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1. The growth of an entire function
(1.1) | f@O=3a.z,

is studied with the help of growth constants o, 2 and T, known as order, lower
order and type respectively and defined as follows:

P _ lim §up log log M(r)

A roe inf log r
and

T=lim supﬁ’—g%’ﬂ . (0<p<oo),

r—s>co

where M(r)=1|n&x |f(2)]. The coefficient equivalents of order o and type T of an
entire function given by are known [1, pp. 9-11]. Thus, -

' . log n
1.2 = _nlogn ,
1.2) P hr’rtliup Tog [a. "
and

n-—»rco

(1.3) epT=lim sup nla,l?’" .

A coefficient formula analogous to does not hold always for the lower order.
Juneja and Juneja and Kapoor obtained formulae for the lower order
involving coefficients which hold for every entire function. Thus, if f(z), given
by (1.1), be an entire} function of lower order 4, then

1.4 | A=max| lim inf ﬂﬁ-m—g—’—”i;l] .
tmgh | ke 10g |Gy |7

(1.5) =max| lim inf (1m, —1my—y) log My ] .
tmh | koo 10g |Gy _y /0y

However for entire functions of infinite order the growth constants defined
above do not give any satisfactory information about their growth. Sato
studied the growth of such functions by introducing the concept of ‘index’ of
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an entire function. Thus, if for an entire function f(2),

L loglal M(7)
(1.6) p(q)= hxp_'sopp T logr
and
[g—1]
.7 o(q)=lim sup &M@ (4 hy <o),
rves 7°(q)

where log!®? M(r)=M(r) and logla) M(r)=Ilog (logl*—1) M(r)), ¢=1, 2,3, -+, then f(2)
is said to be of index ¢ if p(¢—1)=o0 and p(g)<occ. We call p(q) as the g-order
and x(g) as g-type of the entire function f(2) having the index ¢q. The coefficient
equivalents of p(g) and #(g), as obtained by Sato, for the entire function given
by and having index ¢ are as following :

. logle—11p

.8 = _nlog®—lin

1.8) plg)=lim sup =" =,

and

1.9) £(g)= lim sup <log[¢—21 -L-) la, |e@rn
. e ep(q)

Analogous to the concept of lower order, the lower g-order i(q) of an entire
" function f(2) can be defined as

[q]
A(q)= lim inf logt®) M(r) .
oo log r

Recently, Rice [5] has extended the results and by considering the
polynomial expansion of f(2) of the form

(1.10) &= 3 a@bpEF,

where p(2) is a polynomial of degree { and ¢.(2) is a uniquely determined polynomial
of degree {—1 or less. If I, be the lemniscate I'p={z: Ip(2)|=R}, |Ix]] be the
length of I'r, and M(I'z)=|f(2)llr,= max |f(2)], then using the estimate

zZ€ R

1.11) [|Tel|=27 R“%(140(1)) as R—oo,

he showed that f(2) given by [1.10) is an entire function of order p, if and only if,
. log log M(T"y) '

1.12) hn}: sup fog B =p/t,

and that f(z) is of order p>0 and type T(0<T< o), if and only if,
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(1.13) lim sup 2 MTs) _

T.
R—oco RP/C

His generalizations of_(1.2] and [(1.3) read as follows:
Let at be fixed. Then f(z), given by [(1.10), is an entire function of order
0>0, if and only if,

. log n
(1.14) ={lim su __n____,
p= i D e liga@) 1

and that it is of order >0 and type T(0<T<0), if and only if,
(1.15) epT={lim sup n(||ga(2)lr,)*/*" .

(1.14) and [(1.15) depict the influence of the rate of decrease of ||¢.(2)l|r, on
the growth of f(2). But, as in the case of power series, these results also do not

give any precise information about the growth of the function f(z) if it is of
infinite order. For this purpose, in the present paper, we obtain formulae for the
g-order, lower g-order and g¢-type involving polynomial coefficients of an entire
function f(2) given by [1.10). Our results include the results of Sato [6], Rice
[5], Juneja [8] and Juneja and Kapoor [4]. For ¢=2, the method adopted in
proving Theorems 1 and 2 yields a short alternative method to obtain (1.14) and
(1.15).

To avoid trivial cases, we shall assume throughout that f(z) is an entire
transcendental function.

