap$

$(E_{1}\cup E_{2}-h(\mathring{D}\times I))$ consists of finite $number\neq 0$ of disjoint proper arcs $\beta_{1},$ $\beta_{2},\cdots,$ $\beta_{n}$ ,

since loops are negligible by the general way as in [2, $(4, 6)$1. We may also assume
that $\partial C$ and $\{\partial E_{1}, \partial E_{2}\}$ are normal on $M$.

Now, if $M$ is prime, there exist $D,$ $E_{1},$ $E_{2},$ $C$ , and $h$ as above so that $\#\{(E_{1}^{O}\cup\mathring{E}_{2})$

$\cap IntM\}=\#\{(E_{1}\cup E_{2})\cap h(D\times I)\}\geqq 2$ is minimum.
$\beta s$ separate $C$ into interior disjoint finite 2-disks $C_{1},$ $C_{2},$

$\cdots,$
$C_{n+1}$ . There

must be at least two pairs of outer-most arc and disk, say $\beta_{1}$ and $C_{1}$ to be one of
them; $C_{1}\cap(E_{1}\cup E_{2})=\partial C_{1}\cap E_{1}=\beta_{1}$ . Following four cases are considerable for $\beta_{1}$ .

(Case 1) $\beta_{1}$ connects $H_{i}$ and $H_{j}$ in $\mathring{E}_{1}\cap$ Int$M,$ $i\neq j$ .
The arc $\overline{\partial C_{1}-\beta_{1}}$ must be contained in $\partial W_{k}\cap M$ for some $k$ . Let $N=N(C_{1}\cup W_{k}$ ;

$E^{8})$ be a regular neighborhood of $C_{1}\cup W_{k}$ in $E^{\epsilon}$ relative to $E_{1}$ so that $N\cap E_{1}=$

$\partial N\cap\mathring{E}_{1}$ isaregular neighborhood of $(C_{1}\cup W_{k})\cap E_{1}=H\cup H_{j}\cup\beta_{1}inE_{1}$ . $E_{1}^{\prime}=\overline{(E_{1}-N)}$

$\overline{\cup(\partial N-E_{1})}$ is a 2-disk so that $\partial E_{1}^{\prime}=\partial E_{1}$ and $ E_{1}^{\prime}\cap(IntM_{2}\cup E_{a})=\emptyset$ . It is noted
that $\#(E_{1}^{\prime}\cap h(D\times I))\leqq\#(E_{1}\cap h(D\times I))-2$ . Let $E_{2}^{\prime}=E_{2}$ , so we have new pair of

disks $E_{1}^{\prime}$ and $E_{2}^{\prime}$ so that $\#\{(E_{1}^{\prime}\cup E_{2}^{\prime})\cap h(D\times I)\}\leqq\#\{(E_{1}\cup E_{2})\cap h(D\times I)\}-2$ . (See

figure 2).

Fig. 2. Fig. 3.

(Case 2) $\beta_{1}$ connects some $H$ in $\mathring{E}_{1}\cap IntM$ and $\partial E_{1}$ .
We note that the arc $\overline{\partial C_{1}-\beta_{1}}$ i8 contained in $\partial W_{1}\cap M$ and $\overline{W_{1}-V_{1}}$ is a 3-ball.

Let $N=N$($C_{1}\cup\overline{W_{1}-V_{1};}$ Ext $M_{1}$) be a regular neighborhood of $C_{1}\cup\overline{W_{1}-V_{1}}$ in $ExtM_{1}$
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relative to $E_{1}$ so that $N\cap E_{1}=\partial N\cap E_{1}$ is a regular neighborhood of $(C_{1}\cup\overline{W_{1}-V_{1}})$

$\cap E_{1}=(H_{\ell}\cup\beta_{1})$ in $E_{1}$ relative to $\partial E_{1}$ . Then $\overline{\partial N-(E_{1}\cup V_{1})}$ is a 2-disk and $\partial N\cap$

$\overline{E_{1}-\partial N}$ is a proper arc in $E_{1}$ . $E_{1}^{\prime}=\overline{(E_{1}-N)\cup(\partial N-(E_{1}\cup V_{1}))}$ is a proper 2-disk
in Ext $M_{1}$ and $ E_{1}^{\prime}\cap(V_{2}\cup E_{2})=\emptyset$ . Since $M_{1}$ is I-nonfree of genus 1 and $\partial E_{1}^{\prime}\not\simeq:0$ ,
$\partial E_{1}^{\prime}$ is isotopic to $\partial E_{1}$ in $M_{1}$ (also in $M$). Let $E_{2}^{\prime}=E_{2}$ , then it is obvious that
$\#\{(E_{1}^{\prime}\cup E_{2}^{\prime})\cap h(D\times I)\}\leqq\#\{(E_{1}\cup E_{2})\cap h(D\times I)\}-1$ . (See figure 3.)

