FAKE SURFACES WHICH ARE SPINES OF 3-MANIFOLDS

By

HIROSHI IKEDA

(Received April 25, 1973)

1. Introduction

In this paper, we use the definitions and notations introduced in [1], [2] and [3]. For example, for a fake surface P without $\mathfrak{S}_7(P)$ (for the numbering of the singularities of P, we use the definition made in [2]), let B(P) and +B(P) denote the set of singular block bundles over P with fiberset Φ^1 and the subset of B(P)consisting of orientable 3-manifolds, respectively. Singular block bundles are defined in [2] and we obtained the following theorem in [2].

Theorem. B(P) consists of 3-manifolds, if it is non-empty.

What we try to do in this paper is to give answers to the following two problems.

Problem 1. How can we obtain a characterization of the fake surfaces which are spines of 3-manifolds?

Problem 2. How can we obtain a characterization of the fake surfaces which are spines of orientable 3-manifolds?

In §2, we study about block bundles over 2-manifolds and review some lemmas which are already proved.

In §3, we obtain an answer to Problem 1 in Theorem 1, that is, a necessary and sufficient condition for closed fake surfaces to be spines of 3-manifolds

In §4, we get a necessary and sufficient condition for closed fake surfaces to be spines of orientable 3-manifolds in Theorem 2 and Theorem 3 which gives an answer to Problem 2.

The author thanks all the members of All Japan Combinatorial Topology Study Group for many discussions.

2. Block bundles over 2-manifolds

The following proposition is already stated in [3].

Proposition 1. For a 2-manifold M, +B(M) consists of exactly one element.

HIROSHI IKEDA

In this section, we prove another proposition without which we can not obtain an answer to Problem 1.

Definition 2. Let P be a fake surface with boundary $\dot{P}=Q_1\cup\cdots\cup Q_n$, where Q_i means a connected component of \dot{P} . Suppose that P is contained in a 3-manifold V properly. Then, we say that Q_i is an *irregular boundary* of P in V if a regular neighborhood $N(Q_i, \dot{V})$ of Q_i in \dot{V} is non-orientable and is a *regular* one of P in V if $N(Q_i, \dot{V})$ is orientable. By $\mu(P, V)$, we denote the number of the irregular boundaries of P in V.

Proposition 2. Let M be a 2-manifold with boundary $\dot{M}=b_1\cup\cdots\cup b_n$. Then, there exists an element η in B(M) such that b_i is irregular for $1\leq i\leq \mu$ and is regular for $\mu+1\leq i\leq n$ in η , if and only if μ is even.

Proof of "Sufficiency" of Proposition 2. Suppose that μ is even. We construct an element η of B(M) so that η satisfies the required condition. Let D be a punctured disk in M with $D=b_0\cup b_1\cup\cdots\cup b_{\mu}$, where b_0 is contained in the interior \mathring{M} of M. Then, D can be regarded as a 2-ball B with μ untwisted bands B_i , $1 \leq i \leq \mu$, as shown in Fig. 1. More presidely, we can assume the following. Put $B_i=C_i\times J$, where C_i is a 1-ball and J denotes the closed interval [-1, 1]. Then, (1) $B_i \cap B_j = \emptyset$, if $i \neq j$,

Fig. 1.

(2) $B_i \cap B = \dot{B_i} \cap \dot{B}$ consists of disjoint two 1-balls $\dot{C_i} \times J$.

(3) There exists a 1-ball A_i in \dot{B} such that b_i is the union of A_i and $C_i \times 1$. Now, let us consider the 3-balls $\tilde{B}=B\times J$ and $\tilde{B}_i=B_i\times J$ which are clearly block bundles over B and B_i , respectively. Put $\dot{C}_i=c_1\cup c_2$. We define a homeomorphism h_i from $\dot{C}_i\times J\times J$ onto itself by

$$h_i((c, t_1, t_2)) = \begin{cases} (c, t_1, t_2), \text{ if } c = c_1 , \\ (c, t_1, -t_2), \text{ if } c = c_2 . \end{cases}$$

Note that h_i is an equivalence of the block bundle $\dot{C}_i \times J \times J$ over $\dot{C}_i \times J$. Then, we obtain a block bundle η_1 over D from \tilde{B} by attaching all the \tilde{B}_i by the homeomorphism h_i . Remember that μ is even and

$$b_0 = \bigcup_i C_i \times \{-1\} \cup (\dot{B} - (\bigcup_i (A_i \cup \dot{C}_i \times J))^\circ$$
.