2. In this section we obtain results analogous to (1.14) and (1.15) for the g¢-
order and g-type. We require the following two lemmas:

Lemma 1. f(2), given by (1.10), is an entire function of q-order p(q) and
lower g-order i(q), if and only if,

.. sup logld M(I"y) _ p(Q)/C
@.1) At g B AQL

Further, if the g-order of f(z) is p(q) (>0), then it is of q-type k(q), +f and
only if,

@2.2) lim sup 18 M(I"g)

R—oo Rew@/¢ =x(9) ,

{ being the degree of p(z).

T Throughout our discussions in this paper a« will denote a fixed constant not less
than 1.
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The lemma follows on the lines similar to those of Rice [5, Lemma 3]. Hence
we omit its proof.

Lemma 2. Let a be fized and f(z)= ki_“‘.lq,,(z)[zo(z)]"'1 be an entire function
having g-order p(q), lower g-order A(q) and q-type x(q), then

o(@)/% _ . sup logldd H,(R)
23) QI St T logR
and
{g—1]
(2.4) e(g)=lim sup LEHLD. (o) >0,

where H(R)= 3 11a:(2)lIr, B* and { is the degree of p().

Prodf. Let R>a. Then since [7, p. 77]

@@ rp<llae(@)|r B,
we have, for zel',

1f@I< 2 1las@llrgllP@IE

(25) MID< 3 110:@) g p(@) 157

<R 3 11q4(@)] I, B
=R Hy(R) .

It is known [6, Lemma 2] that if f(z), given by (1.10), is analytic in "5, then
there exists a polynomial Q(z) of degree {—1 independent of k¥ and R such that
for a<R and k=1,2, -

| e IM(I"g)

(2.6) lg@llr,< —5 =

Q@) Iry, -
Hence, in view of (1.11), we have for every >0,

@0 - H(B)= 3 1166 Ir, B
il 11@lrgsy & (LB )
2 - k2=1 < R+77)

(R+p)vcA+oN QI r R
Vi

= M(Insr) Rc“"(;““"‘l” nelir, .

< M(Ig4n)

< M(I'g+n)
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Comparing [2.5) and [2.7), we get for all R>a and 5>0,

Rx*/e-2(14-0(1))1QlIr,
2ry )

Now using Lemma 1, [2.3) and [2.4) follow from [2.8). Hence the lemma is
proved.

(2.8) M) < R Ho(R) < M(I'g+9)

Theorem 1. Let a be fixzed and f(z)= ’glq,,(z)[p(z)j"'l be an entire function
having g-order po(q), then

klogle—11k

2.9 =i ,
@9 Pl i logllq:(2)17,
where { 18 the degree of p(z).

Proof. Consider the entire function
H (w)= k2=‘.1l|qk(z)l |r, w* .

It is easily seen that Ha«(w) is of index ¢ and if its g-order be p*(q), then, by
Lemma 2, p(g)=C{p*(g). Now applying (1.8) to H.(w), we get

klogle—1 kg

= lim sup ——————,
PH@= lim sup 1o @

and hence (2.9) follows.

Proceeding on the similar lines the following theorem can be easily obtained.

Theorem 2, Let a be fixed and f(z)= g_‘.lqk(z)[p(z)]"'l be an entire function
 of q-order p(g) (>0) and q-type x(q). Then,

(@)= lim sup { logie=(—"— ) L lgs@lIr, e

ep(q)
where { 18 the degree of p(z).

Remark. For ¢=2, the above theorems include the results of Rice [5], which
were obtained by a different technique.

8. In this section we obtain formulae involving polynomial coefficients for
the lower g-order of an entire function given by (1.10). We require the following
lemmas:

Lemma 3. Let f(2), given by (1.1) be an entire function of index q and
lower g-order A(q) and let p(r) and v(r) denote respectively the maximum term
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and central index of f(2) for |zl=r, 1. e., p(r)= mggc {laslr"} and v(r)=max {n : p(r)
=|a,|r"t. Then,

[‘ —1] | [
3.1) Alg)= lim inf 108 7(1) _piy ing log"a(r)
7—boo log r r—soco log r

The lemma follows easily on the same lines as those of Whittaker [8] for
9=2, so we omit the proof.

Lemrha 4. Let f(z), given by (1.1), be an entire function of index q and

lower g-order A(q) and let {n,} denote the range of the step function v(r), then

' [g—1]
3.2 A(g)=1lim inf 108
ke log O(N4+1)

where p(n,)’s denote the jump points of v(r).
Proof. It is clear that

v(r)=n, when p(n,)<r<p(n.:,),
and that
' p(n) <p(Me+1)= -+ - =p(1nyy,) .

