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1. Introduction. This paper attempts to apply the theory of Palm measures
to renewal theory. Let P be a strictly stationary random measure on the real
line and P° the Palm measure for P. Daley [3] and Vere-Jones proved several
properties of the covariance measure and the spectral measure of P. In §3 of
this paper, applying Mecke’s theory of Palm measures, some results of [3] and
on the covariance measure V are proved under slightly different assumptions
and a sufficient condition for a Blackwell type renewal theorem:

1.1) %im V(I+t)=2a|I|, for every bounded interval I,
is given. The main result (Theorem 4.I) of the present paper concerning the

‘shift’ P* of P° is proved in §4. This theorem states that P* converges weakly
to a stationary random measure iff (1.1) holds. In §5 we prove an extension of
a theorem of Ryll-Nardzewski [9] which is needed to connect the theory of Palm
measures with renewal theory. In §6 previous results are applied to renewal
theory for sums of stationarily dependent sequences. It is well-known (say [4])
that an ordinary renewal process with i.i.d. positive aperiodic inter-renewal times
tends to a ‘steady state’ as time goes on. gives a precise meaning
to this phenomenon and shows that the corresponding fact holds in more general
situations.

2. Palm measure. Let R be the os-algebra of all Borel subsets of the real
line R and R, the ring consisting of all bounded Ae®R. Let B be the class of
all real-valued Baire function on R and @, the class of all continuous real-valued
functions on R whose supports are compact. The subclasses of B and €, consist-
ing of all non-negative functions are denoted by B* and €7 respectively.

Let M denote the set of all measures ¢ on R such that ¢(A4)<co for AeR,.
In what follows we write z,(¢)=2(f; ¢) for the integral Sf(t)go(dt), fe@, peM,
where an integral sign without limits means integration over the whole space.
This notation is also used for f€®B if this integral has meaning. Denoting by
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Xz=X(E'; -) the indicator of the set E we write z,(p)=2(A; ¢) for 2(X.; ¢)=¢(A),
AeR, pe M.

In this space M we introduce the vague topology. This is the coarsest topology
with respect to which every function z,, f€@, is continuous. A base for the
neighborhood system of ¢ € M is given by the class of all sets of the form

(2-1) U(fl;"';fn; €19° "y & 90)
={¢; e M, |2(fi; §)—2(fi; o)l <ei, 1<i<n},

where f,€6,, >0, 1<i<n, n>1.

It is known that M is a Polish space, i.e., M is homeomorphic to a complete
separable metric space. The o-algebra of all Borel subsets of M will be denoted
by M. M coincides with the smallest g-algebra with respect to which every z,,
A€, is measurable. For every feB* 2z, is M-measurable. The subset M, of
M consisting of all integer valued measures is closed and therefore M,e M. Since
M is Polish the product og-algebra, say, RxM coincides with the o-algebra of
Borel sets of the product topological space R X M.

For each t€ R a homeomorphism 7T, of M onto itself is defined by

(2.2) ' (Tp)(A)=p(A+t), peM, AeR.

The mapping from BRXM onto M which sends (f,¢) to T. is continuous and
therefore measurable with respect to the o-algebra R x .
An M-measurable real-valued function % will be called invariant if
(2.3) w(Tp)=ulp), peM, teR.
A measure P on (M,M) is called stationary if |
(2.4) P(T.E)=P(F), EecM, teR.

If P is a stationary measure and if % is a finite non-negative invariant function
then the measure u-P defined by

(2.5) (u-P)(E>=§xE<so)u(so)P<d<p), Eem,

is stationary.

A probability measure P on (M,) is called a random measure on R. A
random measure concentrated on M, is called a point process on R. Sometimes
these terms are used rather loosely to denote measures on (M, M) which are not
necessarily probability measures.

Lemma 2.1 (Mecke [8]). A o-finite measure P on (M, M) is stationary iff
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2.6) S“w(t, s, Top)o(ds) P(dg)dt= S S Sw(s, t, Tup)p(ds) P(de)dt

for every mon-negative RXRXM-measurable function w.
Lemma 2.2 (Mecke [8]). If P is a o-finite stationary measure on (M, IN)
then there exists a unique o-finite measure P° on (M, M) such that

@1 Su(so)P"(dso):SSy(S)u(T.SO)so(ds)P(dso)

Jor any mon-negative M-measurable functon u and any geB* such that
Sg(t)dt:l.

The measure P° defined by is called Palm measure for P. Taking u=1
in it is immediate that

2.8) P°(M)=Sz,(¢)P(dgo) if ge®d*, Sg(t)dt=1 .

If P is o-finite stationary and if #>0 is invariant then %-P is o¢-finite stationary
and it follows from that

2.9) (w-P)=u-P°.

If geB* and >0 is M-measurable then it follows from Lemma 2.1 and [Lemmal
2.2 that |

@.10) SSg(t)u(T_mP"(dso)dt:SSgg(smo(t)u(T,_,goxo(ds)P(dso)dt
= “Sg(s)go(t)u@)so(ds)P(dso)dt= Su(so)z,«o)P(dm ,

where g, € B*, Sgo(t)dtzzl.

