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1. Introduction

In this paper, we use the definitions and notations introduced in [1], [2] and
[8]. For example, for a fake surface P without &,(P) (for the numbering of the
singularities of P, we use the definition made in [2]), let B(P) and +B(P) denote
the set of singular block bundles over P with fiberset @' and the subset of B(P)
consisting of orientable 3-manifolds, respectively. Singular block bundles are
defined in [2] and we obtained the following theorem in [2].

Theorem. B(P) consists of 3-manifolds, 1f it 18 non-empty.
What we try to do in this paper is to give answers to the following two
problems.

Problem 1. How can we obtainm a characterization of the fake surfaces
which are spines of 3-manifolds?

Problem 2. How can we obtain a characterization of the fake surfaces
which are spines of orientable 3-manifolds?

In §2, we study about block bundles over 2-manifolds and review some lemmas
which are already proved.

In §8, we obtain an answer to Problem 1 in Theorem 1|, that is, a necessary
and sufficient condition for closed fake surfaces to be spines of 8-manifolds

In §4, we get a necessary and sufficient condition for closed fake surfaces to
be spines of orientable 3-manifolds in [Theorem 2 and [Theorem 8 which gives an
answer to Problem 2. .

The author thanks all the members of All Japan Combinatorial Topology Study
Group for many discussions.

2. Block bundles over 2-manifolds
The following proposition is already stated in [3].

Proposition 1. For a 2-manifold M, + B(M) consists of exactly one element.



56 HIROSHI IKEDA

In this section, we prove another proposition without which we can not obtain
an answer to Problem 1.

Definition 2. Let P be a fake surface with boundary P=Q,U--- UQ,, where
Q. means a connected component of P. Suppose that P is contained in a 3-manifold
V properly. Then, we say that Q, is an irregular boundary of P in V if a regular
neighborhood N(Q;, V) of Q, in V is non-orientable and is a regular one of P in
V if N(Q,, V) is orientable. By u(P, V), we denote the number of the irregular
boundaries of P in V.

Proposition 2. Let M be a 2-manifold with boundary M=b,U---Ub,. Then,
there exists an element n in B(M) such that b, is irregular for 1=i<p and
18 reqular for p+1=<i=n in 9, if and only if p is even.

Proof of ‘Sufficiency” of Proposition 2. Suppose that z is even. We con-
struct an element 7 of B(M) so that 7 satisfies the required condition. Let D be
a punctured disk in M with D=b,Ub,U--- Ub,, where b, is contained in the in-
terior M of M. Then, D can be regarded as a 2-ball B with gz untwisted bands
B,, 1=i1<p, as shown in Fig. 1. More presicely, we can assume the following.
Put B;=C;XxJ, where C; is a 1-ball and J denotes the closed interval [—1,1]. Then,

1) B;.NB;=@, if 1+#],
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(2) B,NB=B,N B consists of disjoint two 1-balls C,xJ.

(8) There exists a 1-ball A; in B such that b, is the union of A4; and C;X1.
Now, let us consider the 3-balls B=BxJ and B,=B,xJ which are clearly block
bundles over B and B, respectively. Put C;=c,Uc,. We define a homeomorphism
h; from C,xJxJ onto itself by

(C, tly t2)7 if c=¢C; ,

h.‘, c, t ’ t =
(08 82) {(c,tl, —ty), if c=c, .
Note that k; is an equivalence of the block bundle C,xXJXJ over C,xJ. Then,
we obtain a block bundle 7, over D from B by attaching all the B; by the
homeomorphism ;. Remember that p is even and

bo=UC:X{—1}U(B—(U(4,UC,xJ))° .

Then, the restriction (.lb,) is a band from the definition of the attaching home-
omorphisms %;. On the other hand, let us consider the block bundle %,=(M—D)
XJ over M—D. Note that b, is also a boundary component of M—D and (7:|b,)
=beXJ is a band. Thus, we obtain an element » of B(M) from %, and 7, by
identifying (%,1b,) and (7.|b,) by an equivalence between them. Now, we have to
show that b; is irregular for 1==¢<pg and is regular for pg+1=<i<n in 7. It is
easy to see

(71lby), if 1=i=p.

