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1. Introduction

We introduced the concept of singular block bundles over fake manifolds in
[2]. And the following theorem is already proved there.

Theorem. Let $V$ be a 3-manifold with non-empty boundary and $P$ a closed

fake surface which is a spine of V. Then, $V$ is a singular block bundle over
$P$ with fiber-set $\Phi^{1}$ , that is, $V$ belongs to $B_{2}^{1}(P)$ .

Throughout this paper, we use the definitions and notations in [1] and [2].

And, let $B(P)$ and $+B(P)$ denote the set $B_{2}^{1}(P)$ and the subset of $B(P)$ consisting

of orientable 3-manifolds, respectively, for a fake surface $P$ with $\mathfrak{S}_{\tau}(P)=\emptyset$ (for

the numbering of the singularities of $P$, we use the definition made in [2]).

The main purpose of this paper is to count the number of the elements of

the set $+B(P)$ for a given closed fake surface $P$.
Theorem 1. Let $P$ be a closed fake surface and put $\lambda=\#\dot{U}(P)-\# M(P)$ . Then,

we obtain
$\#(+B(P))\leqq 2^{\lambda}$ .

Especially, we obtain the following.

Theorem 2. Let $P$ be a closed fake surface with $H_{1}(P)=0$ and $+B(P)\neq\emptyset$ .
Then, we obtain

$\#(+B(P))=2^{(2U(P)-1)}$ .
In \S 2, we study about $B(U(P))$ for a closed fake surface $P$. That is, we

show that $B(U(P))$ consists of exactly one element for any closed fake surface $P$.
Furthermore, it is shown that any equivalence of the element of $B(U(P))$ is isotopic

to the identity keeping $U(P)$ fixed.
In \S 3, first, we show that, for 2-manifold $M,$ $+B(M)$ consists of exactly one

element. Next, we show that $B(P)$ consists of exactly one element if $P$ is a closed

fake surface such that $M(P)$ consists of 2-balls and $+B(P)\neq\emptyset$ . Finally, it is



142 HIR0SHI IKEDA

known that $+B(P)$ consists of at most one element if $U(P)$ is connected.
In \S 4, we prove Theorem 1 and Theorem 2.
The author thanks all the members of All Japan Combinatorial Topology Study

Group for useful discussions.

2. Propositions about $B(U(P))$

First of all, we prove the following.

Proposition 1. Let $P$ be a closed fake surface. Then, $B(U(P))$ consists of
exactly one element.

Proof. We may assume that $U(P)$ is connected.
Step 1. We show the existence of an element of $B(U(P))$ .
Case 1. Suppose that $\mathfrak{S}_{\epsilon}(P)$ is empty. Then, $U(P)$ is either $s\times T$ or $S\times\sigma T$

or $s\times\tau T$, by Lemma 5 [1]. Let us consider the pair $(D, T)\times I$, where $D$ is a 2-
ball which contains a T-shaped l-polyhedron $T$ properly and $I$ denotes the closed
interval $[0,1]$ . It is not hard to see that $D\times I$ is a singular block bundle over
$T\times I$ with $(D\times I|T\times 0)=D\times 0$ and $(D\times I|T\times 1)=D\times 1$ . Let $h$ denote the homeo-
morphism from $\tau\times o$ onto $T\times 1$ such that $(T\times I)/h$ is the given $U(P)$ . Then, $h$

can be extended to a homeomorphism $H$ from $D\times O$ onto $D\times 1$ so that $\eta=(D\times I)/H$

is a singular block bundle over $U(P)$ which is clearly a required element of $B(U(P))$ .
Case 2. Suppose that $\mathfrak{S}_{8}(P)$ is non-empty. Then, we can write

