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Let $F$ be an orientable Seifert fiber space. The structure of all 3-manifolds
which are obtained by removing disjoint fibered solid tori in $F$ and sewing them
back differently is $de8cribed$ .

Since the complement of a fibered solid torus in $F$ is a Seifert fiber spaoe it
suffices to investigate the class of all manifolds that are a sum of a Seifert fiber
space $M$ and solid tori. Here a sum of $M$ and solid tori $V_{\iota},$

$\cdots,$
$V_{m}$ is the mani-

fold obtained from $M$ and $V_{1},$
$\cdots,$ $V_{m}$ by identifying a component $T_{\ell}$ of $\partial M$ with

$\partial V_{l}$ under a homeomorphism $f_{\ell}$ : $\partial V_{\ell}\rightarrow T_{\ell}(i=1, \cdots, m)$ . The case that $M$ is a
Seifert fiber space with orbit surface a disk has been studied in [1]. In particular,
the case that $F$ is the complement of a regular neighborhood in $S^{\epsilon}$ of a torus
knot, has been considered in detail in [2]. A related result about graph manifolds
(a generalization of Seifert fiber spaces) has been obtained in [4, Satz 6.3.3].

The connected sum $M_{\iota}\# M_{2}$ of two 3-manifolds is the manifold obtained by
removing 3-balls in int $(M_{i})$ and identifying the resulting 2-sphere boundaries
(under an orientation reversing homeomorphism). If $M$ is a 3-manifold we denote
by $\hat{M}$ the manifold obtained from $M$ by capping off each 2-sphere of $\partial M$ with a
3-cell.

If $F$ is a Seifert fiber space [3] we denote by $p:F\rightarrow f$ the projection onto the
orbit surface $f$. The image of an exceptional fiber is an exceptional point of $f$.
Note that a Seifert fiber space without exceptional fiber is a $S^{1}$-bundle over $f$.

$T^{\epsilon}$ denotes the solid torus $D^{2}\times S^{1}$ , and

$(S^{1}\times S^{2})^{n}=(S’ \times S^{2})\#\cdots\#(S^{1}\times S^{2})$ ($n\geq 0$ copies),

where $(S^{1}\times S^{2})^{0}=S^{\epsilon}$ ; similarly

$(T^{\epsilon})^{n}=T^{\epsilon}\#\cdots\# T$ ($n\geq 0$ copies),

where $(T)^{0}=S^{\epsilon}$ .
By a lens space we mean the sum of two solid tori different from $S^{1}\times S^{2}$ .

A lens space is trivial if it is $S^{8}$ .
\dagger Partially supported by NSF Grant 19964.



136 WOLFGANG HEIL

Proposition 1. Fet $F$ be an orientable $S^{1}$-bundle over an orientable surface
$f$ of genus $g$ and $n\geq 1$ boundary components. $Suppo\epsilon eM$ is a sum of $F$ and
$n$ solid tori $V_{1},$

$\cdots,$
$V_{n}$ such that the meridian of each $V_{\ell}$ is $ hom9logou\epsilon$ (on

$\partial V_{\ell})$ to a fiber of F. Then $M\approx(S^{1}\times S^{2})^{2g+n-1}$ .
Proof. By a small deformation of the flbering of $F$ we can assume that the

meridian of $V_{\ell}$ is a fiber $(i=1, \cdots, n)$ .
(a) Assume $g=0$ . If $n=1$ , then $M\sim S^{8}\sim(S^{1}\times S^{2})^{0}$ . Thus assume $f$ has $n>1$

boundary components $r_{1},$ $\cdots,$ $r_{n}$ . Let $l$ be a simple arc on $f$ from $r_{1}$ to $r_{2},$
$\partial l=$

$p_{1}\cup p_{2}=l\cap\partial f$, and $U$ a regular neighborhood of $l$ on $f$ such that $U\cap r_{\ell}=a_{\ell}$ , an arc
$(i=1,2)$ , and $\partial U-(a_{1}\cup a_{2})$ consists of two arcs $l_{1},$ $l_{2}$ . Let $f^{\prime}=cl(f-U)$ and $F^{\prime}=$

