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The present paper is in the continuation of the author’s previous paper [1]1)

in which we have dealt with the projective motion in a projective Finsler Space
under recurrence property. However, there is much to be explored and therefore
this paper has been designed to reconsider some particular cases in a more general
view. All the notations and symbolism in the current discussion stand the same
as in [1].

In a proiective Finsler space $\mathfrak{F}_{n}$ with normal projective connection $\pi_{jk}^{i}(x,\dot{x})$ ,
let us consider an infinitesimal transformation $\overline{x}^{\ell}=x^{\ell}+\xi^{\ell}(x)dt$ with respect to a
contravariant vector field $\xi^{\ell}$ (which is only a point function). For this transforma-
tion being a projective motion in an $\mathfrak{F}_{n}$-space, we have [3]

(1)
$D\pi_{jk}^{\ell}=\delta_{j}^{i}\varphi_{k}+\delta_{k}^{i}\varphi_{f}L$

(2) $DW_{hjk}^{i}=0L$

where $D$ denotes the operator of Lie differentiation, $\varphi_{j}$ is a covariant vector and
$W_{hjk}^{i}(x^{L}\dot{x})$ is the Weyl $s$ projective curvature tensor $[2, 3]$ , which satisfies the fol-
lowing relations:

(8) $\left\{\begin{array}{ll}a) & W_{\ell jk}^{l}=W_{hik}^{i}=W_{hfi}^{\ell}=0, \partial_{\ell}W_{hjk}^{i}=0, \dot{x}_{\ell}\partial_{\ell}W_{hjk}^{i}=0,\\b) & W_{hjk}^{i}\dot{x}^{h}=W_{jk}^{i}, W_{hfk}^{i}\dot{x}^{h}\dot{x}^{j}=W_{k}^{i}, W_{k}^{i}\dot{x}^{k}=0, \partial_{\ell}W_{k}^{i}=0.\end{array}\right.$

In a projective Finsler space $\mathfrak{F}_{n}$ , the corresponding normal projective curva-
ture tensor $N_{hjk}^{i}(x,\dot{x})$ of $\mathfrak{F}_{n}$ with respect to the normal projective connection $\pi_{jk}^{\ell}$

$(x,\dot{x})$ is defined by
$N_{hjk}^{\ell}=\partial_{h}\pi_{jk}^{i}-\partial_{j}\pi_{hk}^{i}-\pi_{hr}^{i}\dot{x}^{r}\partial_{\ell^{\pi_{jk}^{i}}}+\pi_{jr}^{i}\dot{x}^{r}\partial_{\ell^{\pi_{hk}^{i}}}+\pi_{h\ell}^{i}\pi_{fk}^{\ell}-\pi_{j\ell}^{i}\pi_{hk}^{\iota}$ ,

where

$\partial_{h}\equiv\frac{\partial}{\partial x^{h}}$ , $\partial_{\ell}\equiv\frac{\partial}{\partial\dot{x}^{\ell}}$ .
If the normal projective curvature tensor $N_{hfk}^{i}$ of the space $\mathfrak{F}_{n}$ satisfies the
1) Numbers in brackets refer to the references at the end of this paper.
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relation $N_{hjk/i}^{i}=\lambda_{\ell}N_{hjk}^{l}$ for a non-zero covariant vector $\lambda_{\ell}$ , the space $\mathfrak{F}_{n}$ is called a
projective Finsler space of recurrent curvature denoted by $\mathfrak{F}_{n}^{\oplus}$ In an $\mathfrak{F}_{n}^{\oplus}$ -space,
we have the relation $W_{hjk/\ell}^{i}=\lambda_{\ell}W_{hjk}^{i}[1]$ . Hence, in virtue of this and (2), we can
find with ease
(4) $DW_{hjk/i}^{\ell}=(D\lambda_{t})W_{hjk}^{i}LL$

