FAKE SURFACES WHICH ARE SPINES OF 3-MANIFOLDS

By
Hiroshi Ikeda

(Received April 25, 1973)

1. Introduction

In this paper, we use the definitions and notations introduced in [1], [2] and [3]. For example, for a fake surface P without $\Im_{7}(P)$ (for the numbering of the singularities of P, we use the definition made in [2]), let $B(P)$ and $+B(P)$ denote the set of singular block bundles over P with fiberset Φ^{1} and the subset of $B(P)$ consisting of orientable 3-manifolds, respectively. Singular block bundles are defined in [2] and we obtained the following theorem in [2].

Theorem. $B(P)$ consists of 3 -manifolds, if it is non-empty.
What we try to do in this paper is to give answers to the following two problems.

Problem 1. How can we obtain a characterization of the fake surfaces which are spines of 3 -manifolds?

Problem 2. How can we obtain a characterization of the fake surfaces which are spines of orientable 3-manifolds?

In §2, we study about block bundles over 2 -manifolds and review some lemmas which are already proved.

In § 3, we obtain an answer to Problem 1 in Theorem 1, that is, a necessary and sufficient condition for closed fake surfaces to be spines of 3 -manifolds

In §4, we get a necessary and sufficient condition for closed fake surfaces to be spines of orientable 3 -manifolds in Theorem 2 and Theorem 3 which gives an answer to Problem 2.

The author thanks all the members of All Japan Combinatorial Topology Study Group for many discussions.

2. Block bundles over 2-manifolds

The following proposition is already stated in [3].
Proposition 1. For a 2-manifold $M,+B(M)$ consists of exactly one element.

In this section, we prove another proposition without which we can not obtain an answer to Problem 1.

Definition 2. Let P be a fake surface with boundary $\dot{P}=Q_{1} \cup \cdots \cup Q_{n}$, where Q_{i} means a connected component of \dot{P}. Suppose that P is contained in a 3 -manifold V properly. Then, we say that Q_{i} is an irregular boundary of P in V if a regular neighborhood $N\left(Q_{i}, \dot{V}\right)$ of Q_{i} in \dot{V} is non-orientable and is a regular one of P in V if $N\left(Q_{i}, \dot{V}\right)$ is orientable. By $\mu(P, V)$, we denote the number of the irregular boundaries of P in V.

Proposition 2. Let M be a 2-manifold with boundary $\dot{M}=b_{1} \cup \cdots \cup b_{n}$. Then, there exists an element η in $B(M)$ such that b_{i} is irregular for $1 \leqq i \leqq \mu$ and is regular for $\mu+1 \leqq i \leqq n$ in η, if and only if μ is even.

Proof of "Sufficiency" of Proposition 2. Suppose that μ is even. We construct an element η of $B(M)$ so that η satisfies the required condition. Let D be a punctured disk in M with $D=b_{0} \cup b_{1} \cup \cdots \cup b_{\mu}$, where b_{0} is contained in the interior $\stackrel{\circ}{M}$ of M. Then, D can be regarded as a 2 -ball B with μ untwisted bands $B_{i}, 1 \leqq i \leqq \mu$, as shown in Fig. 1. More presicely, we can assume the following. Put $B_{i}=C_{i} \times J$, where C_{i} is a 1 -ball and J denotes the closed interval $[-1,1]$. Then,
(1) $B_{i} \cap B_{j}=\varnothing$, if $i \neq j$,

Fig. 1.
(2) $B_{i} \cap B=\dot{B}_{i} \cap \dot{B}$ consists of disjoint two 1-balls $\dot{C}_{i} \times J$.
(3) There exists a 1-ball A_{i} in \dot{B} such that b_{i} is the union of A_{i} and $C_{i} \times 1$. Now, let us consider the 3 -balls $\tilde{B}=B \times J$ and $\tilde{B}_{i}=B_{i} \times J$ which are clearly block bundles over B and B_{i}, respectively. Put $\dot{C}_{i}=c_{1} \cup c_{2}$. We define a homeomorphism h_{i} from $\dot{C}_{i} \times J \times J$ onto itself by

$$
h_{i}\left(\left(c, t_{1}, t_{2}\right)\right)=\left\{\begin{array}{l}
\left(c, t_{1}, t_{2}\right), \text { if } c=c_{1} \\
\left(c, t_{1},-t_{2}\right), \text { if } c=c_{2}
\end{array}\right.
$$