$U(P)=\bigcup_{x}N_{x}\cup\bigcup_{j}(T\times I)_{j}$ ,

where $N_{x}=st(x, U(P))$ with $x$ in $\mathfrak{S}_{8}(P)$ and $(T\times I)_{j}$ denotes a closure of a con-
nected component of $U(P)-\cup N_{x}$ , let us consider the standard pairs $(B_{x}, N_{x})$ and
$(D_{j}, T_{j})\times I$ where $T_{j}\times I=(T\times I)_{j}$ , (for the standard pairs, see [2]). Suppose that
$N_{x}\cap(T\times I)_{j}=(T\times 0)_{f}$ and $h_{jx}$ denotes the identification map from $(T\times I)_{j}$ to $Nae$ .
Note that $B_{x}$ and $D_{j}\times I$ are singular block bundles over $N_{x}$ and $T_{j}\times I$, respectively.
It is not hard to obtain a homeomorphism $H_{jx}$ from $D_{j}\times 0$ onto $(B_{x}|(T\times 0)_{j})$ extend-
ing $h_{jx}$ so that $(D_{j}\times I\cup B_{x})/H_{jx}$ is a singular block bundle over $(T_{j}\times I\cup N_{x})/h_{jx}$ .
Continueing the above process, we obtain an element $\eta$ of $B(U(P))$ .

Step 2. Here, we have to prove the uniqueness of the element $\eta$ of $B(U(P))$ .
We prove iust the case that $\mathfrak{S}_{\theta}(P)$ is non-empty, because we can prove the case
that $\mathfrak{S}_{\epsilon}(P)$ is empty by a similar argument. We use the representatIon of $U(P)$

written in Step 1. Put $B_{x}=(\eta|N_{x})$ . Then, $(\eta|(T\times I)_{j})$ can be considered as a 1-
handle $W_{j}$ attached to the disjoint union $\cup B_{x}$ of 3-balls by the homeomorphism
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$H_{jx}$ from $(W_{j}|(T\times\dot{I})_{j})$ onto $(\cup B_{x}|(T\times\dot{I})_{j})$ . Note that $H_{jx}$ is determined only by
$H_{jx}|(T\times\dot{I})_{j}$ up to isotopy. Thus, it is easy to see that $\eta$ is unique. This completes
the proof of Proposition1.

Corollary to Proposition 1. (1) $B(U(P))$ consists of a solid torus with
genus 1, if $U(P)\dot{j}S$ either $S\times\sigma T$ or $S\times T$.

(2) $B(U(P))$ consists of a solid Klein bottle with genus 1, if $U(P)$ is $s\times\tau T$.
Next, we state a propesition about equivalences of the unique element $\eta$ of

$B(U(P))$ for a closed fake surface $P$.
Proposition 2. Let $P$ be a closed fake surface, and $\eta$ the element of $B(U(P))$ .

Suppose that $h$ is an $equ\dot{j}valence$ of $\eta$ onto itself. Then, $h$ is isotopic to the
identity keeping $U(P)$ fixed.

In order to prove the above proposition, we need some lemmas about equiva-
lences of the standard pairs.

Suppose that $\eta$ is an element of $B_{p}^{n}(P)$ and $H$ an isotopy of $\eta$ , that is, $H$ is
a level-preserving homeomorphism from $\eta\times I$ onto $\eta\times I$. Note that $\eta\times I$ can be
regarded as an element of $B_{p}^{n+1}(P)$ by the natural way. Then, we say that $H$ is
a block-preserving isotopy of $\eta$ , if $H$ is an equivalence of $\eta\times I$ as a singular block
bundle.

Lemma 1. Let $(D, T)\times I$ denote the standard pair. Suppose that $ hi\epsilon$ an
equivalenee of $D\times I$ onto itself. Then, there exists a block-preserving isotopy

of $D\times I$ sending $h$ to the identity.

Proof. Step 1. Here, we consider $h_{0}=h|D\times 0$ . It is clear that $D\times 0=(D\times I|$

$T\times O)$ is a singular block bundle over Tx0 and $h_{0}$ is an equivalence of $D\times O$ . We
write $D=D\times O$ and $T=T\times O$ . Let $D_{1},$

$\cdots,$
$D_{6}$ denote the closures of the connected

components of $D-(T\cup F_{o(T)})$ , where $F_{o(T)}$ means the block of $D\times I$ over $o(T)$ .
Since $h_{0}|T$ is the identity, so is with $h_{0}|(F_{o(T)})$ . Thus, $h_{0}|F_{o(T)}$ is isotopic to the
identity keeping $o(T)$ fixed by an isotopy $G_{1}$ of $F_{o(T)}$ . Hence, we can extend $G_{1}$

to an isotopy $G_{1\ell}$ of $D_{\ell}$ so that $G_{1}$ sends $h_{0}|D_{\ell}$ to the identity and keeps $D\cap T$

fixed, because $h_{0}$ keeps $D_{\ell}$ set-wise fixed. Combining $G_{1\ell}$ , we obtain a block-
preserving isotopy $G_{2}$ of $D$ sending $h_{0}$ to the identity. Then, it is not hard to
extend $G_{2}$ to a block preserving isotopy $H_{0}$ of $D\times I$ sending $h_{0}$ to the identity.