(b= . .

(7:10), if p+1=i=n.
Then, b, is regular in 7 for pg+1=<i<mn, because (,|b;)=b,%xJ is a band. And for
1<i=<p, it follows from the definition of %, that (7,]b;) is a Mobius band, so b, is
irregular in 7.

In order to prove “Necessity” of [Proposition 2, we need some lemmas.

Lemma 1. Let M be a Mobius band and W a k-sheeted covering of M.
If k is even, then the number of the boundary components of W, denoted by
W, is even.

Proof. Put W=W,U-.--UW,, where W, means a connected component of
W. Then, W, is, naturally, a covering of M, say k,sheeted. We can assume
that the number k; is odd for 1<7<m and is even for m+1<1<n for some m.
It is easy to see that W, is a Mobius band for 1<¢{<m and a band form m+1
<i<n. Hence #W=m-+2(n—m). From the assumption, k=Y k, is even, so m
must be even. Thus, #W is even. This completes the proof of Lemma 1.
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And, we prove one more lemma from Lemma 1.

Lemma 2. Let M be a 2-manifold and W a k-sheeted covering of M. If
k is even, then %W is even.

Proof. Case 1. Suppose that M is an orientable 2-manifold. Let (M)
denote the Euler characteristic of M. Then, (M) is given by

X(M)=2—2H,—8M ,

wheae Hy denbtes the number of the handles of M. Since W is also orientable
and is a k-sheeted covering of M, we obtain the following easily.

$W=2—2H,—kX(M) .
Thus, #W is even, because k is assumed to be even.

Case 2. Suppose that M is a non-orientable 2-manifold. Then, we can write
M uniquely as

M=Pg---5P.8D,

where P, is a projective plane, D a punctured disk and B means the connected
sum. The proof goes by induction on ». When n=0, it follows from Case 1
above, because M=D is orientable. Let A denote a Mobius band in P, and M,
=M—;4. Then, again, we can write

M,=P8g---gP,-.8D, ,

where D, is a punctured disk with one more boundary components than D. Let
p be the covering projection from W to M and put W,=p"(M,;). Then, W, is
clearly a k-sheeted covering of M,. Thus, by the inductive hypothesis, W, is
even. Now, let us consider W.=p"*(4). Again, W, is a k-sheeted covering of
A. Since A is a Mobius band, #W, is even by Lemma 1. We obtain $W=#W,
—$W,, because W=W,U W, and W,n W,=W,;N W,=W,. Thus, W is even.

Proof of ‘“Necessity’’ of Proposition 2. We can regard V as a block bundle
over M. Put W=(V)'—(V|M)°. Then, W is a double covering of M. It is not
hard to see

BW=2(n—p)+p .

Since $W is even by [Lemma 2, # has to be even. This completes the proof of
[Proposition 2, ’
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3. An answer to Problem 1

Let P be a closed fake surface and 7 an element of B(U(P)). Note that »
is unique by the following proposition in [3].

Proposition 3. For a closed fake surface P, B(U(P)) consists of exactly
one element.

By pu(U(P)), we denote the number of the boundary components of an element
M of M(P) which are irregular in 7 as boundary components of U(P).

Then, we obtain a required theorem.

Theorem 1. Let P be a closed fake surface. Then, B(P) i8 mon-empty if
and only if pu(U(P)) 18 even for any element M of M(P).

Proof. Put M=b,U---Ub,, and let 7, be the element of B(U(P)). First,
we prove “Sufficiency ”. Suppose that b; is irregular for 1<:i=<p and is regular
otherwise in 7, where p=p,(U(P)) is even. Then, by we can find
a block bundle 7, in B(M) such that b, is irregular for 1<7<pg and is regular
otherwise in 7y,. That is, the regular neighborhood (7x|b;) is a Mobius band if
b, is irregular and is a band if b; is regular. On the other hand, it is known
that (py1b;) is a Mobius band for 1<¢<pg and is a band for #+1=<i=<mn. Then,
it is not hard to obtain an element 7 of B(P) from 7, and 7, by identifyng them
at (py|b;) and (9x|b,) for all M of M(P). Next, we prove “Necessity”. Suppose
that 7 is an element of B(P). Let us cosider 7,=(»|M) which is clearly an element
of B(M). Then, by Proposition 2, p(M, 7y) is even. Since we can write

P=IUP)HUYGIM),

and (9| U(P)) N (I M)=(nIM), we see p(M, ny)=pu(U(P)). Thus, px(U(P)) must be
even. This completes the proof of Mheorem 1.