Lemma 2.3 (Mecke [8]). Let P° be the Palm wmeasure for a stationary
a-finite meassure P on (M,WM). Then for every non-negative M-measurable
SJunction u with w(0)=0, where 0 on the left denotes the zero measure,

2.11) Su(so)P(dgo)=§§h(t, T_oyu( T-p)dt P(dp) ,
where h 18 a mon-negative RXM-measurable function such that h(t,0)=0 and
2.12) Sh(t,go)go(dt)=1 . peM, ¢#0.

This theorem shows that if we restrict ourselves to o-finite stationary measures
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such that P({0})=0 then P is uniquely determined by P°.

Lemma 2.4 (Mecke [8]). A measure Q on (M,R) 18 the Palm measure of
a o-finite stationary measure on (M, M) iff it satisfies the following three
conditions:

(i) @ 1is o-finite,

(i) Q{oh=0,

(iii) for every RXM-measurable v>0,

2.13) ggv(—t, To)p(d)Q(dp)= S §v<t, 2)p(dNQdY) .

3. Covariance measure and spectral measure. Throughout the rest of this
paper P is a o-finite stationary measure on (M, M) satisfying P({0})=0 and P° is
the Palm measure for P. Let V denote a not necessarily o-finite measure on %
defined by

3.1) V(d)= Sgo(A)P°(dgo) Aem.

Let (2) and (&) be Schwartz’s test function spaces on E. A measure p€ M

is called positive definite if it is positive definite in the sense of Schwartz’s
distribution [10], i.e., if

(3.2) “f(s) FeTDdsed)>0, fe(2).

The following theorem is essentially due to Daley and Vere-Jones [11].

Theorem 3.1. The following three statements are equivalent:
i) VeM,ie. V(A)<co for AeWR,,

(ii) V((—e,¢e)<oco for some >0,

(ii) S(¢(A))’P(dgo)<oo for AeR,.

In this case V is positive definite and satisfies

63 S S'v(s, s+t)dsV(dt)= S S S'v(s, D(ds)p(dt) P(dg)
for any Baire function v>0 on R In particular

(3.4) [{r@se+nasvian={z e Pae)

= S Sg(t)z;(T_,so)P%dsp)dt
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Sfor feB* and ge B+.

Proof. First assuming (iii) we prove (i) and the conclusion of the last half.
Let m denote the masure on the o-algebra R? of Borel sets of R? such that

(3.5) m(A, XA’)=SSS’“A" (Ay; t—)e(de)o(dt) Plde) ,

for A,eM, A,eR. It follows from (iii) that the value of m is finite for every
bounded Borel set. By using we have

m(Aitwx )= {14z s—was t—apaspan Py
= SSS:«AI; U As; t—8)(Tugp)(d8)( To)(dt) Pldgp)

= mx(Al; 9UAs; t—8)p(ds)o(dt) Pldo)
=m(A,XA4,), uck.

Thus for any fixed A.e R, the value of m(A4,X A,) is proportional to the Lebesgue
measure |A,| of A,:

(3-6) ‘ m(A1 XA2)= IAll . V*(Ag) ) A1 € SR ’ Az € mo .

The set function V* on R, is uniquely extended to a measure V* on R such that
V*e M and m=|-|X V*. For any Baire function v>0 on R? it follows from (8.5)

and that
3.7) “v(s, £)ds V*(dt) = S S g'v(s, t—8)p(ds)e(dt) P(dg) .

From (2.7 ) and [(3.7) we have that

V()= SzA(so)P"(dso) = Sgg(s)x(A; t—s)p(ds)o(dt) Pldy)

= SSQ(S)X(A; t)dsV*(dt)=V*(4), AecR.

Thus V=V* and therefore is equivalent to [8.83). It follows from with
v(8, t)=f(8)f(s+1%), fe (Z), that

ng(S)f—(s-l-t)ds V(dt)= Slzf(so)PP(d@zO ,

which shows that V is positive definite.
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Thus we have proved that (iii) implies (i) and the conclusion of the last half.
The implication (i)——)(ii) is obvious. To prove (ii)——>(iii) let 0<e<1 and I=
(—-—;—, %) It follows from that

S¢(I)2P(dso) = S S Sx(I; OUL; t)p(ds)p(dt) P(dy)
gm:c«—l, 1); X((—e, ¢); t—8)p(ds)p(dt) P(dy)
= Sso((—s, ) PY(dp)=V((—s, &) <o .

Together with and Schwarz inequality this implies (iii). is immediate
from [(3.3) and [2.10). This completes the proof.

Remark 3.1. The relation indicates that when P is a probability measure
V may be called the ‘covariance measure’ of P regarded as a stationary random
distribution [6]. Thus, loosely speaking, Theorem 3.1 says that the intensity
measure of the Palm measure P° coincides with the covariance measure of the
original stationary measure P.

Throughout the rest of this section assume Ve M. Since V is positive definite
it follows from Schwartz’s extension of Bochner’s theorem that V is the
Fourier transform of a tempered measure G: V=G, i.e.,

3.8) Sf(t) V(dt)=§f(t)G(dt) ,
where f€ (&) and
f(t)=§emf(x>dx , f(t)=—21—§e-“=f(w)dx .
7T

Since V is a symmetric measure implies that G is also a positive definite
measure: G=(2r)~*V. G is called the spectral measure of P.

