ELEMENTARY SURGERY ON SEIFERT FIBER SPACES

By
Wolfgang Heil ${ }^{\dagger}$

(Received March 19, 1973)

Let F be an orientable Seifert fiber space. The structure of all 3-manifolds which are obtained by removing disjoint fibered solid tori in F and sewing them back differently is described.

Since the complement of a fibered solid torus in F is a Seifert fiber space it suffices to investigate the class of all manifolds that are a sum of a Seifert fiber space M and solid tori. Here a sum of M and solid tori V_{1}, \cdots, V_{m} is the manifold obtained from M and V_{1}, \cdots, V_{m} by identifying a component T_{i} of ∂M with ∂V_{i} under a homeomorphism $f_{i}: \partial V_{i} \rightarrow T_{i}(i=1, \cdots, m)$. The case that M is a Seifert fiber space with orbit surface a disk has been studied in [1]. In particular, the case that F is the complement of a regular neighborhood in S^{8} of a torus knot, has been considered in detail in [2]. A related result about graph manifolds (a generalization of Seifert fiber spaces) has been obtained in [4, Satz 6.3.3].

The connected sum $M_{1} \# M_{2}$ of two 3-manifolds is the manifold obtained by removing 3 -balls in $\operatorname{int}\left(M_{i}\right)$ and identifying the resulting 2 -sphere boundaries (under an orientation reversing homeomorphism). If M is a 3 -manifold we denote by \hat{M} the manifold obtained from M by capping off each 2 -sphere of ∂M with a 3-cell.

If F is a Seifert fiber space [3] we denote by $p: F \rightarrow f$ the projection onto the orbit surface f. The image of an exceptional fiber is an exceptional point of f. Note that a Seifert fiber space without exceptional fiber is a S^{1}-bundle over f.
T^{8} denotes the solid torus $D^{2} \times S^{1}$, and

$$
\left(S^{1} \times S^{2}\right)^{n}=\left(S^{1} \times S^{2}\right) \# \cdots \#\left(S^{1} \times S^{2}\right) \quad(n \geq 0 \text { copies }),
$$

where $\left(S^{1} \times S^{2}\right)^{0}=S^{3}$; similarly

$$
\left(T^{s}\right)^{n}=T^{s} \# \cdots \# T^{s} \quad(n \geq 0 \quad \text { copies }),
$$

where $\left(T^{8}\right)^{0}=S^{8}$.
By a lens space we mean the sum of two solid tori different from $S^{1} \times S^{2}$. A lens space is trivial if it is S^{3}.

[^0]Proposition 1. Fet F be an orientable S^{1}-bundle over an orientable surface f of genus g and $n \geq 1$ boundary components. Suppose M is a sum of F and n solid tori V_{1}, \cdots, V_{n} such that the meridian of each V_{i} is homologous (on $\left.\partial V_{i}\right)$ to a fiber of F. Then $M \approx\left(S^{1} \times S^{2}\right)^{2 q+n-1}$.