Step 2. By Step 1, we can assume that $h|D\times\dot{I}$ is the identity. Let us
consider, first the closures of the connected components of $(T\times I)-o((T)\times I)$ and
second, the ones of $D\times I-(D\times I|o(T)\times I)$ . Then, by the same way as Step 1, we
obtain a required block-preserving isotopy of $D\times I$, because $h$ keeps each of the
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above closures set-wise fixed.
By a similar argument to Lemma 1, we obtain the following lemma.

Lemma 2. Let $(B, St_{8})$ denote a standard pair. Suppose that $h$ is an
equivalence of $B$ onto itself. Then, there $ exi\epsilon t\epsilon$ a block-preserving isotopy of
$B$ sending $h$ to the identity.

Now, we prove Proposition 2.

Proof of Proposition 2. We can write

$U(P)=\bigcup_{l}$ st $(x, U(P))\cup\bigcup_{j}(T\times I)_{j}$ ,

as in [1], where $x$ ranges over $\mathfrak{S}_{\epsilon}(P)$ . Then, it is easy to see that $(\eta|st(x, U(P)\rangle$

and $(\eta|(T\times I)_{j})$ are standard pairs $(B, St_{\epsilon})$ and $(D, T)\times I$, respectively. Since
$h|(\eta|st(x, U(P))$ and $h|(\eta|(T\times I)_{j})$ satisfy the conditions of Lemma 2 and Lemma
1. Thus, we obtain a required isotopy of $\eta$ sending $h$ to the identity keeping
$U(P)$ fixed. This completes the proof of Proposition 2.

Remark. As is seen in the proof, the isotopy required in Proposition 2 can
be chosen to be block-preserving.

3. Orientable 3-manifolds as singular block bundles

First of all, we prove the following proposition.

Proposition 3. Let $M$ be a 2-manifold. Then, $+B(M)$ consists of exactly
one element.

Proof. Step 1. We construct an element $\eta$ in $+B(M)$ which is an orientable
3-manifold.

Case 1. Suppose that $\dot{M}$ is non-empty. Then, we can regard $M$ as a 2-ball
$B$ with bands $B_{\ell},$ $i=1,$ $\cdots,$ $n$ , such that, putting $B_{\ell}=C\times J$ with $C_{\ell}$ a l-ball and $J$

the closed interval [–1, 1], we have the following conditions.
(1) $ B\cap B_{j}=\emptyset$ , if $i\neq j$ .
(2) $B\cap B=\dot{B}_{\ell}\cap\dot{B}=\dot{C}_{\ell}\times J$.

Now, let us consider the 3-balls $\tilde{B}=B\times J$ and $\tilde{B}_{\ell}=B_{\ell}\times J$. Then, it is not hard to
see that there exists an identification map $h_{\ell}$ from $\dot{C}\times J\times J$ onto itself so that
the block bundle $(\tilde{B}\cup\tilde{B})/h$ over $B\cup B$ is a solid torus with genus 1 for any $i$ .
Thus, we obtain an element

$\eta=\bigcup_{i}(\tilde{B}\cup\tilde{B}_{\ell})/h$ ,
in $+B(M)$ .
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Case 2. Suppose that $M$ is a closed 2-manifold. Let $A$ be a 2-simplex of $M$

and $M_{1}=M-\mathring{A}$ . Then, by Case 1, we have an element $\eta_{1}$ in $+B(M_{1})$ . Put $\eta_{2}=$

$A\times J$ with $A=A\times O$ . Note that both $(\eta_{1}|A)$ and $(\eta_{2}|A)$ are bands because $\eta_{1}$ and
$\eta_{2}$ by identifying $(\eta_{1}|A)$ and $(\eta_{2}|A)$ by a suitable homeomorphism.