Let a>0 and let f€ () be non-negative and satisfy Sf(t)dtzl. By we

have

1 . . _(sinat # —(
%SS"(I‘" 8)f(t s)dsV(dt)——S———at f0G@), L=(—a,a),

which converges to f(O)G({O})=G({0}) as g—oo., This implies immediately that

8.9) lim - V(L)=G{0) =1 .
2a

a--»co
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Theorem 3.2. If the spectral measure G is absolutely continuous with
respect to the Lebesgue measure except for a possible atom at the origin, t.e.,

if

(3.10)  G(A)=2-1(4; 0)+§ ritydt, Ae®,
A

with a locally integradble 7, then

(3.11) }lm VI+t)=2-111],

for every bounded interval I.

Proof. Approximate X, by non-negative functions in (') and apply Riemann-
Lebesgue lemma.

Remark 3.2. Applying the argument of p. 862 it can be shown that for
every directly Riemann integrable function g on ,R

lim Sg(s-—t) V(ds)=zS g(8)ds

holds iff (8.11) holds for every bounded interval I.

Remark 3.3. In addition to the assumptions of the theorem if 7 is assumed

to be of bounded variation in a neighborhood of the origin then it can be shown
that

(8.12) lim [V(I,)—2a1]=2~% ltmél r(t) .
4. Weak convergence of shift of Palm measure. Let P be a o-finite sta-

tionary measure on (M,M) and a=P°(M). In this section we prove the main
results of the present paper assuming that

@.1) S¢(A)P(dgo)<oo for Aef,, -
and
4.2) §¢(A)=P(d¢)<oo for Ae®R,.

It is immediate from that holds iff «<co and in this case
4.3) [ererPag)=al rtrat

for integrable feB. says is equivalent to Ve M. Let 1=
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lim (2a)~'V(I,) where I, denotes the interval (—a,a). Note that does not
imply in general.

Lemma 4.1. If (4.1) holds then P(U°)<oco for every meighborhood U of
0ec M.

Proof. If suffices to prove assuming that U is of the form
U={o; 2(f; 9)<e;, 1<i<n},

where f,€ €, ¢,>0, 1<i<n. Then the lemma follows from the following:

PUI< B P alfi 9)<e < B e [alfi oPUoI=a By o [ Ritdt <oo

In what follows P is assumed to satisfy {(4.1) and [(4.2). Let

vo(p)=(2a)o(l,), 9eM, a>0.

Let 4 denote the set of all o€ M such that the finite limit limv,(p) do not exist.
The set A4 is M-measurable and invariant. Let us define v(p)=0 for ¢e 4 and
v(p)= lim v,(p) for e 4°.

Lemma 4.2. ve L(P)NLAP)NL'(P°. As a—oo y, converges to v P-a.e.,
Poa.e., in LP) and in L(P°). If P(M)<oo then a=§udP.

Proof. It follows from classical ergodic theorems that ve L!(P)N L*(P), v,—v
P-a.e. and in L3(P) and a= SvdP when P(M)<oo. Since A4 is invariant P-null it

follows from that
Py = Sgg(t)xm; T0)p(dt) Pdp) = Sgg(mu; )o(dt) Pdp)=0 .

Thus v,—v P%a.e. Noting that
(@—1)vo-s(@)<avo(Tip)<(a+1)verilp) , peM, a>1, |81,

we have

Vu+1(¢)'—”($o) ’ a>1 ’ lslél-

Iva.(T:sa)_V(GD)IS a;]' pa_l(so)_v(so)‘ +‘ a'j;l

Hence if we choose g(t)=%((0, 1); t) then z,€ L*P) and
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S Iva(e) —v(@)| PO(dgp) = S Sg(s) Iva( Tup)—(Tp) lp(ds) P(dp)

ggz,@,)l e t P(dg) + qu«o) ( L, (o) —slp) | Pp)
Since (1—a~Y)y,_3—v, (1+a Yy, —v in L¥P) we have y,—v in L' (P°).

Lemma 4.3. If u>0 is invariant P-integrable then
(4.4 Su(sp)P°(dso)=Su(so)v(sO)P(dso) :
Proof. Letting g(t)=(2a) 'x(1,;t), a>0, in we have
Su(qn)P%dso):“ g(tyulp)p(dt)Pdy) = gu(so)»u(so)P(dqo) :

By assumption u-P is a finite stationary measure and if u is bounded then
(u-P)°(M)=(u-P°)(M)<co. Hence by

S““”) vale) P(de)= Su(so)v(so)P(dso)

which proves for bounded . For unbounded % truncation and monotone
convergence theorem can be used to obtain (4.4).

Lemma 4.4.
(4.5) gv(so)P(dso)SP%M)sa .

The equality holds iff v>0 P-a.e. or equivalently v>0 P-a.e.