We now recall the formula
$D(W_{hjk/\iota}^{i})-(DW_{hfk}^{i})_{/\ell}=(D\pi_{lm}^{i})W_{hjk}^{m}-(D\pi_{\ell h}^{m})W_{mjk}-(D\pi_{\ell j}^{m})W_{hmk}^{\ell}LLLLL$

$-(D\pi_{ik}^{m})W_{hjm}^{5}-(D\pi_{\ell*}^{m})\dot{x}^{1}\partial_{m}W_{hjk}^{\ell}LL$

Substitution of (1) and (4) into the above formula and the use of condition (2)

gives [1]

(5) $(D\lambda_{\ell})W_{hfk}^{i}=\delta\oint\varphi_{m}W_{hjk}^{m}-2\varphi_{t}W_{hjk}^{\ell}-\varphi_{h}W_{\ell jk}^{\ell}-\varphi_{j}W_{hik}^{i}-\varphi_{k}W_{hj\ell}^{\ell}-\varphi.\dot{x}\partial_{\ell}W_{hfk}^{l}L$

In my previous paper [1], we have already proved the following theorem:

Theorem. When an $\mathfrak{F}_{n}^{\oplus}$ -space $(n\geqq 3)$ admits an infinitesimal projective
motion satisfying $\varphi_{m}W_{hfk}^{m}\neq 0$ , then the following relation holds:

(6) $D\lambda_{\ell}=(n-2)\varphi_{\ell}L$

Now we devote ourselves in discussing through some particular cases more gener-
ally.

I. The case of $\varphi_{m}W_{hfk}^{m}\neq 0$ . Substituting (6) into (5), we have

(7) $n\varphi_{\ell}W_{hjk}^{\ell}=\delta t\varphi_{m}W_{hjk}^{m}-\varphi_{h}W_{\ell jk}^{\ell}-\varphi_{j}W_{hik}^{i}-\varphi_{k}W_{hf\ell}^{\ell}-\varphi.\dot{x}^{\iota}\partial_{i}W_{hjk}^{2}$ .
We now suppose that $u^{t}$ is any contravariant vector. Contracting (7) with $\varphi_{\ell}u^{\ell}u^{h}u^{j}$ ,
making use of (3a) and finally we put $u^{\ell}=\dot{x}^{\ell}$ etc. in the result, then in virtue of
(3a) and (3b) we can obtain

$\varphi=0$ or $\varphi_{i}W_{k}=0$ , where $\varphi\equiv\varphi_{\ell}\dot{x}^{\ell}$ ,

because of $\varphi(x,\dot{x})$ is an arbitrary scalar function positively homogeneous of the
first degree in $\dot{x}^{\ell}$ and $\varphi_{\ell}\equiv\partial\varphi/\partial\dot{x}^{\ell}$ . The first case indicates that the motion is affine,

while we see that the second is a consequence of $\varphi_{m}W_{hfk}^{m}=0$ , and on account of
our assumption, conclusively this can be excluded. Thus we have

Theorem 1. If an $\mathfrak{F}_{n}^{\oplus}$ -space $(n\geqq 3)$ admits the infinitesimal projective
motion satisfying $\varphi_{m}W_{hjk}^{m}\neq 0$ , then the motion is necessarily an affine one.

II. The case of $\varphi_{n}W_{hjk}^{m}=0$ . In the present case, the equation (5) becomes

$(D\lambda_{\ell}+2\varphi_{\ell})-\varphi_{\iota}\dot{x}^{\wedge}L$
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We again assume that $u^{\ell}$ is any contravariant vector. Contracting the above
equation with $u^{t}u^{h}u^{j}$ and simplifying over it by putting $u^{i}=\dot{x}^{\ell}$ etc., then in virtue
of (3), we can get at last