Then, the restriction $(\eta_1|b_0)$ is a band from the definition of the attaching homeomorphisms h_i . On the other hand, let us consider the block bundle $\eta_2 = \overline{(M-D)} \times J$ over $\overline{M-D}$. Note that b_0 is also a boundary component of $\overline{M-D}$ and $(\eta_2|b_0) = b_0 \times J$ is a band. Thus, we obtain an element η of B(M) from η_1 and η_2 by identifying $(\eta_1|b_0)$ and $(\eta_2|b_0)$ by an equivalence between them. Now, we have to show that b_i is irregular for $1 \leq i \leq \mu$ and is regular for $\mu+1 \leq i \leq n$ in η . It is easy to see

$$(\eta|b_i) = egin{cases} (\eta_1|b_i), ext{ if } 1 \leq i \leq \mu \ . \ (\eta_2|b_i), ext{ if } \mu + 1 \leq i \leq n \ . \end{cases}$$

Then, b_i is regular in η for $\mu+1 \leq i \leq n$, because $(\eta_2|b_i)=b_i \times J$ is a band. And for $1\leq i\leq \mu$, it follows from the definition of h_i that $(\eta_1|b_i)$ is a Möbius band, so b_i is irregular in η .

In order to prove "Necessity" of Proposition 2, we need some lemmas.

Lemma 1. Let M be a Möbius band and W a k-sheeted covering of M. If k is even, then the number of the boundary components of W, denoted by $\#\dot{W}$, is even.

Proof. Put $W = W_1 \cup \cdots \cup W_n$, where W_i means a connected component of W. Then, W_i is, naturally, a covering of M, say k_i -sheeted. We can assume that the number k_i is odd for $1 \le i \le m$ and is even for $m+1 \le i \le n$ for some m. It is easy to see that W_i is a Möbius band for $1 \le i \le m$ and a band form $m+1 \le i \le n$. Hence $\#\dot{W} = m+2(n-m)$. From the assumption, $k = \sum k_i$ is even, so m must be even. Thus, $\#\dot{W}$ is even. This completes the proof of Lemma 1.

HIROSHI IKEDA

And, we prove one more lemma from Lemma 1.

Lemma 2. Let M be a 2-manifold and W a k-sheeted covering of M. If k is even, then $\#\dot{W}$ is even.

Proof. Case 1. Suppose that M is an orientable 2-manifold. Let $\chi(M)$ denote the Euler characteristic of M. Then, $\chi(M)$ is given by

$$\chi(M) = 2 - 2H_M - \#M,$$

where H_M denotes the number of the handles of M. Since W is also orientable and is a k-sheeted covering of M, we obtain the following easily.

$$W = 2 - 2H_W - k\chi(M)$$
.

Thus, $\#\dot{W}$ is even, because k is assumed to be even.

Case 2. Suppose that M is a non-orientable 2-manifold. Then, we can write M uniquely as

$$M = P_1
arrow \dots
arrow P_n
arrow D$$
,

where P_i is a projective plane, D a punctured disk and \exists means the connected sum. The proof goes by induction on n. When n=0, it follows from Case 1 above, because M=D is orientable. Let A denote a Möbius band in P_n and M_1 $=M-\mathring{A}$. Then, again, we can write

$$M_1 = P_1
atriangle \cdots
atriangle P_{n-1}
atriangle D_1$$
,

where D_1 is a punctured disk with one more boundary components than D. Let p be the covering projection from W to M and put $W_1 = p^{-1}(M_1)$. Then, W_1 is clearly a k-sheeted covering of M_1 . Thus, by the inductive hypothesis, $\#\dot{W}_1$ is even. Now, let us consider $W_2 = p^{-1}(A)$. Again, W_2 is a k-sheeted covering of A. Since A is a Mobius band, $\#\dot{W}_2$ is even by Lemma 1. We obtain $\#\dot{W} = \#\dot{W}_1$ $-\#\dot{W}_2$, because $W = W_1 \cup W_2$ and $W_1 \cap W_2 = \dot{W}_1 \cap \dot{W}_2 = \dot{W}_2$. Thus, $\#\dot{W}$ is even.

