A REMARK "ON THE PROJECTIVE MOTION IN A PROJECTIVE FINSLER SPACE OF RECURRENT CURVATURE"

By
Om P. Singh

(Received May 22, 1973)

The present paper is in the continuation of the author's previous paper [1] ${ }^{\text {2 }}$ in which we have dealt with the projective motion in a projective Finsler Space under recurrence property. However, there is much to be explored and therefore this paper has been designed to reconsider some particular cases in a more general view. All the notations and symbolism in the current discussion stand the same as in [1].

In a projective Finsler space \mathfrak{F}_{n} with normal projective connection $\pi_{j k}^{i}(x, \dot{x})$, let us consider an infinitesimal transformation $\bar{x}^{i}=x^{i}+\xi^{i}(x) d t$ with respect to a contravariant vector field ξ^{i} (which is only a point function). For this transformation being a projective motion in an \mathscr{F}_{n}-space, we have [3]

$$
\begin{align*}
& {\underset{L}{ } \pi_{j k}^{i}=\delta_{j}^{i} \varphi_{k}+\delta_{k}^{i} \varphi_{j},}^{D} W_{h j k}^{i}=0, \tag{1}
\end{align*}
$$

where $\underset{L}{D}$ denotes the operator of Lie differentiation, φ_{j} is a covariant vector and $W_{n j k}^{i}(x, \dot{x})$ is the Weyl's projective curvature tensor [2,3], which satisfies the following relations:

$$
\left\{\begin{array}{l}
\text { a) } \quad W_{l j k}^{l}=W_{n l k}^{l}=W_{n j l}^{l}=0, \quad \dot{\partial}_{i} W_{n j k}^{i}=0, \quad \dot{x}_{l} \dot{\partial}_{l} W_{n j k}^{i}=0, \tag{3}\\
\text { b) } \quad W_{n j k}^{i} \dot{x}^{h}=W_{j k}^{i}, \quad W_{h j k}^{i} \dot{x}^{h} \dot{x}^{j}=W_{k}^{i}, \quad W_{k}^{i} \dot{x}^{k}=0, \quad \dot{\partial}_{i} W_{k}^{i}=0 .
\end{array}\right.
$$

In a projective Finsler space \mathfrak{F}_{n}, the corresponding normal projective curvature tensor $N_{h j k}^{i}(x, \dot{x})$ of \mathfrak{F}_{n} with respect to the normal projective connection $\pi_{j k}^{i}$ (x, \dot{x}) is defined by

$$
N_{h j k}^{i}=\partial_{h} \pi_{j k}^{i}-\partial_{j} \pi_{h k}^{i}-\pi_{h r}^{l} \dot{x}^{r} \dot{\partial}_{l} \pi_{j k}^{i}+\pi_{j r}^{l} \dot{x}^{r} \dot{\partial}_{l} \pi_{h k}^{i}+\pi_{h i}^{i} \pi_{j k}^{l}-\pi_{j l}^{i} \pi_{h k}^{l},
$$

where

$$
\partial_{h} \equiv \frac{\partial}{\partial x^{h}}, \quad \dot{\partial}_{l} \equiv \frac{\partial}{\partial \dot{x}^{l}} .
$$

If the normal projective curvature tensor $N_{n j k}^{i}$ of the space \mathscr{F}_{n} satisfies the

[^0]relation $N_{h j k / l}^{t}=\lambda_{l} N_{h j k}^{t}$ for a non-zero covariant vector λ_{l}, the space $\mathfrak{\mho}_{n}$ is called a projective Finsler space of recurrent curvature denoted by \tilde{f}_{n}^{\oplus}. In an \tilde{f}_{n}^{\oplus}-space, we have the relation $W_{n j k / l}^{i}=\lambda_{l} W_{n j k}^{i}$ [1]. Hence, in virtue of this and (2), we can find with ease
\[

$$
\begin{equation*}
\underset{L}{D} W_{h j k / l}^{i}=\left(\underset{L}{D} \lambda_{l}\right) W_{h j k}^{i} . \tag{4}
\end{equation*}
$$

\]