$p^{-1}(f^{\prime})$ . Now $p^{-1}(p_{\ell})$ bounds a disk $D_{i}$ in $V_{\ell}(i=1,2)$ . Let $D_{\ell}\times I$ be a regular

neighborhood of $D_{\ell}$ in $V_{\ell}$ such that $D_{\ell}=D_{l}\times 1/2,$ $p^{-1}(\partial a_{i})=\partial DxOU\partial D_{t}\times 1$ , and let
$B_{\ell}$ be the 3-ball $cl(V_{\ell}-D_{\ell}\times I)$ . Let $M^{\prime}=F^{\prime}\cup V_{8}\cup\cdots\cup V_{n}\cup B_{\iota}\cup B$, where the
3-ball $B_{i}$ is attached along the annulus $p^{-1}(cl(r_{i}-a))$ . $M$ is obtained from $M^{\prime}$ by
identifying the two 2-spheres $p^{-1}(l_{\ell})\cup D_{l}\times 0\cup D_{j}\times 1$ of $\partial M^{\prime}$ . Hence $M\sim\hat{M}^{\prime}\# S^{1}\times S^{f}$ .
Here $\hat{M}^{\prime}$ is obtained from $M^{\prime}$ by extending the attaching maps of $\partial B\rightarrow\partial F^{\prime}$ to an
attaching map of $\partial V\rightarrow\partial F^{\prime}$ , where $V$ is a solid torus. Hence $M’\sim F^{\prime}\cup V\cup V_{\epsilon}\cup\cdots$

$\cup V_{n}$ . By induction, since $f^{\prime}$ has $n-1$ boundary components, $\hat{M}^{\prime}\sim(S^{1}\times S^{f})^{n-f}$ .
(b) Assume $g\geq 1$ . Let $l$ be a simple nonseparating arc on $f$ such that $\partial l=$

$r_{1}\cap l=p_{1}\cup p_{2}$ . Let $U$ be a regular neighborhood of $l$ on $f$ with $U\cap\partial f=a_{1}\cup a_{2}$ ,

two disjoint arcs on $r_{1}$ , and let $f^{\prime}=cl(f-U)$ . Let $l_{1},$ $l_{2}$ be the components of
$cl(\partial U-a_{1}\cup a_{2})$ and $b_{1},$ $b_{2}$ the components of $cl(r_{1}-a_{1}\cup a_{t})$ . Now $p^{-1}(p)$ bounds a
disk $D$ in $V_{1}(i=1,2)$ . Let $D\times I$ be a regular neighborhood of $D$ in $V_{1}$ with
$p^{-1}(\partial a)=\partial D_{\ell}\times 0\cup\partial D_{\ell}\times 1,$ $andletB_{1},$ $B_{2}bethe3- ballsofcl(V_{1}-D_{1}\times I\cup D_{2}\times I)$ . Let
$M^{\prime}=F^{\prime}\cup V_{2}\cup\cdots\cup V_{n}\cup B_{1}\cup B_{2}$ , where $F^{\prime}=p^{-1}(f^{\prime})$ and where $B$ is attached along
$p^{-1}(b_{\ell})(i=1,2)$ . As before, $M\sim M’\# S^{1}\times S^{2}$ , with $M’=F^{\prime}\cup V_{1}^{\prime}\cup V_{1}^{\prime\prime}\cup V_{2}\cup\cdots\cup V,,$ ,

where $\partial V_{1}^{\prime}$ and $\partial V_{1}^{\prime\prime}$ is attached to $p^{-1}(l_{1}\cup b_{1})$ and $p^{-1}(l_{2}\cup b_{2})$ , resp., such that a
meridian of $V_{1}^{\prime}$ and $V_{1}^{\prime\prime}$ is a fiber of $F^{\prime}$ . Since genus $(f^{\prime})=g-1$ and $\partial f^{\prime}$ has $n+1$

components, it follows by induction on $g$ that $M’\sim(S^{1}\times S^{t})^{(g-1)+(n+1)-1}$ and hence
$M\sim(S^{1}\times S^{2})^{2g+n-1}$ .

Proposition 2. Let $F$ be an orientable Seifert fiber space with $r\geq 0$ excep-
tional fibers and with orientable orbit surface $f$ of genus $g\geq 0$ and $n\geq 1$ boundary
components. Let $M$ be the $\epsilon um$ of $F$ and $n\epsilon olid$ tori $V_{1},$

$\cdots,$
$V_{n}$ .

$(a)$ If a meridian of each $V$ is not homologous to a fiber of $F$ then $M$ is
an orientable Seifert fiber space (with at $mo\epsilon tr+n$ exceptional fibers and with
a closed orientable orbit surface of genus $g$).
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$(b)$ If a meridian of each $V_{\ell}$ is homologous to a fiber of $F$ then $ M\sim L_{1}\#\cdots$

$\# L_{r}\#(S^{1}\times S^{2})^{2g+n-1}$ where $L_{\ell}$ is a nontrivial lensspace $(i=1, \cdots, r)$ .
$(c)$ If a meridian of $V_{\ell}$ is not homologous to a fiber for $1\leq i\leq q$ . but a

meridian of $V_{f}$ is homologous to a fiber for $q<j\leq n$ , then $ M\sim L_{1}\#\cdots$