Proof. By a small deformation of the fibering of F we can assume that the meridian of V_{i} is a fiber ($i=1, \cdots, n$).
(a) Assume $g=0$. If $n=1$, then $M \approx S^{3} \approx\left(S^{1} \times S^{2}\right)^{0}$. Thus assume f has $n>1$ boundary components r_{1}, \cdots, r_{n}. Let l be a simple arc on f from r_{1} to $r_{2}, \partial l=$ $p_{1} \cup p_{2}=l \cap \partial f$, and U a regular neighborhood of l on f such that $U \cap r_{i}=a_{i}$, an arc $(i=1,2)$, and $\partial U-\left(a_{1} \cup a_{2}\right)$ consists of two arcs l_{1}, l_{2}. Let $f^{\prime}=c l(f-U)$ and $F^{\prime}=$ $p^{-1}\left(f^{\prime}\right)$. Now $p^{-1}\left(p_{i}\right)$ bounds a disk D_{i} in $V_{i}(i=1,2)$. Let $D_{i} \times I$ be a regular neighborhood of D_{i} in V_{i} such that $D_{i}=D_{i} \times 1 / 2, p^{-1}\left(\partial a_{i}\right)=\partial D_{i} \times 0 \cup \partial D_{i} \times 1$, and let B_{i} be the 3 -ball $c l\left(V_{i}-D_{i} \times I\right)$. Let $M^{\prime}=F^{\prime} \cup V_{8} \cup \cdots \cup V_{n} \cup B_{1} \cup B_{2}$ where the 3 -ball B_{i} is attached along the annulus $p^{-1}\left(c l\left(r_{i}-a_{i}\right)\right) . \quad M$ is obtained from M^{\prime} by
 Here \bar{M}^{\prime} is obtained from M^{\prime} by extending the attaching maps of $\partial B_{\imath} \rightarrow \partial F^{\prime}$ to an attaching map of $\partial V \rightarrow \partial F^{\prime}$, where V is a solid torus. Hence $\hat{M^{\prime} \sim F^{\prime} \cup V \cup V_{\mathbf{3}} \cup \cdots ~}$ $\cup V_{n}$. By induction, since f^{\prime} has $n-1$ boundary components, $\hat{M}^{\prime} \sim\left(S^{1} \times S^{2}\right)^{n-2}$.
(b) Assume $g \geq 1$. Let l be a simple nonseparating arc on f such that $\partial l=$ $r_{1} \cap l=p_{1} \cup p_{2}$. Let U be a regular neighborhood of l on f with $U \cap \partial f=a_{1} \cup a_{2}$, two disjoint arcs on r_{1}, and let $f^{\prime}=c l(f-U)$. Let l_{1}, l_{2} be the components of $c l\left(\partial U-a_{1} \cup a_{2}\right)$ and b_{1}, b_{2} the components of $c l\left(r_{1}-a_{1} \cup a_{2}\right)$. Now $p^{-1}\left(p_{t}\right)$ bounds a disk D_{i} in $V_{1}(i=1,2)$. Let $D_{i} \times I$ be a regular neighborhood of D_{i} in V_{1} with $p^{-1}\left(\partial a_{i}\right)=\partial D_{i} \times 0 \cup \partial D_{i} \times 1$, and let B_{1}, B_{2} be the 3-balls of $c l\left(V_{1}-D_{1} \times I \cup D_{2} \times I\right)$. Let $M^{\prime}=F^{\prime} \cup V_{2} \cup \cdots \cup V_{n} \cup B_{1} \cup B_{2}$, where $F^{\prime}=p^{-1}\left(f^{\prime}\right)$ and where B_{i} is attached along $p^{-1}\left(b_{i}\right)(i=1,2)$. As before, $M \sim \hat{M^{\prime}} \boldsymbol{\#} S^{1} \times S^{2}$, with $\widehat{M^{\prime}}=F^{\prime} \cup V_{1}^{\prime} \cup V_{1}^{\prime \prime} \cup V_{2} \cup \cdots \cup V_{n}$, where ∂V_{1}^{\prime} and $\partial V_{1}^{\prime \prime}$ is attached to $p^{-1}\left(l_{1} \cup b_{1}\right)$ and $p^{-1}\left(l_{2} \cup b_{2}\right)$, resp., such that a meridian of V_{1}^{\prime} and $V_{1}^{\prime \prime}$ is a fiber of $F^{\prime \prime}$. Since genus (f^{\prime}) $=g-1$ and ∂f^{\prime} has $n+1$ components, it follows by induction on g that $\hat{M^{\prime}} \sim\left(S^{1} \times S^{2}\right)^{2(g-1)+(n+1)-1}$ and hence $M \sim\left(S^{1} \times S^{2}\right)^{2 \theta+n-1}$.

Proposition 2. Let F be an orientable Seifert fiber space with $r \geq 0$ exceptional fibers and with orientable orbit surface f of genus $g \geq 0$ and $n \geq 1$ boundary components. Let M be the sum of F and n solid tori V_{1}, \cdots, V_{n}.
(a) If a meridian of each V_{i} is not homologous to a fiber of F then M is an orientable Seifert fiber space (with at most $r+n$ exceptional fibers and with a closed orientable orbit surface of genus g).
(b) If a meridian of each V_{i} is homologous to a fiber of F then $M \approx L_{1} \# \ldots$ $\# L_{r} \#\left(S^{1} \times S^{2}\right)^{2 q+n-1}$ where L_{i} is a nontrivial lensspace $(i=1, \cdots, r)$.
(c) If a meridian of V_{i} is not homologous to a fiber for $1 \leq i \leq q$, but a meridian of V_{j} is homologous to a fiber for $q<j \leq n$, then $M \sim L_{1} \# \ldots$ $\# L_{m} \#\left(S^{1} \times S^{2}\right)^{2 q+n-q-1}$ for some m with $r \leq m \leq r+q$.