Proof. The inequality is immediate from and Fatou’s lemma. Let
E={0p;v(¢)>0} and E,={p;v(p)>n"'}, n>1. For every n X(E,;-) is invariant
and P-integrable and therefore

P°(E,.)=§x(En; Pw@Pde), n>1,
by Lemma 4.3. Letting n—o we have
PAE)= Sx(E; ow(e)Pdo) ;

and therefore the equality in [4.5) holds iff v>0 P%a.e. If P(E‘)=0 then Xz-P=P
and by 0=(Xz- P)°=Xgz-P°. Hence P°(E°)=0. Conversely if P°(E)=0 then
by
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P(E)= S Sh(fu T_.p)X(E°; T_p)dtP°(dy)
= SSh(t, T_ o U(Ee; 0)dt P(dp)=0 .
Thus v>0 P-a.e. iff v>0 P°-a.e. This proves the lemma.
Lemma 4.5.
(4.6) |ertomorPag =a{rear
for integrable fe€B and
%) 1=ste) Pride)=ptor P .
Proof. From we have
= lim —2-1a—V(I,,)= lim S»,,dp°=§»dp° .

a—»o0 a—»o0

Thus v- P is a stationary measure with (v- P)°(M)=21<co. Hence [(4.6) follows from
(4.3). Let f(t)=2a)"*x(I,; t) in and let a—o to obtain the last equality of

(4.7).
Lemma 4.6. Let gc B* be bounded and satisfy Sg(t)dt=1. If limu,=u in
L¥P) and if

tim | {g0uat T Poaprde=untomio)Pg), m21,
then
tim | {gu(Tos) Priagrae=(utorio) Pidp)

Proof. Apply and Schwarz inequality.
Leinma 4.7. Let ge Gf satisfy Sg(t)dt:l. If

(4.8 }im VI+t)=2-|I|
Sor every bounded interval I, then for every we L*P)
4.9) lim | | o T-) Podpit= (utoto) P

Proof. If fe@, then it follows from that
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lim SS ft—1)g(s+1) V(ds)dt:lgf(t)dt .

Thus in view of and [(4.6), holds for u==z,, f€€,. Let H denote the
closed linear subspace of L*(P) spanned by z,, f€ €, and let H* denote the or-
thogonal complement of H. It follows from that holds for every
ue H. For any we L*(P) let u=u;+us, u:€ H, u,€ H*. Since z,€ H and ve H
we have

Suz(so)v(so)P(dso):O
and by

SSq(t)uz(T @) P(dg)dt= Sm(T,sp)zg(so)P(dso):o .

Hence
lim “g(t)u(T _9)P(dg)dt=lim SSg(t)ul(T _@) PY(dg)at

= Su1(¢)v(sa)P(dso)= Su(so)v(sO)P(dso) .

This proves the lemma.

For te R let P'=P°T_, denote the ‘shift’ of the Palm measure P°:
(4.10) Su(so)P‘(dso):Su(T;so)P°(ds0)

for bounded M-measurable U.
We are now in a position to prove the following:

Theorem 4.1. Let P satisfy (4.1) and (4.2). Without'loss of generality we
assume that P° is a probability measure. In order that P° converges weakly
to a probability measure P~ as t—oo, t.e.,

(4.11) lim {w(e)P(dg)= o) Pdp)

for every bounded continuous u, it is mecessary and sufficient that (4.8) holds
for every bounded interval I. In this case P is stationary and

(4.12) P*=y.P+cd,

where 0, is the probability measure concentrated on 0€¢ M and c:l—SvdP. In
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particular P °=y-P iff v>0 Pa.e. or equivalently iff v>0 P-a.e.

Proof. (Necessity) Let fe@f and ge @} be arbitrary except that Sg(t)dt=1.
It suffices to prove that

4.13) lim “f(t—z')g(s—l—t) V(ds)dt:le(t)dt ,

since follows from by a standard approximation. In view of [8.4) and
(4.6), is equivalent to

(@1 lim { {012/ Te-s) Prd)t=[astoite) P

By assumption z,€ L*(P). If we define 2%(¢)=min (2,(¢), n), n=>1, then 23—z, in
L*P). Since z, is bounded continuous and 2%(0)=0 we have by assumption
and that

lim {23(T.0) Po(de)= 230 te) Pde)

Hence holds for z, replaced by 27, n>1. Thus by Lemma 4.6 [(4.14) holds
for z,, fe €.

(Sufficiency) Let w be a bounded continuous function on M and let K=
?01.:% lu(p)]. At first we assume ue€ L*(P). Let ge €F be supported by the interval
[—1,1] and satisfy Sg(t)dt:l. Since z,€ L'(P), for any ¢>0 one can choose >0

so that

(4.15) Sx(so)za(so)P(dsoK &

whenever A€ M, P(4)<.
For each o€ M, u(T,p) is a continuous function of ¢ and therefore for any J,
0<d<1, the subset
Ao={so; sup_ lu(Tevup)— (T >}

ItI<3,|si<1

of M belongs to M. One can show that P(4,)<co even if P(M)=oco. In fact if
P(M)=oc0 then by Lamma 4.1 w€ L P) implies #(0)=0. Let U be a neighborhood
of 0€ M such that |u(¢)l<% for pc U. It is easy to see that there exists a
neighborhood U, of 0€ M such that T.pe U if ¢e U, and |¢|<2. Thus 45> U,
and by one has P(4,)<oco.

Since for every pe M



STATIONARY RANDOM MEASURES AND RENEWAL THEORY 43
lim sup |u(Ti0)—u(Tp)|=0,
80 [t[<d,ls|<1
one can choose >0 so small that
P(4,)<7m .
Let A.=T_.4,, e R, i.e.,
(4.16) A,={¢; sup 1u(T,+,+.¢>—u(T,+.¢)x>—s—}
1t]<8,l8l<1 2

then by the stationarity of P one has
(4.17) P(A4)<np, teR.