Corollary to Theorem 1. Let P be a closed fake surface and 7 the element
of B(U(P)). If p(U(P),n) ts odd, then P can mot be a spine of a 3-mantfold.

4. An answer to Problem 2

Let P be a closed fake surface. In this section, we use the concept of a
decomposition U(P)=F,U---UE, of U(P). For the definition of a decomposition
of U(P), see Definition 8 [I]. And, as is seen in [1I], we can assume that E is
a T-bundle embedded in U(P).

First of all, we prove the following theorem.
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Theorem 2. Let P be a closed fake surface and 7 the element of B(U(P)).
Then, +B(P) is mon-empty if and only if 7 is a solid torus with certain
genus.

And, in [Theorem 3, we obtain a characterization of U(P) so that the element
n of B(U(P)) is a solid torus with certain genus.

Theorem 3. Let P be a closed fake surface and 7 the element of B(U(P)).
Then, 7 is a solid torus with certain genus if and only if, for any decomposi-
tion U(P)=E;U---UE,, E;#SXzT holds for any ¢, 1<i<n.

Proof of “Necessity ” is trivial, for » is unique. So, we prove

just “Sufficiency”. Suppose that 7 is a solid torus with certain genus. For an
element M of M(P), take the unique element 7y of +B(M) by [Proposition 1.
M is with boundary, there exists some disjoint proper 1-balls A4;, 1=1,---, n, in

M such that M;=M—N(Ay) is a 2-ball, where A, means the union of the 1-balls
A; and N(Ay) is a regular neighborhood of Ay in M meeting the boundary
regularly. Now, we have

= x| Ax) U (x| M) .

Then, it is not hard to attach U(m,lAu) to 7 so that the block bundle »,=7U
U(m,]A.,) over U(P)U UAH is a sohd torus, because we can regard each connected
component of U(ﬂylAy) to be a 1-handle to 7.  Then, attaching U(m,lMl) to 7,
by the natural way, we obtain a required element of + B(P). Thus,
is established.

Proof of Theorem 3. “Necessity” is trivial from Lemma 24 [T]. So, we prove
just “Sufficiency”. Let r be the rank of H,(U(P)). The proof goes by induction
on r. When r=1, it is known by Lemma 5 and the hypothesis that U(P)=E,
is either SXT or SX¢T. Then, B(U(P)) consisﬁs of a solid torus with genus 1.
Let us consider U;=FE,U:--UE,_;,. Then, it is not hard to see that there exists
a closed fake surface P, with U(P,)=U,. Since any decomposition of U(P) con-
tains no SxT, so is with one of U,=U(P,). Thus, by the inductive hypothesis,
B(U,) consists of a solid torus, say 7,, because rank of H,(U,)<7r—1 is clear.
Since we can write

A=E,— LxJ(st(w. UP)NE,)=U(TXI),

as in [1], where x is a point of &,(P), we can regard (7|4) as 1-handles H; at-
tached to (n|U(P)—A). It is easy to see that 7, and (y|U(P)—A) are home-
omorphic. Then, we can write
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=nUU H,.
i

We have to show that 7 is a solid torus. Suppose not. Then, there must be a

non-orientable handle H, for some s. Let a denote the 1-ball (o(T)XxI),. Here,
we can assume

n.=nU U H;

i<s

to be orientable, i.e. a solid torus. Then, there exists a 1-ball 8 in 7,N&,(P)
such that y=aUp is a 1l-sphere. Then, we obtain a decomposition U(P)=E{U ---
U E’, of U(P) such that 7 is the base space of some E{. Now, the regular neigh-
borhood of 7 in 7 is a solid Klein bottle, because H, is a non-orientable handle,
so E, must be SxzT. This is a contradiction. This completes the proof.
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