Proof. (a) In this case the fibering of F can be extended to a Seifert fibering of M.
(b) Let D be a disk on f such that int D contains the r exceptional points of $f, D \cap \partial f=\partial D \cap \partial f=a$ is an arc on $r_{1}=p\left(\partial V_{1}\right)$. As in the proof of proposition 1 , let $D_{1} \times I$ be a 3 -ball in V_{1} determined by the meridianal annulus $p^{-1}(a)$ in V_{1} and $B_{1}=c l\left(V_{1}-D_{1} \times I\right)$. Then $M \approx \widehat{M}_{1} \# \hat{M}_{2}$, where $M_{1}=p^{-1}(c l(f-D)) \cup B_{1}, M_{2}=p^{-1}(D) \cup$ $D_{1} \times I$. By lemma 3 of [1], M_{2} is a connected sum of r non-trivial lens spaces minus an open 3 -ball, and by proposition $1, M_{1}=\left(S^{1} \times S^{2}\right)^{2 q+n-1}-3$-ball.
(c) The fibering of F can be extended to a fibering of $F^{\prime}=F \cup V_{1} \cup \cdots \cup V_{q}$ with at most $r+q$ exceptional fibers. Thus (c) follows by applying (b) to $F^{\prime} \cup$ $V_{q+1} \cup \cdots \cup V_{n}$.

We now consider the case that not all boundary components of a Seifert fiber space F are filled in by solid tori.

Lemma. Let M be an orientable 3 -manifold such that ∂M contains only one 2-sphere component S. Let N be obtained from M by adding a 1-handle at S. Then $N \approx \hat{M} \# T^{3}$.

Proof. Let V^{\prime} be obtained from T^{3} by removing a 3 -ball from $\operatorname{int}\left(T^{3}\right)$ and let S^{\prime} be the 2 -sphere component of ∂V^{\prime}. Then $\hat{M} \# T^{8}=M \cup V^{\prime}$, where the union is along S and S^{\prime}. Let D be a meridianal disk in $V^{\prime}, D \cap \partial V^{\prime}=\partial D$ and let U be a regular neighborhood of D in V^{\prime} with $U \cap \partial V^{\prime}$ a regular neighborhood of ∂D in ∂V^{\prime}. Then $M \cup c l\left(V^{\prime}-D\right) \approx M$, since $c l\left(V^{\prime}-D\right)$ is just a collar of ∂M. Hence $M \cup V^{\prime}$ is obtained from M by adding a 1 -handle at S.

Proposition 3. Let F be a Seifert fiber space with no exceptional fibers and orbitsurface f a 2 -sphere with n holes, $n \geq 2$. Let M be the sum of F and solid tori $V_{1}, \cdots, V_{m}(1 \leq m \leq n)$ such that the meridian of V_{i} is homologous to a fiber of $F(i=1, \cdots, m)$. Then $M \approx\left(S^{1} \times S^{2}\right)^{m-1} \#\left(T^{3}\right)^{n-m}$.

Proof. (a) First assume $m=1, n=2$. Let r_{1} be the boundary component of f for which $p^{-1}\left(r_{1}\right)=\partial V_{1}$. Let U be a regular neighborhood on f of an arc l from r_{1} to the other boundary r_{2}, such that $U \cap r_{i}=a_{i}$, an arc $(i=1,2)$. Then the annuli $p^{-1}\left(a_{1}\right)$ and $p^{-1}\left(c l\left(r_{1}-a_{1}\right)\right)$ determine 3 -balls B_{1} and B_{2} in V, respectively.

Now $p^{-1}(U) \cup B_{1} \approx 3$-ball and $p^{-1}(c l(f-U)) \cup B_{2} \approx 3$-ball, and M is a union of two 3 -balls along two disjoint disks in their boundaries, hence $M \approx T^{3}$.
(b) Assume $m=1, n>2$. Let U be as above, then $M=M_{1} \cup B$, where B is a 3 -ball and where the union is along two disjoint disks in ∂M_{1} and ∂B, and where $M_{1}=p^{-1}(c l(f-U)) \cup B_{2}$. By induction on $n, M_{1} \approx\left(T^{8}\right)^{(n-2)}-3$-ball and M is obtained from M_{1} by adding a 1 -handle to the boundary sphere of M_{1}. By the lemma, $M \approx \hat{M}_{1} \# T^{8} \approx\left(T^{8}\right)^{n-1}$.
(c) $1 \leq m \leq n$. Write $M \approx F \cup V_{1} \cup \cdots \cup V_{m}$. By (b) $F \cup V_{1}=\left(T^{8}\right)^{n-1}$. For each summand T^{3} we have a fibering on ∂T^{3} (induced from the fibering of F) such that the fiber of ∂T^{8} is a meridian of T^{3}. Hence V_{2}, \cdots, V_{m} are attached to $F \cup V_{1}$ such that the meridian of V_{i} is identified with the meridian of one of the T^{3}, i. e. $T^{3} \cup V_{i} \approx S^{1} \times S^{2}$. Hence $M \approx\left(S^{1} \times S^{2}\right)^{m-1} \#\left(T^{3}\right)^{n-m}$.