Let he €f be supported by [—d, 8] and satisfy Sh(t)dtzl and let
Ualp)= §u(T.,¢)h(t>dt .
It follows from that
(4.18) luh(T,+,go)——u(T,+,sD)l<—;— for pe A2, te R, ls|<l.
We shall now evaluate
Sluh(Tf¢)—u(Tf¢)|P°(d¢)

= S§y(8)lu,.(Tmso)—-u(Tmso)lso(ds)P(dso)

=| Sg(snm:; )l tp( T )l T ) d8) PUd)

+ Sgg(s»c(/ts; ) 1hn( T i)~ Teri) l(d8) P(d) .

Since g is supported by [—1,1] it follows from [(4.18) that the first integral on
the right does not exceed

+lowpanpan=-< s ds=5.

From [(4.15) and [(4.17) follows that the second integral is dominated by

c. & &
2K§x(/1,, #1209 Pldg) <2K- =< .

Thus we have -
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(4.19) | Su,.(TmP"(dso)—Su( T4)Pdy)|
_<_Slun(Tfso)—u(Trso)IP°(d¢)ge , teR.
Since by
lim Su,.( T,sa)P°<dso)=Su(so)»(sa)P(dso)
holds, it follows from that
(4.20) tim |u(T)P(de)={uiomio P

for bounded continuous u € L(P).
Now let w be any bounded continuous function on M. For any ¢>0 one can
choose an open neighborhood U of 0€ M such that

(4.21) ju(p)—u(0)|<e for e U.

Let U, be an open neighborhood of 0€ M such that U,cU and a a continuous
function on M such that 0<a(p)<1, € M, a(p)=0 on U, and a(p)=1 on U°. Let
us write

w(P) =u(0) +u,(p) +us(ep) ,
where
w=a-(u—u(0) , us=01—a)-(u—u(0)).

Since u, is bounded and supported by U it follows from that u,e L¥P)
and therefore holds with u replaced by u,. On the other hand it follows
from [(4.21) that |u.(¢)!<e, o€ M, and therefore ‘

sup 'Sug(T,go)P°(dgo)| <e.
Since SvdPSP°(M )=1 we have also
i Suz(so)»«o)P(dgo)] <e.
Consequently
tim sup {u(T) P(de) <u(0) +lim [us(Tup) Pd)

=u(0)+§u1-pdp+e<{(1—§pdp)}u(0)+su-»dp+2e :
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The same argument gives

t—c0

lim infSu( T0) P(dgp) > (1— SudP) -u(0)+ Su vdP—2e .

Hence we have
4.22) lim Su( Ttgo)P°(dgo)=<1—— SvdP) w(0)+ Su vdP,

which proves with [(4.12). The last assertion of the theorem follows from
This completes the proof.

Corollary 4.1. Let P satisfy (4.1) and (4.2). Assume P° is a probability
measure. Let I, 1<i<n, be bounded intervals. If (4.8) holds then the random
vector (p(I,+t),---, o(I,+1t)) on the probability space (M,IR, P°) converges m
distribution as t—oo to the random vector (p(I),---, ¢(I,)) on the probability
space (M,IR, P*).

Proof. Let % be the mapping from M to R* which sends ¢ to (¢(I1),- - -, ¢(I,))
and D, the set of discontinuities of . We have D,C{p; ¢(J)>0}, where J is the
set of all end points of I;,, 1<i<wm. In fact if ¢(J)=0, 1<i<m, then for any
¢>0 and for each i there exist fi;€ €¢ and fi.€ €f such that f;,<X(I;)<f:, and

S(fu(t) — FultDe(d)<e .

Let
U={¢; 12(fi O)—2(fis 9)I<e, 1<i<n, j=1,2}.

If ¢c U then it is easy to see that |¢(I)—e¢(l))|<e, 1<4<n. This shows that h
is continuous at ¢. Since Sgo(J)P(dgo):l- \J]=0, 1<i<n, we have

P(D)<P({p; 9(J)>0h=0,

and therefore P=(D,)=0. Thus from of [1] and the preceding theorem
we have that Pth~! converges weakly to P=h~t. This proves the corollary.

5. A theorem of Ryll-Nardzewski. Throughout the rest of this paper we
shall consider a strictly stationary two-sided sequence ---, X_;, Xi, X, -+ of real
random variables defined on a probability space (2, &, P). Let us denote

0

3 X, for n<—1,

k=n-+1

(5.1) S,=ij}1X,, for n>1, S,=0, S,=

and for each we 2 let d(w)=0a(-; w) be a measure on R defined by
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62 O 0)=_5 1(:S,@)) .

Let K and L be two independent random variables having the‘common geometric
distribution : '
P{K=j}=P{L=j}=(1—a)a’, j=0,1,---,

where 0<a<1 and the pair (K, L) is assumed to be independent of X,’s. For
every w€ 2 let @ (w)=0.(+; w), 0<a<l, be a measure defined by

5.9 Ou(;0)=_% (:; Sula) .

Let us assume that
(5.4) P(A; w)<co P-a.e. for every AcR,.

