ELEMENTARY SURGERY ON SEIFERT FIBER SPACES

By

WOLFGANG HEIL[†]

(Received March 19, 1973)

Let F be an orientable Seifert fiber space. The structure of all 3-manifolds which are obtained by removing disjoint fibered solid tori in F and sewing them back differently is described.

Since the complement of a fibered solid torus in F is a Seifert fiber space it suffices to investigate the class of all manifolds that are a sum of a Seifert fiber space M and solid tori. Here a sum of M and solid tori V_1, \dots, V_m is the manifold obtained from M and V_1, \dots, V_m by identifying a component T_i of ∂M with ∂V_i under a homeomorphism $f_i: \partial V_i \to T_i$ $(i=1,\dots,m)$. The case that M is a Seifert fiber space with orbit surface a disk has been studied in [1]. In particular, the case that F is the complement of a regular neighborhood in S^3 of a torus knot, has been considered in detail in [2]. A related result about graph manifolds (a generalization of Seifert fiber spaces) has been obtained in [4, Satz 6.3.3].

The connected sum $M_1 \# M_2$ of two 3-manifolds is the manifold obtained by removing 3-balls in $int(M_i)$ and identifying the resulting 2-sphere boundaries (under an orientation reversing homeomorphism). If M is a 3-manifold we denote by \hat{M} the manifold obtained from M by capping off each 2-sphere of ∂M with a 3-cell.

If F is a Seifert fiber space [3] we denote by $p: F \rightarrow f$ the projection onto the orbit surface f. The image of an exceptional fiber is an exceptional point of f. Note that a Seifert fiber space without exceptional fiber is a S^1 -bundle over f.

 T^{*} denotes the solid torus $D^{2} \times S^{1}$, and

$$(S^1 \times S^2)^n = (S^1 \times S^2) \# \cdots \# (S^1 \times S^2) \qquad (n \ge 0 \text{ copies}),$$

where $(S^1 \times S^2)^0 = S^3$; similarly

$$(T^s)^n = T^s \# \cdots \# T^s \qquad (n \ge 0 \text{ copies}),$$

where $(T^{s})^{0} = S^{s}$.

By a lens space we mean the sum of two solid tori different from $S^1 \times S^2$. A lens space is trivial if it is S^3 .

[†] Partially supported by NSF Grant 19964.

WOLFGANG HEIL

Proposition 1. Fet F be an orientable S¹-bundle over an orientable surface f of genus g and $n \ge 1$ boundary components. Suppose M is a sum of F and n solid tori V_1, \dots, V_n such that the meridian of each V_i is homologous (on ∂V_i) to a fiber of F. Then $M \approx (S^1 \times S^2)^{2g+n-1}$.

Proof. By a small deformation of the fibering of F we can assume that the meridian of V_i is a fiber $(i=1, \dots, n)$.

(a) Assume g=0. If n=1, then $M \approx S^3 \approx (S^1 \times S^2)^0$. Thus assume f has n>1boundary components r_1, \dots, r_n . Let l be a simple arc on f from r_1 to r_2 , $\partial l = p_1 \cup p_2 = l \cap \partial f$, and U a regular neighborhood of l on f such that $U \cap r_i = a_i$, an arc (i=1, 2), and $\partial U - (a_1 \cup a_2)$ consists of two arcs l_1, l_2 . Let f' = cl(f-U) and $F' = p^{-1}(f')$. Now $p^{-1}(p_i)$ bounds a disk D_i in V_i (i=1, 2). Let $D_i \times I$ be a regular neighborhood of D_i in V_i such that $D_i = D_i \times 1/2$, $p^{-1}(\partial a_i) = \partial D_i \times 0 \cup \partial D_i \times 1$, and let B_i be the 3-ball $cl(V_i - D_i \times I)$. Let $M' = F' \cup V_3 \cup \cdots \cup V_n \cup B_1 \cup B_2$ where the 3-ball B_i is attached along the annulus $p^{-1}(cl(r_i - a_i))$. M is obtained from M' by identifying the two 2-spheres $p^{-1}(l_i) \cup D_i \times 0 \cup D_j \times 1$ of $\partial M'$. Hence $M \approx \tilde{M}' \# S^1 \times S^2$. Here \tilde{M}' is obtained from M' by extending the attaching maps of $\partial B_i \to \partial F'$ to an attaching map of $\partial V \to \partial F'$, where V is a solid torus. Hence $\tilde{M}' \approx (S^1 \times S^2)^{n-2}$.