(Case 3) $\partial\beta_{1}$ is contained in some $\partial H_{j}$ .
The arc $\overline{\partial C_{1}-\beta_{1}}$ must be contained in $M\cap\partial W_{k}$ for some $k$ , but $k$ can not be

3, 4, $\ldots$ , or $m+1$ . First we suppose $k=1$ (figure 4-1). $H_{j}\cup\beta_{1}$ cuts a 2-disk $U$

off from $\overline{E_{1}-H_{j}}$ so that $\partial E_{1}\cap U=\emptyset$ and $\partial U\subset\beta_{1}\cup\partial H_{j}$ . $U\cup C_{1}$ is a proper 2-disk
in $E^{\epsilon}-\mathring{W}_{1}$ . It is noted that $\#(E_{1}\cap h(D\times I))=\#\{(E_{1}-(H_{j}\cup U))\cap h(D\times I)\}+\#(U^{o}\cap$

$h(D\times I))+1$ . We take $E_{1}^{\prime}$ by slight deformation of $U\cup C_{1}$ away from $C\cup\overline{W_{1}-V_{1}}$

so that $\partial E_{1}^{\prime}\subset M_{1}$ . From the normality of $\partial C$ and $\partial E_{1},$ $\partial E_{1}^{\prime}\oint 0$ on $M_{1}$ . Hence, let
$E_{2}^{\prime}=E_{2}$ , then $\#\{(E_{1}^{\prime}\cup E_{2}^{\prime})\cap h(D\times I)\}\leqq\#\{(E_{1}\cup E_{2})\cap h(D\times I)\}-1$ .

Secondary, suppose $k=2$ (figure 4-2). Since $W_{2}$ is isotopic to $IntM_{2}$ in $E^{t}$

and $\partial D$ and $\partial C$ are normal on $M,$ $\partial(U\cup C_{1})$ is isotopic to $\partial E_{2}$ on $M\cap\partial W_{2}$ . If
$\#(E_{2}\cap h(D\times I))>\#(U^{O}\cap h(D\times I))$ , we take $E_{2}^{\prime}$ by slightly deforming $C_{1}\cup U$ away
from $\overline{W_{2}-V_{2}}\cup C$. Then $\partial E_{2}^{\prime}\neq 0$ on $M_{2}$ and $\#(E_{2}^{\prime}\cap h(D\times I))=\#(\mathring{U}\cap h(D\times I))<\#(E_{a}\cap$

$h(D\times I))$ . Also if $\#(E_{2}\cap h(D\times I))\leqq\#(\mathring{U}\cap h(D\times I))$ , there is a 3-ball $B_{0}$ in $E^{\epsilon}-W_{1}^{o}$

$-\mathring{W}_{2}$ such that $\partial B_{0}^{3}\subset U\cup C_{1}\cup E_{2}\cup(\partial W_{2}\cap M)$ , since $\partial(U\cup C_{\iota})$ is isotopic to $\partial E_{2}$ on
$\partial W_{2}\cap M$. Let $N=N(W_{2}\cup B_{0}^{3};E^{\epsilon})$ be a regular neighborhood of $W_{2}\cup B_{0}^{s}$ in $E^{\epsilon}$

relative to $E_{1}$ so that $N\cap E_{1}=\partial N\cap E_{1}^{o}$ is a regular neighborhood of $U\cup H_{j}$ in $E_{1}$ .
Set $E_{1}^{\prime}=\overline{E_{1}-(\partial N\cap E_{1})}\cup\overline{\partial N-E_{1}}$. Then $\partial E_{1}^{\prime}=\partial E_{1}$ and $\#(E_{1}^{\prime}\cap h(D\times I))=\#\{(E_{1}-\overline{U\cup H_{j}})$

$\cap h(D\times I)\}+\#(E_{2}\cap h(D\times I))\leqq\#(E_{1}\cap h(D\times I))-1$ . Obviously, $E_{1}^{j}$ i8 a proper 2-disk,
since $N$ is a 3-ball. Also, set $E_{2}^{\prime}=E_{2}$ . Hence, $\#\{(E_{1}^{\prime}\cup E_{2}^{\prime})\cap h(D\times I)\}\leqq\#\{(E_{1}\cup E_{2})$

$\cap h(D\times I)\}-1$ .