Step 2. Here, we show the uniquness of $\eta$ of $+B(M)$ . We prove just the
case when $\dot{M}$ is non-empty, because it is not hard to prove the case when $M$ is
closed. Suppose that $\eta_{1}$ and $\eta_{2}$ are elements of $+B(M)$ . Put $(\eta_{j}|B)=\tilde{B}^{j}$ and
$(\eta_{j}|B_{\ell})=\tilde{B}_{l}^{f}$ , where $B$ and $B_{\ell}$ denote the 2-ball and the bands described in Step 1.
Since both $B$ and $B$ are 2-balls, we can write $\tilde{B}^{j}=B\times J$ and $\tilde{B}_{\ell}^{j}=B_{\ell}\times J$. And,

furthermore, we see $\tilde{B}^{j}\cap\tilde{B}_{j}^{\ell}=(\eta_{j}|\dot{C}_{l}\times J)$ where $B_{\ell}=C_{\ell}\times J$ as in Step 1. Then, by
checking the identification maps from $\tilde{B}_{i}^{f}$ to $\tilde{B}_{j}$ , it is known that $\eta_{1}$ and $\eta_{2}$ are
equivalent, by making use of the fact that $\tilde{B}^{j}\cup\tilde{B}_{\ell}^{f}$ is a solid torus with genus 1.
Thus, Proposition 3 is established.

Lemma 3. Let $P$ be a closed fake surface such that $M(P)$ consists of 2-balls.
Then, $B(P)$ consists of at most one element.

Proof. Suppose that there exist two elements $\eta_{1}$ and $\eta_{2}$ in $B(P)$ . We have
to show that $\eta_{1}$ and $\eta_{2}$ are equivalent. By Proposition 1, there exists an equivalence
$h_{\sigma}$ from $(\eta_{1}|U(P))$ to $(\eta_{2}|U(P))$ . Now, $(\eta_{i}|M),$ $i=1,2$ , is equivalent to $M\times J(J=$

$[-1,1])$ , because $M$ is a 2-ball for any $M$ of $M(P)$ . Then, we can extend $h_{\sigma}|(\eta_{1}|\dot{M})$

to an equivalence $h_{r}$ from $(\eta_{1}|M)$ to $(\eta_{2}|M)$ . Thus, it is easy to obtain a required
equivalence from $\eta_{1}$ to $\eta_{2}$ defined by $h_{\sigma}$ and $h_{K}$ .

Lemma 4. Let $P$ be closed fake surface with $\#\sim s_{2}(P)=1(\#$ means the number
of the connected components). Then, $+B(P)$ consists of at most one element.

Proof. Let $\eta_{1}$ and $\eta_{2}$ are elements of $+B(P)$ and $h_{\sigma}$ an eqivalence from
$(\eta_{1}|U(P))$ to $(\eta_{2}|U(P))$ . Let $M$ be an element of $M(P)$ . If $M$ is a 2-ball, we can
extend $h_{\sigma}|(\eta_{1}|\dot{M})$ to an equivalence $h_{K}$ from $(\eta_{1}|M)$ to $(\eta_{2}|M)$ as in Lemma 3.
Thus, we assume that $M$ has non-empty boundary and is not a 2-ball. Then, there

exist disjoint proper l-balls $A_{1},$
$\cdots,$ $A_{m}$ in $M$ such that the closure $B$ of $M-\bigcup_{i=1}^{m}N$

is a 2-ball, where $N_{\ell}$ means the 2-nd derived neighborhood of $A_{\ell}$ in $M$. Since
both $\eta_{1}$ and $\eta_{2}$ are orientable, it is not hard to see that $h_{\sigma}$ can be extended to an
equivalence from $(\eta_{1}|U(P)\cup\cup N_{i})$ to $(\eta_{2}|U(P)\cup\cup N_{\ell})$ which is denoted by $h_{4}$ .
Then, by the same reason $aI$ in the proof of Lemma 3, $h_{A}|\dot{B}$ can be extended to
equivalence $h_{B}$ from $(\eta_{1}|B)$ to $(\eta_{2}|B)$ . Thus, we obtain a required equivalence from
$\eta_{1}$ to $\eta_{2}$ by $h_{A}$ and $h_{B}$ .
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Lemma 5. Let $\eta_{1}$ and $\eta_{2}$ be elements $of+B(P)$ for a closed fake surfaee $P$.
Then, $\eta_{1}$ and $\eta_{2}$ are equivalent if and only if there $exi\epsilon t$ orientations of $\eta_{1}$

and $\eta_{2}$ such that an equivalence from $(\eta_{1}|U(P))$ to $(\eta_{2}|U(P))$ is orientation
preserving.