(b) Assume $g \ge 1$. Let l be a simple nonseparating arc on f such that $\partial l = r_1 \cap l = p_1 \cup p_2$. Let U be a regular neighborhood of l on f with $U \cap \partial f = a_1 \cup a_2$, two disjoint arcs on r_1 , and let f' = cl(f - U). Let l_1, l_2 be the components of $cl(\partial U - a_1 \cup a_2)$ and b_1, b_2 the components of $cl(r_1 - a_1 \cup a_2)$. Now $p^{-1}(p_i)$ bounds a disk D_i in V_1 (i=1, 2). Let $D_i \times I$ be a regular neighborhood of D_i in V_1 with $p^{-1}(\partial a_i) = \partial D_i \times 0 \cup \partial D_i \times 1$, and let B_1, B_2 be the 3-balls of $cl(V_1 - D_1 \times I \cup D_2 \times I)$. Let $M' = F' \cup V_2 \cup \cdots \cup V_n \cup B_1 \cup B_2$, where $F' = p^{-1}(f')$ and where B_i is attached along $p^{-1}(b_i)$ (i=1, 2). As before, $M \sim \hat{M'} \# S^1 \times S^2$, with $\hat{M'} = F' \cup V'_1 \cup V''_1 \cup V_2 \cup \cdots \cup V_n$, where $\partial V'_1$ and $\partial V''_1$ is attached to $p^{-1}(l_1 \cup b_1)$ and $p^{-1}(l_2 \cup b_2)$, resp., such that a meridian of V'_1 and V''_1 is a fiber of F'. Since genus (f') = g - 1 and $\partial f'$ has n+1 components, it follows by induction on g that $\hat{M'} \sim (S^1 \times S^2)^{2(g-1)+(n+1)-1}$ and hence $M \sim (S^1 \times S^2)^{2g+n-1}$.

Proposition 2. Let F be an orientable Seifert fiber space with $r \ge 0$ exceptional fibers and with orientable orbit surface f of genus $g \ge 0$ and $n \ge 1$ boundary components. Let M be the sum of F and n solid tori V_1, \dots, V_n .

(a) If a meridian of each V, is not homologous to a fiber of F then M is an orientable Seifert fiber space (with at most r+n exceptional fibers and with a closed orientable orbit surface of genus g).

136

ELEMENTARY SURGERY ON SEIFERT FIBER SPACES

(b) If a meridian of each V_i is homologous to a fiber of F then $M \approx L_1 \# \cdots \# L_r \# (S^1 \times S^2)^{2g+n-1}$ where L_i is a nontrivial lensspace $(i=1, \dots, r)$.

(c) If a meridian of V_i is not homologous to a fiber for $1 \le i \le q$, but a meridian of V_j is homologous to a fiber for $q < j \le n$, then $M \sim L_1 \# \cdots \# L_m \# (S^1 \times S^2)^{2g+n-q-1}$ for some m with $r \le m \le r+q$.

Proof. (a) In this case the fibering of F can be extended to a Seifert fibering of M.