Fig. 4-1. Fig. 4-2. Fig. 5.
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(Case 4) $\partial\beta_{1}$ is contained in $\partial E_{1}$ .
In this case the arc $\overline{\partial C_{\iota}-\beta_{1}}$ is contained in $M\cap M_{1}$ and $\beta_{1}$ separates $E_{1}$ into

2-disks $U_{1}$ and $U_{2}$ such that $U_{1}\cup U_{2}=E_{1}$ and $U_{1}\cap U_{2}=\partial U_{1}\cap\partial U_{2}=\beta_{1}$ (figure 5).

It is noted that $\#(E_{1}\cap h(D\times I))=\#(U_{1}\cap h(D\times I))+\#(U_{2}\cap h(D\times I))$ . $\partial(U_{i}\cup C_{1})$ is E-
unknotted loop on $M_{1}$ and non-trivial on $M,$ $i=1,2$ , for $\partial E_{1}$ and $\partial C$ are normal
on $M$. If $\partial(U_{\ell}\cup C_{1})+0$ on $M_{1}$ , then $\partial(U_{j}\cup C_{1})\simeq\partial D$ on $M,$ $i\neq j,$ $i,$ $j=1,2$ . Suppose
$\#(U_{2}\cap h(D\times I))=0,$ $\partial(U_{2}\cup C_{1})$ is E-unknotted loop on $M$ and also $\partial D$ is. This is a
contradiction. Hence, assume $\#(U_{2}\cap h(D\times I))\neq 0$ . We will take $E_{1}^{\prime}$ by slightly

deforming $U_{1}\cup C_{1}$ away from $C$ . Then $\#(E_{1}^{\prime}\cap h(D\times I))=\#(U_{1}\cap h(D\times I))\leqq\#(E_{1}\cap$

$h(D\times I))-1$ and $\partial E_{1}^{\prime}$ is isotopic to $\partial E_{1}$ on $M\cap M_{1}$ .
For each of above cases, we get new pair of 2-disks $E_{1}^{\prime}$ and $E_{2}^{\prime}$ so that $\#\{(E_{1}^{\prime}$

$\cup E_{2}^{\prime})\cap h(D\times I)\}<\#\{(E_{1}\cup E_{2})\cap h(D\times I)\}$ . If necessary, we can set again loops in
normal position on $M$, where no new intersection appear. This is a contradiction
to the minimality of the number $\#\{(E_{1}\cup E_{2})\cap h(D\times I)\}$ . Hence the proof of $(2, 4)$

was completed.

Corollary $(2, 5)$ . Suppose $\pi_{1}(IntM)\cong A_{1}*A_{2}$ and $\pi_{1}(ExtM)\cong A_{8}*A_{4}$ are both
non-trivial free products for a surface $M$ of genus 2. Then they are knot
groups and at least two of them are infinite cyclic.

Above corollary is an immediate consequence of $(2, 4)$ but it is very basic to
prove theorem 1.

3. Proof of the main theorem

Theorem $(3, 1)$ . If both $\pi_{1}(IntM)$ and $\pi_{1}(ExtM)$ are non-trivial free pro-
ducts for a surface $M$ of genus 2, then $M$ is non-prime.

Proof. From $(2, 5)$ it is sufficient to prove the theorem for the following

different four cases;

$(3, 2)$ $\pi_{1}(IntM)\cong Z*Z$ $\pi_{1}(ExtM)\cong Z*Z$

$(3, 3)$ $K*K^{\prime}$

$(3,4)$ $Z*K$

$(3,5)$ $Z*K$

$Z*Z$

$Z*Z$

$Z*K^{\prime}$

where $K$ and $K^{\prime}$ mean any non-trivial knot groups, since the proof of the theorem
for the case ($\pi_{1}(IntM)\cong Z*Z$ and $\pi_{1}(ExtM)\cong K*K^{\prime}$) is the same as that for the
case $(3, 3)$ and so on.