Proof. The neceIsity is trivial. So, we prove just the sufficiency. Let the
equivalence from $(\eta_{1}|U(P))$ to $(\eta_{2}|U(P))$ given in the hypothesis be $h_{\sigma}$ . The proof
goes by induction on $u=\# U(P)$ . When $u=1$ , Lemma 4 gives the answer. Suppose
$u\geqq 2$ .

Step 1. Let $\alpha$ denote a l-ball in $P$ satisfying the following three conditions.
(1) $\alpha\cap \mathfrak{S}_{2}(P)=\dot{\alpha}$ .
(2) $\alpha\cap \mathfrak{S}_{8}(P)=\emptyset$ .
(3) There exist two $(distin\dot{c}t)$ connected components of $\mathfrak{S},(P)$ which intersect

with $\alpha$ .
Then, it is not hard to see that $h_{\sigma}$ can be extended to an equivalence from

$(\eta_{1}|U(P)\cup N)$ to $(\eta_{2}|U(P)\cup N)$ where $N$ meanI the 3-rd derived neighborhood of $\alpha$

in $P$.
Step 2. Let us consider a fake surface $N_{o}$ defined as follows. In $R^{S}$ , put

$A_{1}=\{(1, y, z)||y|, |z|\leqq 1\}$ ,
$A_{2}=$ {$(-1,$ $y,$ $z)||y|,$ $|z|\leqq 1$ and either $|y|\geqq 1/2$ or $|z|\geqq 1/2$}.
$A_{8}=$ { $(x,$ $0,$ $z)||x|,$ $|z|\leqq 1$ and $|z|\geqq 1/2$}.
$A=$ {$(x,$ $y,$ $z)||x|\leqq 1$ , and either $|y|\leqq 1/2,$ $|z|=1/2$ or $|y|=1/2,$ $|z|\xi 1/2$}.

Define $N_{0}$ to be the union of $A,$ $\cdots,$
$A$ . Then, -it is not hard to see that

$+B(N_{0})$ consists of exactly one element $\eta_{0}$ . Now, we define a closed fake surface
$P^{\prime}$ to be the union of $P-\mathring{N}$ and $N_{0}$ such that the natural union $\eta_{1}^{\prime}$ of $\eta_{\ell}|(P-\mathring{N})$

and $\eta_{0}$ is an element of $+B(P^{\prime})$ . It is known easily that $\# U(P^{\prime})\xi u-1$ and there
exists an orientation preserving equivalence from $(\eta_{1}^{\prime}|U(P^{\prime}))$ to $(\eta_{2}^{\prime}|U(P^{\prime}))$ . Then,
by the inductive hypothesis, there exists an equivalence $h^{\prime}$ from $\eta_{1}^{\prime}$ to $\eta_{2}^{\prime}$ .

Step $S$ . The result in Step 2 implies that $(\eta_{1}|P-\mathring{N})$ and $(\eta_{2}|P-N)$ are equiva-

lent by the restriction $h|(\eta_{1}^{\prime}|P-\mathring{N})$ . The rest of the proof is easy, because we can
extend $h|(\eta_{1}|\dot{N})$ to an equivalence from $(\eta_{1}|N)$ to $(\eta_{2}|N)$ .

4. Theorems

In this section, we prove the theorems stated in the introduction.