$\# L_{m}\#(S^{1}\times S^{2})^{2g+n-q-1}$ for some $m$ with $r\leq m\leq r+q$ .
Proof. (a) In this case the fibering of $F$ can be extended to a Seifert

fibering of $M$.
(b) Let $D$ be a disk on $f$ such that int $D$ contains the $r$ exceptional points

of $f,$ $D\cap\partial f=\partial D\cap\partial f=a$ is an arc on $r_{1}=p(\partial V_{1})$ . As in the $prf$ of proposition 1,

let $D_{1}\times I$ be a 3-ball in $V_{1}$ determined by the meridianal annulus $p^{-1}(a)$ in $V_{\iota}$ and
$B_{1}=cl(V_{1}-D_{1}\times I)$ . Then $M\sim M_{1}\#M_{2}$ , where $M_{1}=p^{-1}(cl(f-D))\cup B_{1},$ $ M_{2}=p^{-1}(D)\cup$

$D_{1}\times I$. By lemma 3 of [1], $M_{2}$ is a connected sum of $r$ non-trivial lens spaces

minus an open 3-ball, and by proposition 1, $M_{1}=(S^{1}\times S^{2})^{2g+n-1}-3$-ball.
(c) The fibering of $F$ can be extended to a fibering of $F^{\prime}=F\cup V_{1}\cup\cdots\cup V_{q}$

with at most $r+q$ exceptional fibers. Thus (c) follows by applying (b) to $ F^{\prime}\cup$

$V_{q+1}\cup\cdots\cup V_{n}$ .
We now consider the case that not all boundary components of a Seifert fiber

space $F$ are filled in by solid tori.

Lemma. Let $M$ be an orientable 3-manifold such that $\partial M$ contains only

one 2-sphere component S. Let $N$ be obtained from $M$ by adding a l-handle at
S. Then $N\sim\hat{M}\# T^{\epsilon}$ .

Proof. Let $V^{\prime}$ be obtained from $T^{8}$ by removing a 3-ball from int $(T^{\epsilon})$ and
let $S^{\prime}$ be the 2-sphere component of $\partial V^{\prime}$ . Then $M\# T^{B}=M\cup V^{\prime}$ , where the union

is along $S$ and $S^{\prime}$ . Let $D$ be a meridianal disk in $V^{\prime},$ $D\cap\partial V^{\prime}=\partial D$ and let $U$ be
a regular neighborhood of $D$ in $V^{\prime}$ with $U\cap\partial V^{\prime}$ a regular $neighborhd$ of $\partial D$

in $\partial V^{\prime}$ . Then $M\cup cl(V^{\prime}-D)\sim M$, since $cl(V^{\prime}-D)$ is just a collar of $\partial M$. Hence
$M\cup V^{\prime}$ is obtained from $M$ by adding a l-handle at $S$ .

Proposition 3. Let $F$ be a Seifert fiber space with no exceptional fibers and

orbitsurface $f$ a 2-sphere with $n$ holes, $n\geq 2$ . Let $M$ be the sum of $F$ and $\epsilon olid$

tori $V_{1},$
$\cdots,$ $V_{m}(1\leq m\leq n)$ such that the $merid\dot{j}an$ of $V$ is homologous to a fib er

of $F(i=1, \cdots, m)$ . Then $M\approx(S^{1}\times S^{2})^{m-1}\#(T^{8})^{n-m}$ .
Proof. (a) First assume $m=1,$ $n=2$ . Let $r_{1}$ be the boundary component of

$f$ for which $p^{-1}(r_{1})=\partial V_{1}$ . Let $U$ be a regular neighborhood on $f$ of an arc $l$

from $r_{1}$ to the other boundary $r_{2}$ , such that $U\cap r=a_{\ell}$ , an arc $(i=1,2)$ . Then
the annuli $p^{-1}(a_{1})$ and $p^{-1}(cl(r_{1}-a_{1}))$ determine 8-balls $B_{\iota}$ and $B_{2}$ in V. respectively.
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Now $p^{-1}(U)\cup B_{\iota}\approx 3$-ball and $p^{-1}(cl(f-U))\cup B_{2}\approx 3$-ball, and $M$ is a union of two
3-balls along two disjoint disks in their boundaries, hence $M\approx T^{8}$ .

(b) Assume $m=1,$ $n>2$ . Let $U$ be as above, then $M=M_{\iota}\cup B$ , where $B$ is a
3-ball and where the union is along two disjoint disks in $\partial M_{1}$ and $\partial B$ , and where
$M_{1}=p^{-1}(cl(f-U))\cup B_{2}$ . By induction on $n,$ $M_{1}\approx(T^{l})^{(n-2)}-3$-ball and $M$ is obtained
from $M_{1}$ by adding a l-handle to the boundary sphere of $M_{1}$ . By the lemma,
$M\approx M_{\iota}\# T^{8}\approx(T^{B})^{n-1}$ .