For case $(3, 2)$ the theorem is a direct consequence of the theorem (Wald-

hausen) [3] [2, \S 71, and for case $(3, 3)$ it was proved in $(2, 4)$ .
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For every case of $(3, 4)$ and $(8, 5)$ , from $(2, 3)$ there exists a unique proper 2-
disk $D$ in Int$M$ up to isotopy such that $\partial D+0$ on $M$. In case $(8, 4)$ , if there is
a proper 2-disk $A$ in ExtM such that $\partial A\cap\partial D$ is a crossing point then $M$ is
obviously non-prime. Hence we suppose that there is no such a disk as $A$ in
$ExtM$.
Let $h:D\times I\rightarrow IntM$ be an embedding of a 3-ball such that $h(D\times\{1/2\})=D$ and
$h(D\times I)\cap M=h(\partial D\times I)$ . $V_{0}=IntM-h(D\times\mathring{I})$ is a 3-manifold with connected bound-
ary $\partial V_{0}=M_{0}$ and $\pi_{1}(IntM_{0})=\pi_{1}(V_{0})\cong KXZ$. Then there is a unique proper 2-disk
$E$ in $ExtM_{0}$ up to isotopy such that $\partial E+0$ on $M_{0}$ and $\partial E\subset M\cap M_{0}$ . If $\mathring{E}\cap IntM$

$(=E\cap h(D\times I))=\emptyset\circ,$ $M$ is non-prime by $(2, 1)$ .

$M_{0}\cdot\epsilon V\circ$

Fig. 6.

Hence we assume that $E\cap h(D\times I)$ consi8ts of finite number $\neq 0$ of disjoint

2-disks which are isotopic to above $D$ in Int$M$. Since $\pi_{1}(ExtM)$ has an infinite
cyclic group $Z$ as a free factor, there exists a proper 2-disk $C$ in ExtM such that
$\partial C+0$ on $M$. If $\partial C\cap\partial D=\emptyset M$ is also non-prime by $(2, 1)$ . Hence we may assume
that $\partial C$ and $\partial D\cup\partial E$ are normal on $M$, and $C\cap E$ consists of finite number $\neq 0$

of arcs.
Now it is sufficient to prove the following;
$(3, 6)$ Suppose, (i) $\mathring{E}\cap IntM$ consists of finite number of disjoint 2-disks

$H_{1},$ $H_{2},$
$\cdots,$

$H_{m}$ , which are proper in $IntM$, such that some $H’ s$ of them are
isotopic to above $D$ and the others $H_{j}’ s$ are isotopic to each other and $\partial H_{j}\not\simeq 1$

on $M;\partial D\simeq\partial H+0,$ $\partial H_{j}\sim 0$ on $M$,
(ii) $\partial C$ and $\{\partial E, \partial H_{1}, \partial H_{2},\cdots, \partial H_{n}\}$ are normal on $M$, and
(iii) $C\cap E=C\cap(E-\mathring{I}ntM)$ consists of finite number $\#(C\cap E)$ of disjoint arcs
$\beta_{1},$ $\beta_{2},\cdots,$ $\beta_{n}$ .
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Then we can take another proper 2-disk $E^{\prime}$ in $ExtM_{0}$ with $\partial E^{\prime}\subset M\cap M_{0}$

and $\partial E^{\prime}+0$ on $M$ such that $E^{\prime}$ has properties (i), (ii) and (iii) as above but
$\#(E^{o}’\cap IntM)<\#(\mathring{E}\cap IntM)$ .

The $H_{j}’ s$ in the above will appear by an operation for (case 1) in the later.
The proof of $(3, 6)$ will proceed as same as that of $(2, 4)$ but slightly modified.