(b) Let D be a disk on f such that int D contains the r exceptional points of f, $D \cap \partial f = \partial D \cap \partial f = a$ is an arc on $r_1 = p(\partial V_1)$. As in the proof of proposition 1, let $D_1 \times I$ be a 3-ball in V_1 determined by the meridianal annulus $p^{-1}(a)$ in V_1 and $B_1 = cl(V_1 - D_1 \times I)$. Then $M \approx \hat{M}_1 \# \hat{M}_2$, where $M_1 = p^{-1}(cl(f-D)) \cup B_1$, $M_2 = p^{-1}(D) \cup$ $D_1 \times I$. By lemma 3 of [1], M_2 is a connected sum of r non-trivial lens spaces minus an open 3-ball, and by proposition 1, $M_1 = (S^1 \times S^2)^{2g+n-1} - 3$ -ball.

(c) The fibering of F can be extended to a fibering of $F'=F\cup V_1\cup\cdots\cup V_q$ with at most r+q exceptional fibers. Thus (c) follows by applying (b) to $F'\cup$ $V_{q+1}\cup\cdots\cup V_n$.

We now consider the case that not all boundary components of a Seifert fiber space F are filled in by solid tori.

Lemma. Let M be an orientable 3-manifold such that ∂M contains only one 2-sphere component S. Let N be obtained from M by adding a 1-handle at S. Then $N \approx \hat{M} \# T^3$.

Proof. Let V' be obtained from T^s by removing a 3-ball from $int(T^s)$ and let S' be the 2-sphere component of $\partial V'$. Then $\hat{M} \ddagger T^s = M \cup V'$, where the union is along S and S'. Let D be a meridianal disk in V', $D \cap \partial V' = \partial D$ and let U be a regular neighborhood of D in V' with $U \cap \partial V'$ a regular neighborhood of ∂D in $\partial V'$. Then $M \cup cl(V'-D) \approx M$, since cl(V'-D) is just a collar of ∂M . Hence $M \cup V'$ is obtained from M by adding a 1-handle at S.

Proposition 3. Let F be a Seifert fiber space with no exceptional fibers and orbitsurface f a 2-sphere with n holes, $n \ge 2$. Let M be the sum of F and solid tori V_1, \dots, V_m $(1 \le m \le n)$ such that the meridian of V_i is homologous to a fiber of $F(i=1,\dots,m)$. Then $M \approx (S^1 \times S^2)^{m-1} \# (T^8)^{n-m}$.

Proof. (a) First assume m=1, n=2. Let r_1 be the boundary component of f for which $p^{-1}(r_1)=\partial V_1$. Let U be a regular neighborhood on f of an arc l from r_1 to the other boundary r_2 , such that $U \cap r_i = a_i$, an arc (i=1, 2). Then the annuli $p^{-1}(a_1)$ and $p^{-1}(cl(r_1-a_1))$ determine 3-balls B_1 and B_2 in V, respectively.

137

WOLFGANG HEIL

Now $p^{-1}(U) \cup B_1 \approx 3$ -ball and $p^{-1}(cl(f-U)) \cup B_2 \approx 3$ -ball, and M is a union of two 3-balls along two disjoint disks in their boundaries, hence $M \approx T^s$.

(b) Assume m=1, n>2. Let U be as above, then $M=M_1\cup B$, where B is a 3-ball and where the union is along two disjoint disks in ∂M_1 and ∂B , and where $M_1=p^{-1}(cl(f-U))\cup B_2$. By induction on $n, M_1\approx(T^3)^{(n-2)}-3$ -ball and M is obtained from M_1 by adding a 1-handle to the boundary sphere of M_1 . By the lemma, $M\approx \hat{M}_1 \# T^3 \approx (T^3)^{n-1}$.

(c) $1 \le m \le n$. Write $M \approx F \cup V_1 \cup \cdots \cup V_m$. By (b) $F \cup V_1 = (T^3)^{n-1}$. For each summand T^3 we have a fibering on ∂T^3 (induced from the fibering of F) such that the fiber of ∂T^3 is a meridian of T^3 . Hence V_2, \cdots, V_m are attached to $F \cup V_1$ such that the meridian of V_i is identified with the meridian of one of the T^3 , i.e. $T^3 \cup V_i \approx S^1 \times S^2$. Hence $M \approx (S^1 \times S^2)^{m-1} \# (T^3)^{n-m}$.