(c) $1\leq m\leq n$ . Write $M\approx F\cup V_{1}\cup\cdots\cup V_{m}$ . By (b) $F\cup V_{1}=(T^{8})^{n-1}$ . For each
summand $T^{8}$ we have a fibering on $\partial T^{8}$ (induced from the fibering of $F$ ) such
that the fiber of $\partial T^{8}$ is a meridian of $T$ . Hence $V_{2},$

$\cdots,$ $V_{m}$ are attached to
$F\cup V_{1}$ such that the meridian of $V_{\ell}$ is identified with the meridian of one of the
$T^{8},$ $i.e$ . $T\cup V_{\ell}\approx S^{1}\times S^{2}$ . Hence $M\approx(S’ \times S^{2})^{m-1}\#(T^{8})^{n-m}$ .

Proposition 4. Let $F$ be an orientable Seifert fiber space without excep-
tional fibers and orientable orbit surface of genus $g$ and $n$ boundary compo-
nents. Suppose $M$ is a sum of $F$ and $m$ solid tori $V_{1},$

$\cdots,$ $V_{m}(1\leq m\leq n)$ such
that the meridian of $V_{\ell}$ is homologous to a fiber of $F(i=1, \cdots, m)$ . Then
$T\approx(S^{1}\times S^{2})^{2\sigma+m-1}\#(T^{8})^{n-m}$ .

Proof. For $g=0$ this is Proposition 3. Suppose $g>0$ . Let $r_{\ell}$ be the boundary
component of $f$ with $p^{-1}(r_{\ell})=\partial V_{\ell}$ . Let $U$ be a regular neighborhood of a non-
separating arc $l$ on $f$ with $\partial l=l\cap\partial f=l\cap r_{1}$ , such that $U\cap r_{1}$ consists of two arcs
$a_{1},a_{2}$ . Let $D_{l}\times I$ be the 3-ball in $V_{1}$ determined by $p^{-1}(a_{\ell})(i=1,2)$ and let $B_{1},B_{2}$ be the
components of $cl(V_{1}-D_{1}\times I\cup D_{2}\times I)$ . Then $M=M_{1}\cup M_{2}$ , where $ M_{1}=p^{-1}(cl(f-U))\cup$

$B_{1}\cup B_{2}\cup V_{2}\cup\cdots\cup V_{r}$ and $M_{2}=p^{-1}(U)\cup D_{1}\times I\cup D_{2}\times I\approx S^{2}\times I$, and where the union
is over $S^{2}\times 0$ and $S^{2}\times 1$ . Extending the attaching maps of $\partial B_{\ell}\rightarrow\partial M_{\iota}$ to an attach-
ing map $\partial T_{l}^{8}\rightarrow\partial M_{1}(i=1,2)$ , we see that $M_{1}\approx p^{-1}(f^{\prime})\cup T_{1}^{3}\cup T_{2}^{3}\cup V_{2}\cup\cdots\cup V_{m}$ , where
$f^{\prime}=cl(f-U)$ , genus $(f^{\prime})=g-1$ , and $\partial f^{\prime}$ consists of $n+1$ components. By induction
on $g$ ,

$M_{1}\approx(S^{1}\times S^{2})^{2(g-1)+(m+1)-1}\#(T^{3})^{(n+1)-(m+1)}$ ,
and hence

$M\approx M_{1}\#(S^{1}\times S^{2})\approx(S^{1}\times S^{2})^{2g+m-I}\#(T^{s})^{n-m}$ .
Proposition 5. Let $F$ be an orientable Seifert fiber space with $r$ exceptional

fibers and with orientable orbit surface $f$ of genus $g$ and $n$ boundary compo-
nents. Let Mbe a sum of $F$ and $m$ solid tori $V_{1},$

$\cdots,$ $V_{m}(1\leq m\leq n)$ . Then
$(a)$ If the meridian of $V_{\ell}$ is not homologous to a fiber of $F$ for $i=1,$ $\cdots,$ $m$ ,

$M$ is a Seifert fiber space with at most $r+m$ exceptional fibers.
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$(b)$ If the meridian of $V_{\ell}$ is homologous to a fiber of $F$ for $1\leq i\leq q$ , but not
homologous to a fiber for $q<i\leq m$ , then $M\approx L_{1}\#\circ\circ\circ\# L_{m-q+r}\#(S^{1}\times S^{2})^{2\sigma+q-1}\#(T^{S})^{n-q}$

where $L_{\ell}$ are lensspaces (at least $r$ of which are non trivial).

Proof. This follows from the previous propositions as in the proof of pro-

position 2.
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