Note that h_{i} is an equivalence of the block bundle $\dot{C}_{i} \times J \times J$ over $\dot{C}_{i} \times J$. Then, we obtain a block bundle η_{1} over D from \tilde{B} by attaching all the \tilde{B}_{i} by the homeomorphism h_{i}. Remember that μ is even and

$$
b_{0}=\bigcup_{i} C_{i} \times\{-1\} \cup\left(\dot{B}-\left(\cup_{i}\left(A_{i} \cup \dot{C}_{i} \times J\right)\right)^{\circ}\right.
$$

Then, the restriction $\left(\eta_{1} \mid b_{0}\right)$ is a band from the definition of the attaching homeomorphisms h_{i}. On the other hand, let us consider the block bundle $\eta_{2}=\overline{(M-D)}$ $\times J$ over $\overline{M-D}$. Note that b_{0} is also a boundary component of $\overline{M-D}$ and ($\eta_{2} \mid b_{0}$) $=b_{0} \times J$ is a band. Thus, we obtain an element η of $B(M)$ from η_{1} and η_{2} by identifying ($\eta_{1} \mid b_{0}$) and ($\eta_{2} \mid b_{0}$) by an equivalence between them. Now, we have to show that b_{i} is irregular for $1 \leqq i \leqq \mu$ and is regular for $\mu+1 \leqq i \leqq n$ in η. It is easy to see

$$
\left(\eta \mid b_{i}\right)=\left\{\begin{array}{l}
\left(\eta_{1} \mid b_{i}\right), \text { if } 1 \leqq i \leqq \mu \\
\left(\eta_{2} \mid b_{i}\right), \text { if } \mu+1 \leqq i \leqq n
\end{array}\right.
$$

Then, b_{i} is regular in η for $\mu+1 \leqq i \leqq n$, because $\left(\eta_{2} \mid b_{i}\right)=b_{i} \times J$ is a band. And for $1 \leqq i \leqq \mu$, it follows from the definition of h_{i} that $\left(\eta_{1} \mid b_{i}\right)$ is a Möbius band, so b_{i} is irregular in η.

In order to prove "Necessity" of Proposition 2, we need some lemmas.
Lemma 1. Let M be a Möbius band and W a k-sheeted covering of M. If k is even, then the number of the boundary components of W, denoted by \# \dot{W}, is even.

Proof. Put $W=W_{1} \cup \cdots \cup W_{n}$, where W_{i} means a connected component of W. Then, W_{i} is, naturally, a covering of M, say k_{i}-sheeted. We can assume that the number k_{i} is odd for $1 \leqq i \leqq m$ and is even for $m+1 \leqq i \leqq n$ for some m. It is easy to see that W_{i} is a Möbius band for $1 \leqq i \leqq m$ and a band form $m+1$ $\leqq i \leqq n$. Hence \# $\dot{W}=m+2(n-m)$. From the assumption, $k=\Sigma k_{i}$ is even, so m must be even. Thus, \# \dot{W} is even. This completes the proof of Lemma 1.

And, we prove one more lemma from Lemma 1.
Lemma 2. Let M be a 2-manifold and W a k-sheeted covering of M. If k is even, then \# \dot{W} is even.

Proof. Case 1. Suppose that M is an orientable 2-manifold. Let $\chi(M)$ denote the Euler characteristic of M. Then, $\chi(M)$ is given by

$$
\chi(M)=2-2 H_{X}-\# \dot{M},
$$

wheae H_{μ} denotes the number of the handles of M. Since W is also orientable and is a k-sheeted covering of M, we obtain the following easily.

$$
\# \dot{W}=2-2 H_{W}-k \chi(M) .
$$

Thus, \# \dot{W} is even, because k is assumed to be even.
Case 2. Suppose that M is a non-orientable 2 -manifold. Then, we can write M uniquely as

$$
M=P_{1} \boxminus \cdots \not P_{n} \vDash D,
$$

where P_{i} is a projective plane, D a punctured disk and means the connected sum. The proof goes by induction on n. When $n=0$, it follows from Case 1 above, because $M=D$ is orientable. Let A denote a Möbius band in P_{n} and M_{1} $=M-\AA$. Then, again, we can write

$$
M_{1}=P_{1} \boxminus \cdots \sharp P_{n-1} \boxminus D_{1},
$$

where D_{1} is a punctured disk with one more boundary components than D. Let p be the covering projection from W to M and put $W_{1}=p^{-1}\left(M_{1}\right)$. Then, W_{1} is clearly a k-sheeted covering of M_{1}. Thus, by the inductive hypothesis, \# \dot{W}_{1} is even. Now, let us consider $W_{2}=p^{-1}(A)$. Again, W_{2} is a k-sheeted covering of A. Since A is a Mobius band, \# \dot{W}_{2} is even by Lemma 1. We obtain \# $\dot{W}_{=}=\# \dot{W}_{1}$一\# \dot{W}_{2}, because $W=W_{1} \cup W_{2}$ and $W_{1} \cap W_{2}=\dot{W}_{1} \cap \dot{W}_{2}=\dot{W}_{2}$. Thus, \# \dot{W} is even.

