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1. Introduction

In this paper, we use the definitions and notations introduced in $[11, [2]$ and
[3]. For example, for a fake surface $P$ without $\mathfrak{S}_{\tau}(P)$ (for the numbering of the
singularities of $P$, we use the definition made in [21), let $B(P)$ and $+B(P)$ denote
the set of singular block bundles over $P$ with fiberset $\Phi^{1}$ and the subset of $B(P)$

consisting of orientable 3-manifolds, respectively. Singular block bundles are
defined in [21 and we obtained the following theorem in [2].

Theorem. $B(P)$ consists of 3-manifolds, if it is non-empty.
What we try to do in this paper is to give answers to the following two

problems.

Problem 1. How can we obtain a characterization of the fake surfaces
which are spines of $3- man\dot{j}folds$ ?

Problem 2. How can we obtain a characterization of the fake surfaces
which are spines of orientable 3-manifolds?

In \S 2, we study about block bundles over 2-manifolds and review some lemmas
which are already proved.

In \S 3, we obtain an answer to Problem 1 in Theorem 1, that is, a necessary
and sufficient condition for closed fake surfaces to be spines of 3-manifolds

In \S 4, we get a necessary and sufficient condition for closed fake surfaces to
be spines of orientable 3-manifolds in Theorem 2 and Theorem 3 which gives an
answer to Problem 2.

The author thanks all the members of All Japan Combinatorial Topology Study
Group for many discussions.

2. Block bundles over 2-manlfolds

The following proposition is already stated in [31.

Proposition 1. For a $2- man\dot{j}foldM,$ $+B(M)$ consists of exactly one element.
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In this section, we prove another proposition without which we can not obtain
an answer to Problem 1.

Definition 2. Let $P$ be a fake surface with boundary $\dot{P}=Q_{1}\cup\cdots\cup Q_{n}$ , where
$Q_{i}$ means a connected component of $\dot{P}$. Suppose that $P$ is contained in a 3-manifold
$V$ properly. Then, we say that $Q_{\ell}$ is an irregular boundary of $P$ in $V$ if a regular
$neighborh\ovalbox{\tt\small REJECT} dN(Q_{\ell},\dot{V})$ of $Q_{l}$ in $\dot{V}$ is non-orientable and is a regular one of $P$ in
$V$ if $N(Q_{i},\dot{V})$ is orientable. By $\mu(P, V)$ , we denote the number of the irregular
boundaries of $P$ in $V$.

Proposition 2. Let $M$ be a 2-manifold with boundary $\dot{M}=b_{1}\cup\cdots\cup b_{n}$ . Then,
there exists an element $\eta$ in $B(M)$ such that $b_{\ell}$ is irregular for $ 1\leqq i\leqq\mu$ and
is reqular for $\mu+1\leqq i\leqq n$ in $\eta$ , if and only if $\mu$ is even.

Proof of “ Sufficiency” of Proposition 2. Suppose that $\mu$ is even. We con-
struct an element $\eta$ of $B(M)$ so that $\eta$ satisfies the required condition. Let $D$ be
a punctured disk in $M$ with $D=b_{0}\cup b_{1}\cup\cdots\cup b_{\mu}$ , where $b_{0}$ is contained in the in-
terior $M^{o}$ of $M$. Then, $D$ can be regarded as a 2-ball $B$ with $\mu$ untwisted bands
$B,$ $ 1\leqq i\leqq\mu$ , as shown in Fig. 1. More presicely, we can assume the following.
Put $B_{i}=C_{\ell}\times J$, where $C_{i}$ is a l-ball and $J$ denotes the closed interval [–1, 1]. Then,

(1) $ B_{\ell}\cap B_{j}=\emptyset$ , if $i\neq i$ ,

Fig. 1.
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(2) $B_{i}\cap B=\dot{B}_{i}\cap\dot{B}$ consists of disjoint two l-balls $\dot{C}_{l}\times J$.
(3) There exists a l-ball $A_{\ell}$ in $\dot{B}$ such that $b_{i}$ is the union of $A_{t}$ and $C_{\ell}\times 1$ .