Theorem 1. Let $P$ be a closed fake surface with $\mathfrak{S},(P)\neq\emptyset$ and put $\lambda=$

$\#\dot{U}(P)-\# M(P)$ . Then, we obtain
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$\#(+B(P))\leqq 2^{\lambda}$ .
Proof. Put $u=\# U(P)$ . When $u=1$ , we see the conclusion by Lemma 4. On

the other hand, suppose $\lambda=0$ . Then, $M(P)$ consists of 2-balls. Thus, Theorem 1
holds for $\lambda=0$ by Lemma 3. Here, let us define the order of the pair $(u, \lambda)$ by
$(u, \lambda)>(u^{\prime}, \lambda^{\prime})$ if and only if either $u>u^{\prime}$ or $u=u^{\prime}$ and $\lambda>\lambda^{\prime}$ . It i8 sufficient to
prove Theorem 1 for $(u, \lambda)$ assuming Theorem 1 for $(u^{\prime}, \lambda^{\prime})$ with $(u, \lambda)>(u^{\prime}, \lambda^{\prime})$ .
We deal with the case $u\geqq 2$ and $2\geqq 1$ . Then, there exists an element $M$ of $M(P)$

with $\#\dot{M}\geq 2$ . Let $b$ denote a boundary component of $M$. Then, the derived
neighborhood of $b$ in $P$ is a band. And, for any element $\eta$ of $+B(P),$ $(\eta|b)$ is also
a band. Thus, $b$ disconnects $P$ if and only if $(\eta|b)$ disconnects $\eta$ .

Case 1. Suppose that $b$ does not disconnect $P$. Let $P_{1}$ and $\eta_{1}$ denote the fake
surface and singular block bundle obtained from $P$ and $\eta$ by cutting them along
$b$ and $(\eta|b)$ , respectively. Let $b_{1}$ and $b_{2}$ denote the two copies of $b$ which are the
boundary components of $P_{1}$ . We can construct a closed fake surface $\tilde{P}$ from $P_{1}$

by attaching two 2-balls to $b_{1}$ and $b_{1}$ . Similarly, we have a natural singular block
bundle $\tilde{\eta}$ over $P$ from $\eta_{1}$ by attaching 2-handles to $(\eta_{1}|b_{1})$ and $(\eta_{1}|b_{2})$ . Of course,
$\eta$ is an element of $+B(\tilde{P})$ . On the other hand, we obtain an element of $+B(P)$

from $\eta_{1}$ by identifying $(\eta_{1}|b_{1})$ and $(\eta_{1}|b_{2})$ by an equivalence uniquely, for $\eta_{1}$ is con-
nected. Thus, we have $\#(+B(P))\leqq\#(+B(\tilde{P}))$ . And, it is not hard to see

$\lambda=\#\dot{U}(P)-\# M(P)>\#\dot{U}(\tilde{P})-\# M(\tilde{P})=\lambda^{\prime}$

Hence, by the inductive hypothesis, we obtain

$\#(+B(P))\leqq\#(+B(P))\leqq 2^{\lambda^{\prime}}<2^{\lambda}$ .
Case 2. Suppose that $b$ disconnects $P$ into two fake surfaces $P_{1}$ and $P_{2}$ .

Consequently, $(\eta|b)$ disconnects $\eta$ into $\eta_{1}$ and $\eta_{2}$ which are singular block bundles
over $P_{\iota}$ and $P_{2}$ , respectively. Then, by the same reason as above, we can regard
$\eta_{i}$ to be the singular block bundle obtained by restricting some element of $+B(\tilde{P})$ ,
where $\tilde{P}$ is the closed fake surface obtained from $P_{\ell}$ as in Case 1, $i=1,2$ . Now,
in this case, there exist two isotopy classes of equivalences $h$ from $(\eta_{1}|b_{1})$ to $(\eta,|b,)$

such that $(\eta_{1}\cup\eta_{2})/h$ is an element of $+B(P)$ . Thus, we obtain

$\#(+B(P))\leqq 2\times\#(+B(\tilde{P}_{1}))\times\#(+B(\tilde{P}_{2}))$ .
Since $\#\dot{M}\geqq 2$ , it is clear that $\# U(P_{l})\leqq u-1$ . Then, by the inductive hypothesis,

we have $\#(+B(P_{i}))\leqq 2^{\lambda_{\ell}}$ , where $\lambda=\#\dot{U}(\tilde{P}_{\ell})-\# M(\tilde{P}_{\ell})$ . Thus, $\#(+B(P))=2^{\lambda_{1}+\lambda_{2}+1}$ follows
directly. On the other hand, we see
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$\lambda=\#\dot{U}(P)-\# M(P)$

$=(\#\dot{U}(\tilde{P}_{1})+\#\dot{U}(\check{P}_{2}))-(\# M(\tilde{P}_{1})+\# M(\tilde{P}_{2})-1)$

$=\lambda_{1}+\lambda_{2}+1$ .
Hence, we obtain the required result $\#(+B(P))\leqq 2^{\lambda}$ .