If we denote by E the set of all » such that &(4; w)<oo, A€ R,, then E= °r°1 {w;
O((—n, n); @) <o} and by (5.4) P(E)=1. Thus @(w) € M, P-a.e. Since (zso0)(w)=
24(D(0)=0(A; 0)= _ZI X(A; S,(w)), AeR, 2,00 is measurable for every Ae R and
therefore @ is a measurable mapping from (2, F) into (M, M). Similarly every
@, 0<a<l, is measurable even if (5.4) does not hold. Let Q=P@! and Q,=P¢,?,
0<a<1, be probability measures on (M, M) induced by & and @, respectively.
Obviously Q(My)=Q.(My)=1, Q{0})=Q.({0})=0.

The following theorem admits to connect the theory of stationary random
measures to renewal theory. This theorem was first proved by Ryll-Nardzewski
for @ assuming that X,’s are positive and integrable. The present proof is
an application of a result of [8].

Theorem 5.1. The measure Q,, 0<a<l, and if (5.4) is satisfied then the
measure Q are the Palm measures for some o-finite stationary measures P,
and P on (M, M) respectively. P, and P are concentrated on M, and they
may be assumed to satisfy P,({0})=0 and P{0})=0.

Proof. We prove only the assertion on @, since a similar and easier argu-
ment can be applied to prove the assertion on Q.

For a proof it suffices to verify the conditions of Conditions
- (i) and (ii) are obviously satisfied. Let us verify

(5.5) ng(—t, Ttso)so(dt)Qa(dso):SS-v(t, ©)p(d1)Qu(dp)

for non-negative R XM-measurable v. The right side of may be written as
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follows :

(5.6) “v(t, O)o(d6)Qalde)
=S L}‘:j’(’( 2(S/(@), Oul-; @)P(dw)

=5, E\1Eu ) 2 oS ), T 25 Sia)PEa)

._—-m

=5 5 (1—a)2a”‘+"§ s, émx(-;S,‘))dP

j=—m

= Fa-are| 2 Tus, T ac;snap,

m=0 j=—m

where E,.,={w; K(w)=m, L(w)=n}. Similarly
®.7) “v(—t, To)p(dt)Qu(dp)

Ms

I
uMS ﬁ[_\js |§|[\ﬂ8

il
-3

0 n

a-apa~| £ oS, E 10;s-spap

ibMs

(1—a)2am+n§ 08y T A3 Sae)dP

0

A—are| 3 3 oS, T A S0dR,

=0 j=—m

0

where the second equality follows from the stationarity of X,. On the other
hand for every v>0 we have

5% 0, B A S)=

m=0 j=—

y—m j+m
SECP I TN

0 J

T (S, B8

=2 .z
This proves that the right sides of [5.6) and [5.7) coincide and proves the ex-
istence of P.

Since Q. is concentrated on M, so is P,. If P,({0})+0 then by modifying

this value to be zero we obtain a stationary measure P, satisfying the assertion

of the theorem.
Let F', denote the distribution of S,:
F.(A)=P{S,€e A}, Ae®, n=-..,—1,0,1,---,
and let V and V,, 0<a<1, denote measures defined by

(5.8) V(d)= 3 Fud4), Ac®,

n=—oo
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and

(5.9) Vad)= 3 anFy(4), Ae®,

respectively. These notations are justified by the following :

Lemma 5.1.

(5.10) V,,(A):Sgo(A)Qa(dgo) , AeR, 0<a<l.

If Ve M then (5.4) ©s satisfied and

(5.11) V(A):Sgp(A)Q(dgo), Ae®.
Proof. |
[ecr0udn) = {ou(4; wPdo)

[ .2 15 s@P@a =5 5 Pk=j, L= 2 x(4; S)ap

n=—j

fl

20 éo(l—a)’a“" }’i‘.F,.(A)= b3 al™ F(A)=V(4) .

n=-—3 n=—oo

If Ve M then \d(A; 0)P(dw)=V(A)<o for every A€ R, and therefore P(A; -)< oo
P-a.e. The equality is easy.

Let M, denote the subset of M, consisting of all ¢ such that ¢((—o0, a))=0c0,
¢((a, ))=c0 and &({a})=0 or 1 for every ac R. It is easy to see that M, is M-
measurable and invariant. It follows from that a stationary measure P on
(M, M) satisfying P({0})=0 is concentrated on M, iff so is the Palm measure P°.
For each pe M, let

=y

Ca(@)=inf {t; t>Ln-1(0), ©((Ga-1(p), t) >0}, n>1,
{-i(p)=sup {¢; t <0, ¢([¢, 0))>0},

Ca(@)=sup {t; t <Lns1(p), @([t, Lara(@)) >0}, n<—2.
and

3@)=—C1(p) , &V (2)=Cu(9) ,
§ol0)=8l(p)+£3(9) ,
En(go):Cn(gp)_Cn—l(gp) ) for n=+0.

All of these functions are t-measurable on M,.
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Next let the stationary sequence {X,} satisfy X,>0 P-a.e. Then (5.4) is
satisfied and therefore by there exists a stationary o-finite measure
P on (M, ) such that P({0})=0 and its Palm measure P° coincides with P@-!.
Let 2, be the set of » such that X,(w)>0 for all #, lim S,(w)=c0, and lim S,(w)

n—oco Nn—+—oo

=—o0, Then P(2,)=1 and &(-; w)e M, if wc 2,. Hence P° and therefore P are
concentrated on M,.