Now, let us consider the 3-balls $\tilde{B}=B\times J$ and $\tilde{B}_{i}=B_{i}\times J$ which are clearly block
bundles over $B$ and $B_{\ell}$ , respectively. Put $\dot{C}_{\ell}=c_{1}\cup c_{2}$ . We define a homeomorphism
$h_{\ell}$ from $\dot{C}_{\ell}\times J\times J$ onto itself by

$h_{l}((c, t_{1}, t_{2}))=\left\{\begin{array}{l}(c, t_{1}, t_{2}), if c=c_{1} ,\\(c, t_{1}, -t_{2}), if c=c_{2}.\end{array}\right.$

Note that $h_{\ell}$ is an equivalence of the block bundle $\dot{C}_{\ell}\times J\times J$ over $\dot{C}_{\ell}\times J$. Then,

we obtain a block bundle $\eta_{1}$ over $D$ from $\tilde{B}$ by attaching all the $\tilde{B}_{\ell}$ by the
homeomorphism $h_{\ell}$ . Remember that $\mu$ is even and

$b_{0}=\bigcup_{:}C_{\ell}\times\{-1\}\cup(B-(\bigcup_{:}(A_{\ell}\cup\dot{C}_{\ell}\times J))^{o}$

Then, the restriction $(\eta_{1}|b_{0})$ is a band from the definition of the attaching home-
omorphisms $h_{\ell}$ . On the other hand, let us consider the block bundle $\eta_{2}=\overline{(M-D)}$

$\times J$ over $\overline{M-D}$. Note that $b_{0}$ is also a boundary component of $\overline{M-D}$ and $(\eta_{2}|b_{0})$

$=b_{0}\times J$ is a band. Thus, we obtain an element $\eta$ of $B(M)$ from $\eta_{1}$ and $\eta_{2}$ by
identifying $(\eta_{1}|b_{0})$ and $(\eta_{2}|b_{0})$ by an equivalence between them. Now, we have to
show that $b_{l}$ is irregular for $ 1\leqq i\leqq\mu$ and is regular for $\mu+1\leqq i\leqq n$ in $\eta$ . It is
easy to see

$(\eta|b_{\ell})=\left\{\begin{array}{l}(\eta_{1}|b_{\ell}), if 1\leqq i\leqq\mu.\\(\eta_{2}|b_{i}), if \mu+1\leqq i\leqq n.\end{array}\right.$

Then, $b_{\ell}$ is regular in $\eta$ for $\mu+1\leqq i\leqq n$ , because $(\eta_{2}|b_{i})=b_{i}\times J$ is a band. And for
$ 1\leqq i\leqq\mu$ , it follows from the definition of $h_{l}$ that $(\eta_{1}|b_{\ell})$ is a Mobius band, so $b_{\ell}$ is
irregular in $\eta$ .

In order to prove ” Necessity ” of Proposition 2, we need some lemmas.

Lemma 1. Let $M$ be a $M\ddot{o}$bius band and $W$ a k-sheeted covering of $M$.
If $k$ is even, then the number of the boundary components of $W$, denoted by
$\#\dot{W}$, is even.

Proof. Put $W=W_{1}\cup\cdots\cup W_{n}$ , where $W_{\ell}$ means a connected component of
$W$. Then, $W_{\ell}$ is, naturally, a covering of $M$, say $k_{\ell}$-sheeted. We can assume
that the number $k_{i}$ is odd for $1\leqq i\leqq m$ and is even for $m+1\leqq i\leqq n$ for some $m$ .
It is easy to see that $W_{\ell}$ is a Mobius band for $1\leqq i\leqq m$ and a band form $m+1$

$\leqq i\leqq n$ . Hence $\#\dot{W}=m+2(n-m)$ . From the assumption, $k=\sum k_{\ell}$ is even, so $m$

must be even. Thus, $\#\dot{W}$ is even. This completes the proof of Lemma 1.
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And, we prove one more lemma from Lemma 1.

Lemma 2. Let $M$ be a 2-manifold and $W$ a k-sheeted covering of M. If
$k$ is even, then $\#\dot{W}$ is even.

Proof. Case 1. Suppose that $M$ is an orientable 2-manifold. Let $\chi(M)$

denote the Euler characteristic of $M$. Then, $\chi(M)$ is given by

$\chi(M)=2-2H_{r}-\#\dot{M}$ ,

wheae $H_{r}$ denotes the number of the handles of $M$. Since $W$ is also orientable
and is a k-sheeted covering of $M$, we obtain the following easily.

$\#\dot{W}=2-2H_{W}-k\chi(M)$ .
Thus, $\#\dot{W}$ is even, because $k$ is assumed to be even.