Proof of $(3, 6)$ . As $(2, 4)$ $E^{o}$ separates IntM into finite number of connected
3-manifolds $W_{0},$ $W_{1},$

$\cdots,$
$W_{p}$ , so that $W_{0}$ is isotopic to $IntM_{0}=V_{0}$ in $E^{\epsilon}$ and the

others are all 8-balls. $\beta..s$ also separate $C$ into finite number of 2-disks $C_{1},$ $C,$ ,
$C_{n+1}$ , whose interiors are mutually disjoint. Then there must be a pair of

outer most arc and 2-disk, say $\beta_{1}$ and $C_{1}$ , so that $C_{1}\cap E=\partial C_{1}\cap E=\beta_{1}$ . Hence fol-
lowing four cases are considerable as in $(2, 4)$ .

(Case 1) $\beta_{1}$ connects distinct components $H$ and $H_{j}$ in $E$ .
In this case, the arc $\overline{\partial C_{1}-\beta_{1}}$ must be contained in $\partial W_{k}\cap M$ for some $k$ . If

$\partial(\partial W_{k}\cap M)=\partial H_{\ell}\cup\partial H_{j}$ and $k\neq 0$ , we take an operation as same as (case 1) in $(2, 4)$ ,
and we will get a desired 2-disk $E^{\prime}$ . Hence we suppose now that $\partial(\partial W_{k}\cap M)-$

$\partial H-\partial H_{f}\neq\emptyset$ or $k=0$ . (If $k=0,$ $\partial H_{\ell}+0$ on $M$ for all $i=1,2,$ $\cdots,$ $m.$ )

Let $N=N(C_{1}\cup H_{\ell}\cup H_{j};E^{3})$ be a regular neighborhood of $C_{1}\cup H_{\ell}\cup H_{j}$ in $E^{\epsilon}$ relative
to $E$ so that $N\cap E=\partial N\cap E$ is a regular neighborhood of $\beta_{1}\cup H_{\ell}\cup H_{j}$ in $\mathring{E}$ and
$N\cap W_{k}$ is a regular neighborhood of $\overline{\partial C_{1}-\beta_{1}}\cup H\cup H_{j}$ in $W_{k}$ . $N$ is a 3-ball. We
take newly $E^{\prime}=\overline{E-N}\cup\overline{\partial N-E}$. Note that $\overline{(\partial N-E)\cap W_{k}}$ is a proper 2-disk in
IntM whose boundary is non-trivial on $M,$ $\partial E^{\prime}=\partial E$ and $E^{o}’\cap IntM=\{(\mathring{E}\cap IntM)$

$-H-H_{j}\}\cup(\overline{\partial N-E)\cap W_{k}.}$ Obviously $E^{\prime}$ satisfy the conditions (i), (ii) and (iii),

and $\#(E^{O}’\cap IntM)\leqq\#$( $ E^{o}\cap$ Int$M$) $-1$ . (See figure 7).

In the following three cases, we may assume that $\overline{\partial C_{1}-\beta_{1}}\subset\partial W_{0}\cap M$. For, if
$\partial H_{\ell}\sim O$ on $M$ then the proofs are the same as cases 2 and 3 in $(2, 4)$ . So, in cases
2 and 3 there are 3-balls $V$ and $V_{j}$ in $h(D\times I)$ and intersection $H_{j}$ such that
$\overline{\partial V-M}\subset H_{\ell}\cup h(D\times\{0\})$ and $\overline{\partial V_{j}-M}\subset H_{j}\cup h(D\times\{1\})$ . (If necessary we can change
$h$ to $h^{\prime}:D\times I\rightarrow IntM$ with $h(\partial D)\simeq h^{\prime}(\partial D)$ on $M.$ )

Fig. 8.
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(Case 2) $\beta_{1}$ connects some $H_{\ell}$ and $\partial E$ .
Let $N=N(C_{1}\cup V_{\ell};ExtM_{0})$ be a regular neighborhood of $C_{1}\cup V_{\ell}$ in $ExtM_{0}$

relative to $E$ so that $N\cap E=\partial N\cap E$ is a regular neighborhood of $(C_{1}\cup V)\cap E=$