The following theorem is a slight extension of a result stated in [7]. -

Theorem 5.2. Assume the stationary sequence {X.} satisfy X,>0 P-a.e.
Let >0 be an M-measurable invariant function and let Z(w)=u(d(w)) P-a.e.
Then for any m>0, n>0 and any Baire function f>0 on R™+*?

(5.12) Sf(E-m(so),- <y §-1(9), £5(9), £/ (9), - - -, Enl@))ulp) P(dg)
= S{Sxof(X—my' ) X—l: Xo_ty t’ Xl;' ) Xn)dt} 'ZdP .
In particular Sfor t/>0, "">0 we have

(5.13) P({p; &i(9) =2, 6’(¢)2t"})=r {1—-F@®)}dt ,

4t
where F(t) is the distribution function of X,.

Proof. For simplicity write

7)(90)=f(€—m(§0),' ] 5—-1(50)1 6(90): Eé'(?), El(ﬁo)i’ "%y E'n(so)) .

For every pe M, let h(t, ¢)=1 if ¢>0 and ¢((0, £))=0, h(t, ¢)=0 othérwise. Then
Sh(t, Qpdt)=1, peM,.

For o€ M,, h(t, T-.0)=1 iff 0<t<&/(p). If we 2, then d(w)e M, and E&l(d(w))=
Xo(w). If we 2, and 0<t<X,(w) then

E(T- (D)) =Xo(w)—t, &/(T-(D(w)=t,
Ek(T—z(Q(w)))ZXk(w) ’ k+0.
Thus it follows from that

Sv(so)u(so)P(dso) = ﬂv(T_,so)u(so)h(t, T_0)dt P(de)
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Il

S { S:“"”’ v(T_,go)u(go)dt}P°(d¢)
= S{S:"f(x_m. v X, Xo—t, t, Xoiye e e, X,.)dt}ZdP .

Let />0, t/7>0, m=n=0 and f(z,y)=1 if «>t/, y>t’, f(z,y)=0 otherwise.
Then it is easy to see that

SXOf(Xo_t, t)dt:(Xo_(tl+trl))+
0

Hence by letting =1 in we have

oo

Pigl(p)>t, 6’(¢)2t"}=S(Xo—(t’+t"))"dP=S (1—F(t)dt .

et
6. Renewal theory for sums of stationary sequences. For two-sided station-
ary sequence {X,} let V and V, be measures defined by [(5.8) and [(5.9) respectively.
It is obvious that for every A€ R, V,.(4) tends to V(4A) as a—1—0. Assume

Ve M and let G and G, be Fourier transforms of V and V, respectively. It is
easy to see that

(6.1 Jim [royvaan={rovan, fe),
and
62) Jim (06 an={ro6an, re).

Let f,. be the characteristic function of S,:

fn(t)= ‘einFu(dw) y N=---, '—1’ 0: 1;' °°

J

Then it follows from that G, is represented as

6.3) Ga<A>=S rt)dt, Ae®,
where

alt) =—21—[1+2 5 a*Re £,(t)] .
7T n=1

From [8.8)|, and it is easy to prove the following lemma which
reduces to the Chung-Fuchs criterion when X,’s are i.i.d.

Lemma 6.1. Ve M iff for some non-zero f€ (&) such that f>0 and F>0
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6.4) lim ls%pSf(t)Ta(t)dt<oo ,
or equivalently +ff for some >0,

(6.5) lim supg‘ rl)dt<oo .

a—1—0

It is immediate from [Lemma 4.2 and [Theorem 5.1 that if Ve M then (2a)™*
X @(I,) converges to a random variable N P-a.e. and in L*(P). When Y=1lim »n™'S,

n—+o0

exists P-a.e., in particular when E|X,| <o, it can be shown that N=|Y|"!, P-a.e.
As an immediate consequence of we obtain the following renewal
theorem for sums of stationary sequences.

Theorem 6.1. If Ve M then

6.6) lim ?1‘1— V() =EN=1<oo .

If, in addition, 1., 0<a<l, are uniformly bounded on every compact interval
excluding the origin and converges a.e. as a—1—0, then

6.7 ltim V(I+t)=2-11|

for every bounded interval I.

Example 6.1 (Gaussian random variables). Let {X,} be stationary Gaussian
with EX,=pg¢ and Var (S,)=s%. Applying with f(t)=exp (—2/2) it is
found that Ve M iff

lim sup X a"Se“Z/ 2g¢~42%/2%% cog Myt dt < oo .

a—1—0 n=1

It is easy to see that this is equivalent to

oo _ nZ#Z
(6.8) Bexn( 2(1+s3.)><°°
From it is found that [(6.7) holds if and
(6.9) 3 exp (—sit)<oo, for >0,

n=1

are satisfied.