Case 2. Suppose that $M$ is a non-orientable 2-manifold. Then, we can write
$M$ uniquely as

$M=P_{1}H\cdots bP_{n}HD$ ,

where $P_{\ell}$ is a projective plane, $D$ a punctured disk and ta means the connected
sum. The proof goes by induction on $n$ . When $n=0$ , it follows from Case 1
above, because $M=D$ is orientable. Let $A$ denote a Mobius band in $P_{n}$ and $M_{1}$

$=M-\mathring{A}$ . Then, again, we can write

$M_{1}=P_{1}H\cdots HP_{n-1}HD_{1}$ ,

where $D_{1}$ is a punctured disk with one more boundary components than $D$. Let
$p$ be the covering projection from $W$ to $M$ and Put $W_{1}=p^{-1}(M_{1})$ . Then, $W_{1}$ is
clearly a k-sheeted covering of $M_{1}$ . Thus, by the inductive hypothesis, $\#\dot{W}_{1}$ is
even. Now, let us consider $W_{2}=p^{-1}(A)$ . Again, $W_{2}$ is a k-sheeted covering of
$A$ . Since $A$ is a Mobius band, $\#\dot{W}_{2}$ is even by Lemma 1. We obtain $\#\dot{W}=\#\dot{W}_{1}$

$-\#\dot{W}_{2}$ , because $W=W_{1}\cup W_{2}$ and $W_{1}\cap W_{2}=\dot{W}_{1}\cap\dot{W}_{2}=\dot{W}_{2}$ . Thus, $\#\dot{W}$ is even.

Proof of ” Necessity“ of Proposition 2. We can regard $V$ as a block bundle
over $M$. Put $W=(V)-(V|\dot{M})^{o}$ . Then, $W$ is a double covering of $M$. It is not
hard to see

$\#\dot{W}=2(n-\mu)+\mu$ .
Since $\#\dot{W}$ is even by Lemma 2, $\mu$ has to be even. This completes the proof of
Proposition 2.
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3. An answer to Problem 1

Let $P$ be a closed fake surface and $\eta$ an element of $B(U(P))$ . Note that $\eta$

is unique by the following proposition in [31.

Proposition 3. For a closed fake surface $P,$ $B(U(P))$ consists of exactly
one element.

By $\mu_{I}(U(P))$ , we denote the number of the boundary components of an element
$M$ of $M(P)$ which are irregular in $\eta$ as boundary component8 of $U(P)$ .

Then, we obtain a required theorem.

Theorem 1. Let $P$ be a closed fake surface. Then, $B(P)$ is non-empty if
and only if $\mu_{M}(U(P))$ is even for any element $M$ of $M(P)$ .

Proof. Put $\dot{M}=b_{1}\cup\cdots\cup b_{n}$ , and let $\eta_{\sigma}$ be the element of $B(U(P))$ . First,

we prove “ Sufficiency”. Suppose that $b_{\ell}$ is irregular for $ 1\leqq i\leqq\mu$ and is regular

otherwise in $\eta_{U}$ , where $\mu=\mu_{r}(U(P))$ is even. Then, by Proposition 2, we can find
a block bundle $\eta_{K}$ in $B(M)$ such that $b_{\ell}$ is irregular for $ 1\leqq i\leqq\mu$ and is regular

otherwise in $\eta_{r}$ . That is, the regular neighborhood $(\eta_{r}|b)$ is a Mobius band if
$b_{i}$ is irregular and is a band if $b_{i}$ is regular. On the other hand, it is known
that $(\eta_{U}|b_{\ell})$ is a M\"obius band for $ 1\leqq i\leqq\mu$ and is a band for $\mu+1\leqq i\leqq n$ . Then,
it is not hard to obtain an element $\eta$ of $B(P)$ from $\eta_{U}$ and $\eta_{p}$ by identifyng them
at $(\eta_{U}|b_{\ell})$ and $(\eta_{r}|b_{\ell})$ for all $M$ of $M(P)$ . Next, we prove “ Necessity”. Suppose
that $\eta$ is an element of $B(P)$ . Let us cosider $\eta_{r}=(\eta|M)$ which is clearly an element
of $B(M)$ . Then, by Proposition 2, $\mu(M, \eta_{r})$ is even. Since we can write

$\eta=(\eta|U(P))\cup\bigcup_{M}(\eta|M)$ ,

and $(\eta|U(P))\cap(\eta|M)=(\eta|\dot{M})$ , we see $\mu(M, \eta_{r})=\mu_{r}(U(P))$ . Thus, $\mu_{r}(U(P))$ must be
even. This completes the proof of Theorem 1.

Corollary to Theorem 1. Let $P$ be a closed fake surface and $\eta$ the element
of $B(U(P))$ . If $\mu(U(P), \eta)$ is odd, then $P$ can not be a spine of a 3-manifold.

4. An answer to Problem 2

Let $P$ be a closed fake surface. In this section, we use the concept of a
decomposition $U(P)=E_{1}\cup\cdots\cup E_{n}$ of $U(P)$ . For the definition of a decomposition

of $U(P)$ , see Definition 3 [1]. And, as is seen in [1], we can assume that $E$ is
a T-bundle embedded in $U(P)$ .

First of all, we prove the following theorem.
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Theorem 2. Let $P$ be a closed fake surface and $\eta$ the element of $B(U(P))$ .
Then, $+B(P)$ is non-empty if and only if $\eta$ is a solid torus with certain
genus.