(8) a) $(D\lambda_{\ell}+4\varphi_{\ell})\dot{x}^{\ell}=0L$ or b) $W_{k}^{\ell}=0$ .
Moreover, in the case of (b), since $W_{k}^{\ell}$ vanishes, therefore, accordingly, the tensor
$W_{hjk}^{i}$ also vanishes identically.2) Here we notice that when the generalized Weyl’s
Projective curvature tensor $W_{hjk}^{i}(x,\dot{x})$ of the projective Finsler space $\mathfrak{F}_{n}$ is zero
throughout the space, then we call the space $\mathfrak{F}_{n}$ to be projectively flat one, and
therefore, in the second case, our space is a projectively flat space. Thus we have

Theorem 2. If an $\mathfrak{F}_{n}$-space $(n\geqq 3)$ admits the infinitesimal projective
motion satisfying $\varphi_{m}W_{hjk}^{m}=0$ , then one of the following two conditions must
be satisfied: (1) The space is a projectively flat one. (2) The motion must
satisfy the relation $(D\lambda_{i}+4\varphi_{\ell})\dot{x}^{\ell}=0L$

Further from theorems 1 and 2, we can obtain

Theorem 3. If an $\mathfrak{F}_{n}^{\oplus}$ -space $(n\geqq 3)$ admits the infinitesimal projective
motion which is not an affine one, then the relation $\varphi_{n}W_{hjk}^{m}=0$ always $h_{0}us$

good and one of the following two conditions must be satisfied: (1) The space
is a Projectively flat space, (2) The motion must satisfy the relation $(D\lambda_{i}+4\varphi_{\ell})\dot{x}^{\ell}L$

$=0$ .
From above theorems, we may also have the following:

Theorem 4. If an $\mathfrak{F}_{n}^{\oplus}$ -space $(n\geqq 8)$ which is a projectively non-.flat, admits
the infinitesimal projective motion satisfying $(D\lambda_{\ell}+4\varphi_{\ell})\dot{x}^{l}\neq 0L$ then the motion
is necessarily an affine one.

Theorem 5. If an $\mathfrak{F}_{n}^{\oplus}$ -space $(n\geqq 3)$ admits the infinitesimal projective
motion which is not affine and $(D\lambda_{\ell}+4\varphi_{\ell})\dot{x}^{\ell}\neq 0L$ then the space is a projectively
flat one.

After this discussion, on one hand, from (6) and (8a), a one of the theorem
of our previous paper [1] can more coherently be stated as follows:

Theorem 6. In order that an infin’itesimal projective motion admitted in
an $\mathfrak{F}_{n}^{\oplus}$ -space $(n\geqq 3)$ which is a projectively non-flat, become an affine one, $it$

is necessary and sufficient that $D\lambda_{\ell}=0$ .
$L$

On the other hand, from the theorems 2, 5 and in virtue of the theorem of
2) H. Rund [4], p. 142.
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Berwald8), we can give the

Theorem 7. If an $\mathfrak{F}_{n}^{\oplus}$ -space $(n\geqq 8)$ admits the infinitesimal projective

motion (which is not affine) satisfying $\varphi_{m}W_{hjk}^{m}=0$ and $(D\lambda_{\ell}+4\varphi_{\ell})\dot{x}^{\ell}\neq 0L$ then a
general path space of $n$ dimensions is mapped by means of a projective change
onto a general path space of zero curvature $(H_{jki}^{i}=0)$ .

We also remember the $theorem^{4)}$ : ‘ The generalized Weyl tensor vanishes
identically in an isotropic Finsler space’. By reason of this theorem, we can
ennunciate the

Theorem 8. If an $\mathfrak{F}_{n}^{\oplus}$ -space $(n\geqq 3)$ admits the infinitesimal projective
motion (which is not affine) satisfying $\varphi_{m}W_{hfk}^{m}=0$ and $(D\lambda_{\ell}+4\varphi_{\ell})\dot{x}^{\ell}\neq 0L$ then the
space is an isotropic Finsler space of recurrent curvature.

This completes our discussion.
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