Example 6.2 (identical random variables). Let X be a r.v. with distribu-
tion F' and characteristic function f. If X,=X for every » then S,=nX and
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fat)=f(nt). It is easy to see that Ve M iff E(]X|*)<oco and that 1=E(|X]|™).
Let H denote the distribution of X! and K(dy)=|y|H(dy). Assume

E(IXI‘l)zglxl'lF(dx)zglle(dw): SK(dm)<oo .
It follows from that for ge (&)
_ 1 S on
Sg(t)Ga(dt) = S[Hzn;la Re f(nt)]- g(t)d

1 = 1—a? & u-+2kx
— dx) A anit
SF( v 2r|x| S—'z 1—2a cos u-+a? k=Z—:°°g( 2] )du

Letting a—1—0 we have

[socan={ _wio(Z=) Fam= 3 [s@kmpKian) .
Thus
(6.10) GOY=2-1(; 0+ 3 K(55—) -

This shows that G is absolutely continuous except for an atom at the origin iff

F is absolutely continuous. Hence from holds if E(|X|™!) <o
and F' is absolutely continuous.

If F(dy)=p(y)dy then K(dy)=|y|*p(y~*)dy and from [(6.10) we have
(6.11) r@®)=It|"* 33 p(2kxt~*) a.e.
k0

This may be regarded as a variant of Poisson’s summation formula.

Throughout the rest we assume Ve M. Let ¢ be a random element of M
defined in §5 and @ w)=0.(-; 0)=0(-+t;w), t€ B. Let P be the stationary
measure on (M, M) defined in and P°=P®! the Palm measure for
P. It is obvious that P'=P°T_,=P®;. Thus by [Theorem 4.1 we have im-
mediately the following:

Theorem 6.2. In order that the random element @, converge in distribu-
tion as t—oo it is necessary and sufficient that the limit

(6.12) lim EQ,(I)=lim EQ(+¢)=lim 5 P(S,e I+t

00 N=--00

exist for every bounded interval I. The limit distribution of @, 18 stationary

and given by P =v.P+cé,, c———l—gvdP.
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The following corollary is immediate from [Corollary 4.1l
Corollary 6.1. Let I, 1<i<m, m>1, be bounded intervals. If (6.12) holds

then the random vector (®(I,+1),.--, (I ,+1t)) converges in distribution as t—oo.

Let @* and @~ be random elements of M defined by
0" (@=0"(:;0)= T U Su0) , 0 (0)=0(0)—0*@),

and let @} (-; w)=0*(-+t; w) and P;(-; w)=0 (- +t; w), t€ R.

Corollary 6.2. Let {X,} be t.1.d., {S,} a transient random walk. If the
distribution of X, ts aperiodic themn @, and ®F converge in distribution as

t—oo0,

Proof. The assertion on @, follows from and Feller-Orey’s re-
newal theorem [6]. Let U be any neighborhood of 0€ M. It follows from Feller-
Orey’s theorem that 11m P{(D*e Ul=1 if either E|X;|=c or —o<EX,<0, and
limP{®;e U}=1 if 0<EXo<oo These facts prove the assertion of &;.

t—c0

For the rest we assume X >0 P-a.e. and write N(@E)=@((0,1t)), t>0. Let
Zg(t)zt—SN(t)v Zy (t)=Syw+1—t, and Zk(t):SN(t)+k+1_SN(t)+k for k+#0. Then we
have '

Corollary 6.3. Assume X,>0P-a.e. If (6.12) holds and 1f Y=lim n1S, <o

n—+c0

P-a.e., then for any m>0, n>0, and for any bounded continuous function f
on R™*"*? we have

}i_’rg Ef(Z—m(t); Yy Z—l(t)r Zg(t)! ZS’(t), Zl(t)’ ) Zn(t))
Xo
=E{¥ Ao, Xt Ko, 8, Xy, X))
0

Proof. Let us use notations in §5 and write for ¢ M,
WP)=F(&-m(9), - -, £-1(9), £l(9), £/(9), £1(9),- - -, £al9)) .
Then‘u has a bounded continuous extension on M and
Ef(Z_n®),- -, Z_,Q), Zit), ZV'(), Z,@),- - -, Z.(D))
= Su(q),)dP = Su(T,go)P"(dgo) .

Since Y '=N=u(®) P-a.e. the assumption Y<co implies that v>0 P‘a.e. Thus
it follows from [Theorem 4.1 and Theorem 5.2 that
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lim Su(Tz¢)P°(d¢)=Su(w)v(so)P(dso)
= Sy—i. {S:“ F( Xy ey Xogy Xo—8,8, Xgy 0+, X,.)ds}dP .

Corollary 6.4. Assume X,>0 and limn™'S,=Y<o P-a.e. If (6.12) holds
then for any y'>0 and y'’>0

lim P{Z{(t)>vy’, Z{' ) >y" }=E{Y*(Xo— @' +y"")"} .

t—co

In particular if 0<p=EX < and Y=p P-a.e. then

lim P{Z4() >, Z)/(t) >y =p"- S“ (1—F@)de ,
”I +ul'

t—r00
where F(t) is the distribution function of X..

Proof. The boundary of the set A={p; &(p)=>y’, & (p)=>y"’} is contained in
the set {o; o({y’})>0 or ¢({y’’})>0} which has P-measure zero. Hence by
4.1 P{Zit)>y’, ZY(t)>y"'}=P'(4) converges to P”(A):S y-dP, which is identical
with E{Y--(X,—(y’+y"))*} by Theorem 5.2. !
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