We now recall the formula

Substitution of (1) and (4) into the above formula and the use of condition (2) gives [1]

$$
\begin{equation*}
\left(\underset{L}{D} \lambda_{l}\right) W_{n j k}^{i}=\delta_{l}^{i} \varphi_{m} W_{n j k}^{m}-2 \varphi_{l} W_{n j k}^{i}-\varphi_{h} W_{l j k}^{i}-\varphi_{j} W_{n l k}^{i}-\varphi_{k} W_{n j l}^{i}-\varphi_{s} \dot{x}^{\star} \dot{\delta}_{l} W_{h j k}^{i} \tag{5}
\end{equation*}
$$

In my previous paper [1], we have already proved the following theorem:
Theorem. When an $\mathfrak{F}_{n}^{\oplus}$-space ($n \geqq 3$) admits an infinitesimal projective motion satisfying $\varphi_{m} W_{n j k}^{m} \neq 0$, then the following relation holds:

$$
\begin{equation*}
{\underset{L}{D}}_{D} \lambda_{l}=(n-2) \varphi_{t} . \tag{6}
\end{equation*}
$$

Now we devote ourselves in discussing through some particular cases more generally.
I. The case of $\boldsymbol{\varphi}_{m} \boldsymbol{W}_{n j k}^{m} \neq 0$. Substituting (6) into (5), we have

$$
\begin{equation*}
n \varphi_{l} W_{h j k}^{i}=\delta_{l}^{i} \varphi_{m} W_{n j k}^{m}-\varphi_{h} W_{l j k}^{i}-\varphi_{j} W_{h l k}^{i}-\varphi_{k} W_{h j l}^{i}-\varphi_{s} \dot{x}^{\iota} \dot{\delta}_{l} W_{h j k}^{i} \tag{7}
\end{equation*}
$$

We now suppose that u^{l} is any contravariant vector. Contracting (7) with $\varphi_{i} u^{l} u^{h} u^{j}$, making use of (3a) and finally we put $u^{l}=\dot{x}^{l}$ etc. in the result, then in virtue of (3a) and (3b) we can obtain

$$
\varphi=0 \quad \text { or } \quad \varphi_{i} W_{k}^{i}=0, \quad \text { where } \quad \varphi \equiv \varphi_{l} \dot{x}^{l},
$$

because of $\varphi(x, \dot{x})$ is an arbitrary scalar function positively homogeneous of the first degree in \dot{x}^{i} and $\varphi_{i} \equiv \partial \varphi / \partial \dot{x}^{i}$. The first case indicates that the motion is affine, while we see that the second is a consequence of $\varphi_{m} W_{n j k}^{m}=0$, and on account of our assumption, conclusively this can be excluded. Thus we have

Theorem 1. If an $\mathfrak{F}_{n}^{\oplus}$-space ($n \geqq 3$) admits the infinitesimal projective motion satisfying $\varphi_{m} W_{n j k}^{m} \neq 0$, then the motion is necessarily an affine one.
II. The case of $\varphi_{m} W_{n j k}^{m}=0$. In the present case, the equation (5) becomes

$$
\left(\underset{L}{D} \lambda_{l}+2 \varphi_{l}\right) W_{n j k}^{i}=-\varphi_{h} W_{l j k}^{i}-\varphi_{s} W_{n l k}^{i}-\varphi_{k} W_{n j l}^{t}-\varphi_{s} \dot{x}^{s} \hat{\sigma}_{l} W_{h j k}^{i} .
$$

We again assume that u^{i} is any contravariant vector. Contracting the above equation with $u^{l} u^{h} u^{j}$ and simplifying over it by putting $u^{l}=\dot{x}^{l}$ etc., then in virtue of (3), we can get at last

$$
\begin{equation*}
\text { a) } \quad\left(D \lambda_{l}+4 \varphi_{l}\right) \dot{x}^{l}=0, \quad \text { or } \quad \text { b) } \quad W_{k}^{i}=0 . \tag{8}
\end{equation*}
$$

Moreover, in the case of (b), since W_{k}^{i} vanishes, therefore, accordingly, the tensor $W_{n j k}^{i}$ also vanishes identically. ${ }^{2)}$ Here we notice that when the generalized Weyl's projective curvature tensor $W_{n j k}^{i}(x, \dot{x})$ of the projective Finsler space \mathscr{F}_{n} is zero throughout the space, then we call the space \mathfrak{F}_{n} to be projectively flat one, and therefore, in the second case, our space is a projectively flat space. Thus we have

Theorem 2. If an \mathfrak{F}_{n}-space ($n \geqq 3$) admits the infinitesimal projective motion satisfying $\varphi_{m} W_{n j_{k}}^{m}=0$, then one of the following two conditions must be satisfied: (1) The space is a projectively flat one. (2) The motion must satisfy the relation $\left(\underset{L}{D} \lambda_{l}+4 \varphi_{l}\right) \dot{x}^{l}=0$.