And, in Theorem 3, we obtain a characterization of $U(P)$ so that the element
$\eta$ of $B(U(P))$ is a solid torus with certain genus.

Theorem 3. Let $P$ be a closed fake surface and $\eta$ the element of $B(U(P))$ .
Then, $\eta$ is a solid torus with certain genus if and only if, for any decomposi-
tion $U(P)=E_{i}\cup\cdots\cup E_{n},$ $E_{\ell}\neq S\times\tau T$ holds for any $i,$ $1\leqq i\leqq n$ .

Proof of Theorem 2. ” Necessity ” is trivial, for $\eta$ is unique. So, we prove
just “ Sufficiency”. Suppose that $\eta$ is a solid torus with certain genus. For an
element $M$ of $M(P)$ , take the unique element $\eta_{K}$ of $+B(M)$ by Proposition 1. If
$M$ is with boundary, there exists some disjoint proper l-balls $A_{\ell},$ $i=1,$ $\cdots,$ $n$ , in
$M$ such that $M_{1}=\overline{M-N(A_{r}}$) is a 2-ball, where $A_{r}$ means the union of the l-balls
$A_{i}$ and $N(A_{r})$ is a regular neighborhood of $A_{K}$ in $M$ meeting the boundary
regularly. Now, we have

$\eta_{\overline{B}}-(\eta_{r}|A_{r})\cup(\eta_{r}|M_{1})$ .
Then, it is not hard to attach $\bigcup_{M}(\eta_{K}|A_{K})$ to $\eta$ so that the block bundle $\eta_{1}=\eta\cup$

$\bigcup_{M}(\eta_{r}|A_{r})$ over $U(P)\cup\cup A_{r}$ is a solid torus, because we can regard each connected
component of $\bigcup_{M}(\eta_{K}|A_{M}^{M})$ to be a l-handle to $\eta$ . Then, attaching $\bigcup_{M}(\eta_{K}|M_{1})$ to $\eta_{1}$

by the natural way, we obtain a required element of $+B(P)$ . Thus, Theorem 2
is established.

Proof of Theorem 3. “Necessity” is trivial from Lemma 24 [1]. So, we prove
iust “Sufficiency”. Let $r$ be the rank of $H_{1}(U(P))$ . The proof goes by induction
on $r$ . When $r=1$ , it is known by Lemma 5 [1] and the hypothesis that $U(P)=E_{1}$

is either $S\times T$ or $S\times\sigma T$. Then, $B(U(P))$ consists of a solid torus with genus 1.
Let us consider $U_{1}=E_{1}\cup\cdots\cup E_{n-1}$ . Then, it is not hard to see that there exists
a closed fake surface $P_{1}$ with $U(P_{1})=U_{1}$ . Since any decompovition of $U(P)$ con-
tains no $S\times\tau T$, so is with one of $U_{1}=U(P_{1})$ . Thus, by the inductive hypothesis,
$B(U_{1})$ consists of a solid torus, say $\eta_{1}$ , because rank of $H_{1}(U_{1})\leqq r-1$ is clear.
Since we can write

$A=\overline{E_{n}-\bigcup_{x}(st(x,U(P))\cap E_{n})}=\bigcup_{j}(T\times I)_{f}$

as in [11, where $x$ is a point of $\mathfrak{S}_{8}(P)$ , we can regard $(\eta|A)$ as l-handle8 $H_{j}$ at-
tached to ($\eta|\overline{U(P)-A)}$. It is easy to see that $\eta_{1}$ and $(\eta|\overline{U(P)-A})$ are home-
omorphic. Then, we can write
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$\eta=\eta_{1}\cup\bigcup_{j}H_{j}$ .

We have to show that $\eta$ is a solid torus. Suppose not. Then, there must be a
non-orientable handle $H_{l}$ for some $s$ . Let $\alpha$ denote the l-ball $(o(T)\times I).$ . Here,

we can assume

$\eta.=\eta_{1}\cup\bigcup_{j<*}H_{j}$

to be orientable, i.e. a solid torus. Then, there exists a l-ball $\beta$ in $\eta.\cap \mathfrak{S}_{2}(P)$

such that $\gamma=\alpha\cup\beta$ is a l-sphere. Then, we obtain a decomposition $ U(P)=E_{1}^{\prime}\cup\cdots$

$\cup E_{m}^{\prime}$ of $U(P)$ such that $\gamma$ is the base space of some $E_{k}^{\prime}$ . Now, the regular neigh-

borhood of $\gamma$ in $\eta$ is a solid Klein bottle, because $H_{l}$ is a non-orientable handle,

so $E_{k}^{\prime}$ must be $S\times\tau T$. This is a contradiction. This completes the proof.
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