Proposition 4. Let F be an orientable Seifert fiber space without exceptional fibers and orientable orbit surface of genus g and n boundary components. Suppose M is a sum of F and m solid tori $V_{1}, \cdots, V_{m}(1 \leq m \leq n)$ such that the meridian of V_{i} is homologous to a fiber of $F(i=1, \cdots, m)$. Then $T \sim\left(S^{1} \times S^{2}\right)^{2 \sigma+m-1} \#\left(T^{3}\right)^{n-m}$.

Proof. For $g=0$ this is proposition 3. Suppose $g>0$. Let r_{i} be the boundary component of f with $p^{-1}\left(r_{i}\right)=\partial V_{i}$. Let U be a regular neighborhood of a nonseparating arc l on f with $\partial l=l \cap \partial f=l \cap r_{1}$, such that $U \cap r_{1}$ consists of two arcs a_{1}, a_{2}. Let $D_{i} \times I$ be the 3 -ball in V_{1} determined by $p^{-1}\left(a_{i}\right)(i=1,2)$ and let B_{1}, B_{2} be the components of $c l\left(V_{1}-D_{1} \times I \cup D_{2} \times I\right)$. Then $M=M_{1} \cup M_{2}$, where $M_{1}=p^{-1}(c l(f-U)) \cup$ $B_{1} \cup B_{2} \cup V_{2} \cup \cdots \cup V_{r}$ and $M_{2}=p^{-1}(U) \cup D_{1} \times I \cup D_{2} \times I \approx S^{2} \times I$, and where the union is over $S^{2} \times 0$ and $S^{2} \times 1$. Extending the attaching maps of $\partial B_{i} \rightarrow \partial M_{1}$ to an attaching map $\partial T_{i}^{3} \rightarrow \partial M_{1}(i=1,2)$, we see that $\hat{M}_{1} \approx p^{-1}\left(f^{\prime}\right) \cup T_{1}^{3} \cup T_{2}^{3} \cup V_{2} \cup \cdots \cup V_{m}$, where $f^{\prime}=c l(f-U)$, genus $\left(f^{\prime}\right)=g-1$, and ∂f^{\prime} consists of $n+1$ components. By induction on g,

$$
\hat{M}_{1} \approx\left(S^{1} \times S^{2}\right)^{2(\sigma-1)+(m+1)-1} \#\left(T^{3}\right)^{(n+1)-(m+1)},
$$

and hence

$$
M \approx \hat{M}_{1} \#\left(S^{1} \times S^{2}\right) \approx\left(S^{1} \times S^{2}\right)^{2 q+m-1} \#\left(T^{s}\right)^{n-m} .
$$

Proposition 5. Let F be an orientable Seifert fiber space with r exceptional fibers and with orientable orbit surface f of genus g and n boundary components. Let M be a sum of F and m solid tori $V_{1}, \cdots, V_{m}(1 \leq m \leq n)$. Then
(a) If the meridian of V_{i} is not homologous to a fiber of F for $i=1, \cdots, m$, M is a Seifert fiber space with at most $r+m$ exceptional fibers.
(b) If the meridian of V_{i} is homologous to a fiber of F for $1 \leq i \leq q$, but not homologous to a fiber for $q<i \leq m$, then $M \approx L_{1} \# 000 \# L_{m-q+r} \#\left(S^{1} \times S^{2}\right)^{2 q+q-1} \#\left(T^{3}\right)^{n-q}$ where L_{i} are lensspaces (at least r of which are non trivial).

Proof. This follows from the previous propositions as in the proof of proposition 2.

REFERENCES

[1] W. Heil, 3-manifolds that are sums of solid tori and Seifert fiber spaces, Proc. Amer. Math. Soc. 37 (1973), 609-614.
[2] L. Moser, Elementary surgery along a torus knot, Paciffic J. Math. 38 (1971), 737745.
[3] H. Seifert, Topologie dreidimensionaler gefaserter Räume, Acta Math. 60 (1933), 147-238.
[4] F. Waldhausen, Eine Klasse von 3-dimensionale Mannigfaltigkeiten II, Inventiones Math. 4 (1967), 87-117.

Department of Mathematics Florida State University Tallahassee, Florida, 32306 U.S. A.

[^0]: \dagger Partially supported by NSF Grant 19964.