Further from theorems 1 and 2, we can obtain
Theorem 3. If an $\mathfrak{F}_{n}^{\oplus}$-space ($n \geqq 3$) admits the infinitesimal projective motion which is not an affine one, then the relation $\varphi_{m} W_{n j_{k}}^{m}=0$ always holds good and one of the following two conditions must be satisfied: (1) The space is a projectively flat space, (2) The motion must satisfy the relation $\left(\underset{L}{D} \lambda_{l}+4 \varphi_{l}\right) \dot{x}^{i}$ $=0$.

From above theorems, we may also have the following:
Theorem 4. If an $\mathfrak{F}_{n}^{\oplus}$-space ($n \geqq 3$) which is a projectively non-flat, admits
 is necessarily an affine one.

Theorem 5. If an $\mathfrak{F}_{n}^{\oplus}$-space ($n \geqq 3$) admits the infinitesimal projective motion which is not affine and $\left(\underset{L}{D} \lambda_{l}+4 \varphi_{l}\right) \dot{x}^{l} \neq 0$, then the space is a projectively flat one.

After this discussion, on one hand, from (6) and (8a), a one of the theorem of our previous paper [1] can more coherently be stated as follows:

Theorem 6. In order that an infinitesimal projective motion admitted in an ${\underset{\mho}{n}}_{n}^{\oplus}$-space ($n \geqq 3$) which is a projectively non-flat, become an affine one, it is necessary and sufficient that $\underset{L}{D} \lambda_{l}=0$.

On the other hand, from the theorems 2,5 and in virtue of the theorem of

[^1]Berwald ${ }^{83}$, we can give the
Theorem 7. If an \mathscr{F}_{n}^{\oplus}-space ($n \geqq 3$) admits the infinitesimal projective motion (which is not affine) satisfying $\varphi_{m} W_{n, k}^{m}=0$ and $\left(D \lambda_{l}+4 \varphi_{t}\right) \dot{x}^{l} \neq 0$, then a general path space of n dimensions is mapped by means of a projective change onto a general path space of zero curvature ($H_{j k l}^{j}=0$).

We also remember the theorem": 'The generalized Weyl tensor vanishes identically in an isotropic Finsler space'. By reason of this theorem, we can ennunciate the

Theorem 8. If an $\mathfrak{F}_{n}^{\oplus}$-space ($n \geqq 3$) admits the infinitesimal projective motion (which is not affine) satisfying $\varphi_{m} W_{n j_{k}}^{m}=0$ and $\left.\underset{L}{D} \lambda_{l}+4 \varphi_{l}\right) \dot{x}^{l} \neq 0$, then the space is an isotropic Finsler space of recurrent curvature.

This completes our discussion.

REFERENCES

[1] Om P. Singh: On the projective motion in a projective Finsler space of recurrent curvature, Mat. Vesnik, Vol. 10 (25), No. 1, (1973).
[2] L. Berwald: Projektivkriimmung allegemeiner affiner Räüme und Finslersche Räume Skalarer Krümmung, Ann. Math., (2) 48 (1947), 755-781.
[3] K. Yano: The theory of Lie-derivatives and its applications, North Holland Pub. Co., Amsterdam (1955).
[4] H. Rund: The Differential geometry of Finsler spaces, Springer Verlag, Berlin-Gottingen-Heidelberg (1959).

Department of Mathematics, R. B. S. College, Agra (India).

[^2]
[^0]: ${ }^{1)}$ Numbers in brackets refer to the references at the end of this paper.

[^1]: ${ }^{2)}$ H. Rund [4], p. 142.

[^2]: ${ }^{\text {s) }}$ L. Berwald 2, p. 767.
 ${ }^{4}$ H. Rund [4], p. 147.