Proof of "Necessity" of Proposition 2. We can regard V as a block bundle over M. Put $W = (V) \cdot - (V|\dot{M})^{\circ}$. Then, W is a double covering of M. It is not hard to see

$$\#W = 2(n-\mu) + \mu$$
.

Since #W is even by Lemma 2, μ has to be even. This completes the proof of Proposition 2.

58

3. An answer to Problem 1

Let P be a closed fake surface and η an element of B(U(P)). Note that η is unique by the following proposition in [3].

Proposition 3. For a closed fake surface P, B(U(P)) consists of exactly one element.

By $\mu_{\mathbf{M}}(U(P))$, we denote the number of the boundary components of an element M of M(P) which are irregular in η as boundary components of U(P).

Then, we obtain a required theorem.

Theorem 1. Let P be a closed fake surface. Then, B(P) is non-empty if and only if $\mu_{\mathbb{M}}(U(P))$ is even for any element M of M(P).

Proof. Put $M=b_1\cup\cdots\cup b_n$, and let η_{σ} be the element of B(U(P)). First, we prove "Sufficiency". Suppose that b_i is irregular for $1 \leq i \leq \mu$ and is regular otherwise in η_{σ} , where $\mu = \mu_{\mathbb{M}}(U(P))$ is even. Then, by Proposition 2, we can find a block bundle $\eta_{\mathbb{M}}$ in B(M) such that b_i is irregular for $1 \leq i \leq \mu$ and is regular otherwise in $\eta_{\mathbb{M}}$. That is, the regular neighborhood $(\eta_{\mathbb{M}}|b_i)$ is a Möbius band if b_i is irregular and is a band if b_i is regular. On the other hand, it is known that $(\eta_{\sigma}|b_i)$ is a Möbius band for $1 \leq i \leq \mu$ and is a band for $\mu+1 \leq i \leq n$. Then, it is not hard to obtain an element η of B(P) from η_{σ} and $\eta_{\mathbb{M}}$ by identifying them at $(\eta_{\sigma}|b_i)$ for all M of M(P). Next, we prove "Necessity". Suppose that η is an element of B(P). Let us cosider $\eta_{\mathbb{M}}=(\eta|M)$ which is clearly an element of B(M). Then, by Proposition 2, $\mu(M, \eta_{\mathbb{M}})$ is even. Since we can write

$$\eta = (\eta | U(P)) \cup \bigcup_{M} (\eta | M)$$
,

and $(\eta|U(P)) \cap (\eta|M) = (\eta|M)$, we see $\mu(M, \eta_M) = \mu_M(U(P))$. Thus, $\mu_M(U(P))$ must be even. This completes the proof of Theorem 1.

Corollary to Theorem 1. Let P be a closed fake surface and η the element of B(U(P)). If $\mu(U(P), \eta)$ is odd, then P can not be a spine of a 3-manifold.

4. An answer to Problem 2

Let P be a closed fake surface. In this section, we use the concept of a decomposition $U(P) = E_1 \cup \cdots \cup E_n$ of U(P). For the definition of a decomposition of U(P), see Definition 3 [1]. And, as is seen in [1], we can assume that E_i is a T-bundle embedded in U(P).

First of all, we prove the following theorem.

HIROSHI IKEDA

Theorem 2. Let P be a closed fake surface and η the element of B(U(P)). Then, +B(P) is non-empty if and only if η is a solid torus with certain genus.

And, in Theorem 3, we obtain a characterization of U(P) so that the element η of B(U(P)) is a solid torus with certain genus.

Theorem 3. Let P be a closed fake surface and η the element of B(U(P)). Then, η is a solid torus with certain genus if and only if, for any decomposition $U(P) = E_1 \cup \cdots \cup E_n$, $E_i \neq S \times \tau T$ holds for any $i, 1 \leq i \leq n$.