$(\beta_{1}\cup H_{i})\cap E$ in $E$ relative to $\partial E$ (figure 8). The rest of proof is the same as that

of case 2 in $(2, 4)$ .
(Case 3) $\partial\beta_{1}\subset\partial H_{\ell}$

$\beta_{1}\cup H_{\ell}$ cuts a 2-disk $U$ off from $\overline{E-H_{l}}$ so that $\partial E\cap U=\emptyset$ and $\partial U\subset\beta_{1}\cup\partial H$ .
Since $\partial C$ and $\partial D$ are normal on $M,$ $\partial(C_{1}\cup U)\not\simeq 1$ on $M$. If $\partial(C_{1}\cup U)+0$ on $\partial(V_{\ell}\cup V_{0})$

the proof is also the same as case 3 in $(2, 4)$ . Suppose $\partial(C_{1}\cup U)\sim 0$ on $\partial(V_{\ell}\cup V_{0})$ ,

then $\partial(U\cup C_{1})$ bounds a 2-disk $A$ on $\partial(V_{i}\cup V_{0})-H_{\ell}$ and $\mathring{A}\supset h(D\times\{1\})$ . Hence
$\#(U^{o}\cap h(D\times I))\geqq 1$ . (figure 9). $U\cup C_{1}\cup A$ is a non-singular 2-sphere in $Ext\{\partial(V_{\ell}U$

$V_{0})\}$ and it bounds a 3-ball $B_{*}^{3}$ in $Ext\{\partial(VUV_{0})\}$ .
Let $N=N(B_{*}^{3}; E^{3})$ be a regular neighborhood of $B_{*}^{3}$ in $E^{\epsilon}$ relative to $E$ so that
$N\cap E=\partial N\cap\mathring{E}$ is a regular neighborhood of $U$ in $\mathring{E}$ and that $N\cap\partial(V_{\ell}\cup V_{0})$ is

a regular neighborhood of $A$ in $(V\cup V_{0})$ . Note that $\overline{\partial N-E}$ is a 2-disk and
$\overline{\partial N-E}\cap IntM=N\cap\partial(V_{\ell}\cup V_{0})$ . Now we set newly $E^{\prime}=\overline{E-N}\cup\partial\overline{N-E.}$ Then
$\partial E^{\prime}=\partial E$ and $\#$( $\mathring{E}^{\prime}\cap$ Int $M$) $=\#(E\cap h(D\times I))-\#(\mathring{U}\cap h(D\times I))\leqq\#(E\cap IntM)-1$ .

Fig. 9.

(Case 4) $\partial\beta_{1}\subset\partial E$.
$\beta_{1}$ cuts $E$ into two 2-disks $U_{1}$ and $U_{2}$ so that $U_{1}\cup U_{2}=E$ and $ U_{1}\cap U_{2}=\partial U_{1}\cap$

$\partial U_{2}=\beta_{1}$ . Since $\partial E+0$ and $\partial(U_{\ell}\cup C_{1})\not\simeq 1$ on $M$, one of $\partial(U_{1}\cup C_{1})$ and $\partial(U_{2}UC_{1})$ , say
$\partial(U_{1}\cup C_{1})$ , is not null-homologues and another is null-honologues; $\partial(U_{1}\cup C_{1})’\star 0$
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and $\partial(U_{2}\cup C_{1})\sim 0$ on $M_{0}$ . Hence $\partial(U_{2}\cup C_{1})\simeq 1$ on $M_{0}$ and $\partial(U_{2}\cup C_{1})$ must bound a
2-disk $A$ on $M_{0}$ . Since the normality of $\partial C$ and $\partial E,\mathring{A}\cap h(D\times\partial I)\neq\emptyset$ and $\#(\mathring{U}_{2}\cap$

$h(D\times I))\geqq 1$ . And the rest of proof is the same as case 4 in $(2, 4)$ .
Hence these complete the proof of $(3, 6)$ and so that of $(3, 1)$ . If a surface

$M$ is non-prime then obviously both $\pi_{1}(IntM)$ and $\pi_{1}(ExtM)$ are non-trivial free
products. So, theorem 1 is trivial from $(3, 1)$ .

4. Homeomorphic splitting of $S^{3}$ by a prime surface

Now we will extend the primeness to surfaces in 3-manifolds. Suppose $V$ and
$M$ be a 3-manifold and its boundary component, a loop $L$ on $M$ is said to be V-
unknotted if $L$ bounds a non-singular proper 2-disk in $V$. Let $N$ be a connected
orientable 3-manifold with boundary (may empty) and $M$ be a surface in $\mathring{N}$ which
separates $N$ into two components $V$ and $W$ so that $V\cup W=N$ and $V\cap W=\partial V=M$.