Proof of "Necessity" of Proposition 2, We can regard V as a block bundle over M. Put $W=(V)^{\cdot}-(V \mid \dot{M})^{\circ}$. Then, W is a double covering of M. It is not hard to see

$$
\# \dot{W}=2(n-\mu)+\mu .
$$

Since \# \dot{W} is even by Lemma 2, μ has to be even. This completes the proof of Proposition 2.

3. An answer to Problem 1

Let P be a closed fake surface and η an element of $B(U(P))$. Note that η is unique by the following proposition in [3].

Proposition 3. For a closed fake surface $P, B(U(P))$ consists of exactly one element.

By $\mu_{M}(U(P))$, we denote the number of the boundary components of an element M of $M(P)$ which are irregular in η as boundary components of $U(P)$.

Then, we obtain a required theorem.
Theorem 1. Let P be a closed fake surface. Then, $B(P)$ is non-empty if and only if $\mu_{H}(U(P))$ is even for any element M of $M(P)$.

Proof. Put $\dot{M}=b_{1} \cup \cdots \cup b_{n}$, and let η_{0} be the element of $B(U(P))$. First, we prove "Sufficiency". Suppose that b_{i} is irregular for $1 \leqq i \leqq \mu$ and is regular otherwise in η_{J}, where $\mu=\mu_{M_{M}}(U(P))$ is even. Then, by Proposition 2, we can find a block bundle $\eta_{\boldsymbol{k}}$ in $B(M)$ such that b_{i} is irregular for $1 \leqq i \leqq \mu$ and is regular otherwise in $\eta_{\boldsymbol{\mu}}$. That is, the regular neighborhood $\left(\eta_{\boldsymbol{\mu}} \mid b_{t}\right)$ is a Möbius band if b_{i} is irregular and is a band if b_{i} is regular. On the other hand, it is known that $\left(\eta_{U} \mid b_{i}\right)$ is a Möbius band for $1 \leqq i \leqq \mu$ and is a band for $\mu+1 \leqq i \leqq n$. Then, it is not hard to obtain an element η of $B(P)$ from η_{U} and η_{μ} by identifyng them at $\left(\eta_{U} \mid b_{i}\right)$ and $\left(\eta_{\boldsymbol{H}} \mid b_{i}\right)$ for all M of $M(P)$. Next, we prove "Necessity". Suppose that η is an element of $B(P)$. Let us cosider $\eta_{\mu}=(\eta \mid M)$ which is clearly an element of $B(M)$. Then, by Proposition 2, $\mu\left(M, \eta_{\mu}\right)$ is even. Since we can write

$$
\eta=(\eta \mid U(P)) \cup \underset{M}{\cup}(\eta \mid M),
$$

and $(\eta \mid U(P)) \cap(\eta \mid M)=(\eta \mid \dot{M})$, we see $\mu\left(M, \eta_{\mu}\right)=\mu_{\mathcal{M}}(U(P))$. Thus, $\mu_{M}(U(P))$ must be even. This completes the proof of Theorem 1 .

Corollary to Theorem 1. Let P be a closed fake surface and η the element of $B(U(P))$. If $\mu(U(P), \eta)$ is odd, then P can not be a spine of a 3-manifold.

4. An answer to Problem 2

Let P be a closed fake surface. In this section, we use the concept of a decomposition $U(P)=E_{1} \cup \cdots \cup E_{n}$ of $U(P)$. For the definition of a decomposition of $U(P)$, see Definition 3 [1]. And, as is seen in [1], we can assume that E_{1} is a T-bundle embedded in $U(P)$.

First of all, we prove the following theorem.

Theorem 2. Let P be a closed fake surface and η the element of $B(U(P))$. Then, $+B(P)$ is non-empty if and only if η is a solid torus with certain genus.

And, in Theorem 3, we obtain a characterization of $U(P)$ so that the element η of $B(U(P))$ is a solid torus with certain genus.

Theorem 3. Let P be a closed fake surface and η the element of $B(U(P))$. Then, η is a solid torus with certain genus if and only if, for any decomposition $U(P)=E_{1} \cup \cdots \cup E_{n}, E_{i} \neq S \times \tau T$ holds for any $i, 1 \leqq i \leqq n$.