Proposition 4. Let F be an orientable Seifert fiber space without exceptional fibers and orientable orbit surface of genus g and n boundary components. Suppose M is a sum of F and m solid tori V_1, \dots, V_m $(1 \le m \le n)$ such that the meridian of V_i is homologous to a fiber of $F(i=1,\dots,m)$. Then $T \approx (S^1 \times S^2)^{2g+m-1} \# (T^3)^{n-m}$.

Proof. For g=0 this is proposition 3. Suppose g>0. Let r_i be the boundary component of f with $p^{-1}(r_i)=\partial V_i$. Let U be a regular neighborhood of a nonseparating arc l on f with $\partial l=l\cap \partial f=l\cap r_1$, such that $U\cap r_1$ consists of two arcs a_1,a_2 . Let $D_i\times I$ be the 3-ball in V_1 determined by $p^{-1}(a_i)$ (i=1,2) and let B_1,B_2 be the components of $cl(V_1-D_1\times I\cup D_2\times I)$. Then $M=M_1\cup M_2$, where $M_1=p^{-1}(cl(f-U))\cup B_1\cup B_2\cup V_2\cup\cdots\cup V_r$ and $M_2=p^{-1}(U)\cup D_1\times I\cup D_2\times I\approx S^2\times I$, and where the union is over $S^2\times 0$ and $S^2\times 1$. Extending the attaching maps of $\partial B_i \rightarrow \partial M_1$ to an attaching map $\partial T_i^3 \rightarrow \partial M_1$ (i=1,2), we see that $\hat{M}_1 \approx p^{-1}(f')\cup T_1^3\cup T_2^3\cup V_2\cup\cdots\cup V_m$, where f'=cl(f-U), genus (f')=g-1, and $\partial f'$ consists of n+1 components. By induction on g,

$$\hat{M}_1 \approx (S^1 \times S^2)^{2(g-1)+(m+1)-1} \# (T^3)^{(n+1)-(m+1)}$$

and hence

$$M \approx \hat{M}_1 \# (S^1 \times S^2) \approx (S^1 \times S^2)^{2g+m-1} \# (T^8)^{n-m}$$

Proposition 5. Let F be an orientable Seifert fiber space with r exceptional fibers and with orientable orbit surface f of genus g and n boundary components. Let M be a sum of F and m solid tori V₁,..., V_m (1≤m≤n). Then (a) If the meridian of V_i is not homologous to a fiber of F for i=1,..., m, M is a Seifert fiber space with at most r+m exceptional fibers.

138

(b) If the meridian of V_i is homologous to a fiber of F for $1 \le i \le q$, but not homologous to a fiber for $q < i \le m$, then $M \approx L_1 \# \circ \circ \circ \# L_{m-q+r} \# (S^1 \times S^2)^{2g+q-1} \# (T^s)^{n-q}$ where L_i are lensspaces (at least r of which are non trivial).

Proof. This follows from the previous propositions as in the proof of proposition 2.

REFERENCES

- [1] W. Heil, 3-manifolds that are sums of solid tori and Seifert fiber spaces, Proc. Amer. Math. Soc. 37 (1973), 609-614.
- [2] L. Moser, Elementary surgery along a torus knot, Paciffic J. Math. 38 (1971), 737-745.
- [3] H. Seifert, Topologie dreidimensionaler gefaserter Räume, Acta Math. 60 (1933), 147-238.
- [4] F. Waldhausen, Eine Klasse von 3-dimensionale Mannigfaltigkeiten II, Inventiones Math. 4 (1967), 87-117.

Department of Mathematics Florida State University Tallahassee, Florida, 32306 U.S.A.