Definition $(4, 1)$ . A surface $M$ is said to be prime if $L$ is trivial on $M$

for any V- and W- unknotted (abbreviately, bi-unknotted) loop $L$ such that
$L\sim O$ in $M$.

This definition coincides with the primeness defined before for surfaces in $E^{3}$ .
Through the natural inclusion $i:E^{3}\rightarrow S^{S}$ such that $ S^{3}-i(E^{\epsilon})=\infty$ is an infinite
point of $E^{\epsilon}$ , the phenomena of surfaces in $S^{\epsilon}$ are similar to that in $E^{3}$ . In this
section we will consider with prime surfaces in $S^{\epsilon}$ .

There is only one isotopy class of prime surfaces of genus 1 which split $S^{3}$

homeomorphically. For 8uch a property of prime surfaces of genus greater than
1, following is a special case which is easily derived from theorem 1.

Corollary $(4, 2)$ . There is no prime surface of genus 2 in $S$ which sepa-
rates $S$ homeomorphically.

Proof. Suppose a surface $M$ of genus 2 splits $S^{\epsilon}$ homeomorphically. $S^{3}-p$

$\cong E^{\epsilon}$ for any point $P$ in $S^{3}-M$, and we can consider $M$ a surface in $E^{\epsilon}$ . From
[2, (4, 3)] there is a non-trivial I- or E- unknotted loop, say I-unknotted, and
$\pi_{1}(IntM)$ is non-trivial free product. Hence $\pi_{1}(ExtM)$ is so, since $\pi_{1}(IntM)\cong$

$\pi_{1}(ExtM)$ . By theorem 1 $M$ is non-prime and also non-prime in $S$ .
For prime surfaces of genus greater than 2, we have following.

Theorem 2. For any positive integer $n\neq 2$ , there exists a prime surface
of genus $n$ which separates $S^{3}$ homeomorphically.

The theorem is obviously true for $n=1$ and we prove the theorem by con-
structing examples. At first we recall a group theoretic theorem which is derived
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from the “ Kurosh subgroup theorem” [1, p. 2461.
Propo8ition $(4, 3)$ . If $A$ and $B$ are indecomposable groups and $H$ and $K$

are non-tr’ivial normal subgroups of $A$ and $B$ , respectively, such that $H\cong K$,

then the free product of $A$ and $B$ with amalgamation $H(\cong K)$ is also indecom-
posable.

The auther wish to thank S. Suzuki who informed me the existence of this
proposition.

Lemma $(4, 4)$ . There exists a proper embedding $g:I\rightarrow H_{n}$ of an arc I into
a solid torus $H_{n}$ of genus $n$ for any $n$ such that $\pi_{1}(H_{n}-g(I))$ is indecomposable.

Proof. Figure 2 in [2] is an example satisfying above conditions for $n=1$ .
We will proceed by induction on genus $n$ .
Suppose $q_{1}$ : $I\rightarrow H_{1}$ and $g_{n}$ : $I\rightarrow H_{n}$ are embeddings of arc such that $\pi_{1}(H_{1}-g_{1}(I))$

and $\pi_{1}(H_{n}-g_{n}(I))$ are both indecomposable. Let $D_{1}$ and $D_{n}$ be 2-disks on boundaries
$\partial H_{1}$ and $\partial H_{n}$ , respectively, such that $g_{1}(\{1\})=D_{1}^{o}\cap g_{1}(I)$ , $g_{n}(\{0\})=\mathring{D}_{n}\cap g_{n}(I)$ and
$hg_{1}(\{1\})=g_{n}(\{0\})$ for an orientation reversing homeomorphism $h:D_{1}\rightarrow D_{n}$ . Then
$H_{1}\bigcup_{h}H_{n}\cong H_{n+1}$ and $g_{1}(I)\bigcup_{h}g_{n}(I)$ is a proper arc in $H_{n+1}$ so that $\pi_{1}(H_{n+1}-(g_{1}(I)\bigcup_{h}g_{n}(I)))$

$\cong\pi_{1}(H_{1}-g_{1}(I))*\pi_{1}(H_{n}-.q_{n}(I))/\langle\partial D_{1}\rangle$ , where $\langle\partial D_{1}\rangle$ means a normal subgroup gener-

ated by a homotopy class of $\partial D_{1}$ which is infinite cyclic (figure 10). Hence by

$(4, 8)$ $\pi_{1}(H_{n+1}-(g_{1}(I)\bigcup_{h}q_{n}(I)))$ is indecomposable.