Proof of Theorem 2. "Necessity" is trivial, for η is unique. So, we prove just "Sufficiency". Suppose that η is a solid torus with certain genus. For an element M of $M(P)$, take the unique element $\eta_{\boldsymbol{k}}$ of $+B(M)$ by Proposition 1. If M is with boundary, there exists some disjoint proper 1-balls $A_{i}, i=1, \cdots, n$, in M such that $M_{1}=\overline{M-N\left(A_{\mu}\right)}$ is a 2-ball, where $A_{\boldsymbol{M}}$ means the union of the 1-balls A_{i} and $N\left(A_{\mu}\right)$ is a regular neighborhood of A_{μ} in M meeting the boundary regularly. Now, we have

$$
\eta_{\boldsymbol{M}}=\left(\eta_{\boldsymbol{M}} \mid A_{\boldsymbol{K}}\right) \cup\left(\eta_{\mathbf{M}} \mid M_{1}\right) .
$$

Then, it is not hard to attach $\cup_{M}\left(\eta_{\mu} \mid A_{H}\right)$ to η so that the block bundle $\eta_{1}=\eta \cup$ $\cup_{M}\left(\eta_{\mathcal{H}} \mid A_{\mathcal{H}}\right)$ over $U(P) \cup \bigcup_{M} A_{M}$ is a solid torus, because we can regard each connected ${ }_{\text {component of }}^{M} \bigcup_{M}\left(\eta_{M} \mid A_{\mu}\right)^{M}$ to be a 1-handle to η. Then, attaching $\bigcup_{M}\left(\eta_{M} \mid M_{1}\right)$ to η_{1} by the natural way, we obtain a required element of $+B(P)$. Thus, Theorem 2 is established.

Proof of Theorem 3. "Necessity" is trivial from Lemma 24 [1]. So, we prove just "Sufficiency". Let r be the rank of $H_{1}(U(P))$. The proof goes by induction on r. When $r=1$, it is known by Lemma 5 [1] and the hypothesis that $U(P)=E_{1}$ is either $S \times T$ or $S \times \sigma T$. Then, $B(U(P))$ consists of a solid torus with genus 1 . Let us consider $U_{1}=E_{1} \cup \cdots \cup E_{n-1}$. Then, it is not hard to see that there exists a closed fake surface P_{1} with $U\left(P_{1}\right)=U_{1}$. Since any decomposition of $U(P)$ contains no $S \times \tau T$, so is with one of $U_{1}=U\left(P_{1}\right)$. Thus, by the inductive hypothesis, $B\left(U_{1}\right)$ consists of a solid torus, say η_{1}, because rank of $H_{1}\left(U_{1}\right) \leqq r-1$ is clear. Since we can write

$$
A=\overline{E_{n}-\bigcup_{x}\left(s t(x, U(P)) \cap E_{n}\right)}=\bigcup_{j}(T \times I)_{j}
$$

as in [1], where x is a point of $\Im_{8}(P)$, we can regard $(\eta \mid A)$ as 1 -handles H_{j} attached to $\left(\eta \mid \overline{U(P)-A)}\right.$. It is easy to see that η_{1} and $(\eta \mid \overline{U(P)-A})$ are homeomorphic. Then, we can write

$$
\eta=\eta_{1} \cup \underset{j}{\cup} H_{j}
$$

We have to show that η is a solid torus. Suppose not. Then, there must be a non-orientable handle H_{s} for some s. Let α denote the 1 -ball $(o(T) \times I)_{s}$. Here, we can assume

$$
\eta_{s}=\eta_{1} \cup \bigcup_{j<s} H_{j}
$$

to be orientable, i.e. a solid torus. Then, there exists a 1-ball β in $\eta_{s} \cap \Im_{2}(P)$ such that $\gamma=\alpha \cup \beta$ is a 1 -sphere. Then, we obtain a decomposition $U(P)=E_{1}^{\prime} \cup \cdots$ $\cup E_{m}^{\prime}$ of $U(P)$ such that γ is the base space of some E_{k}^{\prime}. Now, the regular neighborhood of γ in η is a solid Klein bottle, because H_{s} is a non-orientable handle, so E_{k}^{\prime} must be $S \times \tau T$. This is a contradiction. This completes the proof.

REFERENCES

[1] H. Ikeda, Acyclic fake surfaces, Topology 10 (1971), p. 9-36.
[2] —, Singular block bundles, The Yokohama Math. J. 22 (1974), 79-100.
[3] , Orientable 3-manifolds as singular block bundles, The Yokohama Math. J. 22 (1974), 141-149.

Kobe University, Nada, Kobe, Japan