Proof of Theorem 2. "Necessity" is trivial, for η is unique. So, we prove just "Sufficiency". Suppose that η is a solid torus with certain genus. For an element M of M(P), take the unique element η_M of +B(M) by Proposition 1. If M is with boundary, there exists some disjoint proper 1-balls A_i , $i=1,\dots,n$, in M such that $M_1=\overline{M-N(A_M)}$ is a 2-ball, where A_M means the union of the 1-balls A_i and $N(A_M)$ is a regular neighborhood of A_M in M meeting the boundary regularly. Now, we have

$$\eta_{\mathtt{M}} = (\eta_{\mathtt{M}}|A_{\mathtt{M}}) \cup (\eta_{\mathtt{M}}|M_1)$$
.

Then, it is not hard to attach $\bigcup_{M}(\eta_{M}|A_{M})$ to η so that the block bundle $\eta_{1}=\eta \cup \bigcup_{M}(\eta_{M}|A_{M})$ over $U(P) \cup \bigcup_{M}A_{M}$ is a solid torus, because we can regard each connected component of $\bigcup_{M}(\eta_{M}|A_{M})$ to be a 1-handle to η . Then, attaching $\bigcup_{M}(\eta_{M}|M_{1})$ to η_{1} by the natural way, we obtain a required element of +B(P). Thus, Theorem 2 is established.

Proof of Theorem 3. "Necessity" is trivial from Lemma 24 [1]. So, we prove just "Sufficiency". Let r be the rank of $H_1(U(P))$. The proof goes by induction on r. When r=1, it is known by Lemma 5 [1] and the hypothesis that $U(P)=E_1$ is either $S \times T$ or $S \times \sigma T$. Then, B(U(P)) consists of a solid torus with genus 1. Let us consider $U_1=E_1\cup\cdots\cup E_{n-1}$. Then, it is not hard to see that there exists a closed fake surface P_1 with $U(P_1)=U_1$. Since any decomposition of U(P) contains no $S \times \tau T$, so is with one of $U_1=U(P_1)$. Thus, by the inductive hypothesis, $B(U_1)$ consists of a solid torus, say η_1 , because rank of $H_1(U_1) \leq r-1$ is clear. Since we can write

$$A = \overline{E_n - \bigcup_x (st(x, U(P)) \cap E_n)} = \bigcup_j (T \times I)_j$$

as in [1], where x is a point of $\mathfrak{S}_{\mathfrak{s}}(P)$, we can regard $(\eta|A)$ as 1-handles $H_{\mathfrak{s}}$ attached to $(\eta|\overline{U(P)-A})$. It is easy to see that η_1 and $(\eta|\overline{U(P)-A})$ are homeomorphic. Then, we can write

$$\eta = \eta_1 \cup \bigcup_i H_j$$
.

We have to show that η is a solid torus. Suppose not. Then, there must be a non-orientable handle H_s for some s. Let α denote the 1-ball $(o(T) \times I)_s$. Here, we can assume

$$\eta_{s} = \eta_{1} \cup \bigcup_{j \leq s} H_{j}$$

to be orientable, i.e. a solid torus. Then, there exists a 1-ball β in $\eta_s \cap \mathfrak{S}_2(P)$ such that $\gamma = \alpha \cup \beta$ is a 1-sphere. Then, we obtain a decomposition $U(P) = E'_1 \cup \cdots$ $\cup E'_m$ of U(P) such that γ is the base space of some E'_k . Now, the regular neighborhood of γ in η is a solid Klein bottle, because H_s is a non-orientable handle, so E'_k must be $S \times \tau T$. This is a contradiction. This completes the proof.

REFERENCES

[1] H. Ikeda, Acyclic fake surfaces, Topology 10 (1971), p. 9-36.

 [2] ——, Singular block bundles, The Yokohama Math. J. 22 (1974), 79-100.
 [3] ——, Orientable 3-manifolds as singular block bundles, The Yokohama Math. J. 22 (1974), 141-149.

> Kobe University, Nada, Kobe, Japan