Fig. 10.

Proof of theorem 2. Let $g_{n}$ : $I\rightarrow H_{n}$ be an embedding of an arc $I$ into solid
torus $H_{n}$ of genus $n$ which satisfies $(4, 4)$ , and let $g_{n}^{\prime}$ : $I\rightarrow H_{n}^{\prime}$ be a copy of $g_{n}$ and
$H_{n}$ . We choose a homeomerphism $\emptyset$ : $\partial H_{\hslash}\rightarrow\partial H_{n}^{\prime}$ so that $(H_{n}\bigcup_{\emptyset}H_{n}^{\prime})\cong S^{\epsilon}$ and $\emptyset g_{n}(\partial I)$

$\cap g_{n}^{\prime}(\partial I)=\emptyset$ . Let $N=N(g_{*}(I);H_{\hslash})$ and $N^{\prime}=N(g_{n}^{\prime}(I);H_{n}^{\prime})$ be regular neighborhoods

of $g_{n}(I)$ and $g_{n}^{\prime}(I)$ in $H_{*}$ and $H_{n}^{\prime}$ , respectively. Set $V=(\overline{H_{*}-N})\bigcup_{\emptyset}N^{\prime}$ . Obviously
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$ V\cong S^{8}-V\circ$ and $M\equiv\partial V$ is of genus $n+2$ . It will complete the proof if we show
$M$ prime. For this, note that $\pi_{1}(V)\cong\pi_{1}(H_{\pi}-g_{n}(I))*Z$, where $\pi_{1}(H_{n}-g_{n}(I))$ is in-
decomposable. We can see $M$ a surface in $E^{\epsilon}$ by removing a point from $S^{\epsilon}-M$.
Suppose $M$ has a non-trivial decomposition $M\approx M_{1}\# M_{2}$ , then the genus of $M_{1}$ or
$M_{2}$ is 1, say the genus of $M_{1}$ equal 1. Hence $\pi_{1}(IntM_{2})\cong\pi_{1}(ExtM_{2})\cong\pi_{1}(H_{n}-q_{n}(I))$ ,

which is indecomposable. It means that there is no I- or E-unknotted loop on
$M_{2}$ . This is a contradiction and completed the proof of theorem 2. Figure 11
shows an example of this theorem for $n=5$ .

Fig. 11.

5. Homeomorphic complements and isomorphism

It is a problem if knot types of two knots $K$ and $K^{\prime}$ are the same, for $S^{8}-K$

$\cong S^{\epsilon}-K^{\prime}$ . Analogous problem for links have been solved negatively. The follow-
ing example (figure 12) show the situation of surfaces in $E^{8}$ for above problem.

It is obvious that $IntM_{1}\cong IntM_{2}$ are 8olid tori of genus 3 for surfaces $M_{1}$

and $M_{2}$ in figure 12. Also Ext $M_{1}\cong ExtM_{2}$ and $M_{2}$ is non-prime. We will show $M_{1}$

Ml $M_{2}$

Fig. 12.
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prime. It is noted that $\pi_{1}(ExtM_{1})\cong\pi_{1}(ExtH_{2})*Z$, where $H_{2}$ is “ Homma’s example”

of genus 2 [2, p. 99], and $\pi_{1}(ExtH_{2})$ is indecomposable. By $(2, 3)$ non-trivial E-

unknotted loop of $M_{1}$ is unique up to isotopy. Hence, if $M_{1}$ is non-prime, $ M_{1}\approx$

M\’i#T, where $T$ is a unique bi-free surface of genus 1, and $M_{1}^{\prime}\approx\partial(IntM_{1}\cup N(D_{1}$ ;

$ExtM_{1}))$ . ($D_{1}$ is as in the figure and $N(D_{1}$ ; Ext $M_{1})$ is a regular neighborhood.)

But we can see from the figure that $(IntM_{1}\cup N(D_{1};ExtM_{1}))$ is not a solid torus.
This is a contradiction to $\pi_{1}(IntM_{1}^{\prime})\cong Z$ and $M_{1}$ is prime. Hence, $M_{1}$ and $M_{2}$ are
not isomorphic.
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