In the following, we consider about $+B(P)$ for a closed fake surface $P$ with
$H_{1}(P)=0$ .

Lemma 6. Let $P$ be a closed fake surface with $H_{1}(P)=0$ . Then, we obtain

$\#\dot{U}(P)-\# M(P)=\# U(P)-1$ .
Proof. $\cdot$ When $U(P)$ is empty, the result is trivial, because $P$ must be a 2-

sphere. And if $u=\# U(P)=1$ , there is nothing to do, for $M(P)$ consi8ts of 2-balls
by [1]. So, we assume $u\geqq 2$ . Then, take an element $M$ of $M(P)$ with $\#\dot{M}\geqq 2$ and
let $b$ denote a boundary component of $M$. Since $H_{1}(P)=0,$ $b$ disconnects $P$ into
two fake surfaces $P_{1}$ and $P_{2}$ . Let $\tilde{P}_{\ell}$ denote the closed fake surfaces obtained
from $P_{\ell}$ by attaching 2-balls to their boundary, $i=1,2$ . It is not hard to see
$H_{1}(\tilde{P}_{\ell})=0$ and $\# U(P)\leqq u-1$ for both $i=1,2$ . Thus, by the inductive hypothesis,

we obtain

(1) $\#\dot{U}(\tilde{P}_{l})-\# M(\tilde{P}_{\ell})=\# U(\tilde{P}_{\ell})-1$ .
On the other hand, we see the following.

(2) $\#\dot{U}(P)-\# M(P)=(\#\dot{U}(\tilde{P}_{1})+\#\dot{U}(\tilde{P}_{2}))-(\# M(\tilde{P}_{1})+\# M(\tilde{P}_{2})-1)$ .
Combining (1) and (2), we have the required result immediately.

Theorem 2. Let $P$ be a closed fake surface with $H_{1}(P)=0$ . Suppose $u=$

$\# U(P)\neq 0$ and $+B(P)\neq\emptyset$ . Then, we obtain

$\#(+B(P))=2^{u-1}$

Proof. We can prove Theorem 2 by induction on $u$ again. When $u=1$ , we
8ee the conclusion by Lemma 4. And, hence, we may assume $u\geqq 2$ . In this case,

remember Case 2 of the proof of Theorem 1. We $u$se the same notations and it
is sufficient to show that we obtain exactly two elements $\alpha$ and $\beta of+B(P)$ from
$\eta_{1}$ and $\eta_{2}$ . Suppose that $\alpha$ and $\beta$ be obtained by identifying $(\eta_{1}|b)$ and $(\eta_{2}|b)$ by an
orientation preserving equivalence $f$ and an orientation reversing one $g$ , respecti-

vely. Suppose that $\alpha$ and $\beta$ are equivalent by an equivalence $h$ . Then, by Lemma
5, it may be assumed that $h|(\alpha|U(P))$ is orientation preserving. However, if
$h|(\alpha|U(P_{1}))$ is orientation preserving, then, $h|(\alpha|U(P_{2}))$ has to be orientation
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reversing, because $f$ is orientation preserving but $g$ is not. This gives a contra-
diction. Thus, $\alpha$ and $\beta$ are not equivalent. Hence, we obtain $\#(+B(P))=2^{u-1}$ .
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Errata

A CORRECTION TO A THEOREM OF MINE

R. K. GARAI

The Theorem 12 of the paper entitled “ On Conharmonically Recurrent Space $s$

of Second Order” published in the Yokohama Mathematical Joumal, Vol. XXI,

No. 2, 1973, will read
‘ If a $2L_{2}$. $(n>1)$ be a product space $V_{n}\times V_{*}$ , then each of the decomposition

spaces is an Einstein Space.’
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