[g—1] [g—
A(g)=lim ing 108 Hy(r) > lim inf logte—t (n,+1)
r—roco log r k—voo log p(/nk+1)
[g—
—lim inf OB td) 5 40y

k—e  log p(n,+1)
which gives (3.2). .
Remark. For ¢=2, the relation (3.2) is due to Gray and Shah [2, Lemma 1].

Lemma 5. Let f(z)= éoakz"k be an entire function of index q and lower

g-order A(q) such that ¢(k)=|a/Ars1| "+1~" forms an increasing function of k
Jor k>k,, then

k—co IOg la/k/ak.H_I

Proof. For ¢=2, this result is due to Juneja and Kapoor [4]. We note
that since ¢(k) forms an increasing function of k¥ for k>k, we have

v(r)=mn, for ¢E—-1)<r<¢k),

so that for sufficiently large k, po(n,)=¢(k—1), o(n.+)=¢(k). Substituting the
value of p(n,+,) in (3.2) we get (3.3).
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Lemma 6. Let {n,} be an increasing sequence of positive integers and {a,}
be a sequence of complex numbers such that |a,,|<1 for k>k, then for q>2,

le—1] — [g—11
(3.4) lim inf 22108 M My & iy g e Ma-) loghimy
k—co 108' Iankl.-l k—»o0 log Ia.nk_lla”kl

The lemma follows exactly on the same lines as those of Juneja [3, Lemma

2] for ¢g=2, so we omit the proof.

Theorem 3. Let a be fixed and f(z)= ki’_“'.lq,,(z)[p(z:)]"‘1 be an entire function
of index q and lower g-order A(q). Then,

L. log[a—llm -
3.5 2 = ma l:hmlnf My . 1:|’
(3.5) (@)/8=ma DL e logllgm @I

where { 18 the degree of p(z). Maximum in (8.5) 18 taken over all increasing
sequences {m,} of natural numbers.

Proof. For any arbitrary sequence {m,} of natural numbers, let

. . oM logle—1my,
lim inf 2 08 kol

=60 =6.
koo 10g] @y (7)1 I72 (tmo})

Since S(2) is an entire function, 0<A#<oco. First let 0<f<oo. For any e such
that 6>¢>0 and for k>Fk,, we have
(3.6) l1m;, (@)1 r, > (logle=2 my_y) =™/ =2,

Set,

r=e(logle—2m,_)1/@-

and let R, <R<R,.;. Using (2.6) and (3.6), we get for all k>k,,

log M(I's)>m, log Ry— —T%_logle—1 mm—log{'”’—ﬂ”uanR }
6—e) o

Since [7, p. 77],

HRIrZIlIQllr, R:?,
we have for all k>k, and for all R> R’=sufficient large,

log M(I"s) >m, log Ry~ "= loglo—Im,. — (% +C—1)log B+0(1)

- <c+ —Z———l )log R+0(Q1)

> exple—2] (—%—)a_l— (%— +C—;1>log R+0Q1).
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Thus, for all R>R/,
log!e} M(I"g)

oz (/) =60—e+0(1),

which on proceeding to limits and using gives A(g)>L0. Since the sequence
{m,} is arbitrary, we have

L. logle—tlm,_
3. AQ) /> £ M S [ .
D @i ‘?»?,,’5[11’?~T logllgm @Iz ] # (sa)

Now consider the entire funetion H,(w):éllqk(z)ll r,Ws, where w=p(z). Let

{n,} denote the range of the central index of H,(w). Set, G.(w)= kﬁ |1 (@) r W™,
=1

Thus G.(w) is an entire function and G.(w) and H,(w) have the same maximum

term for every w. Hence by [Lemma 3, it follows that both have the same lower

g-order. Let it be denoted by 4,(g). Since G.(w) satisfies the hypotheses of Lemma
5, we have

. . —Ny~y) loglt—11m,_
(8.8 2,(@)= lim inf (M —T-1) 1
(0=l It S a2 @)

.. oMy loglt—tinm, , A
<lim inf logllan @15 (by

: [g—1]
< max,:lim inf M log mf;"]=19 .
{mp} k—w log| |an(z)| II‘a

Since, for a<R,
MT'D< S 116:@|Irgl1p@1E

<R 2 [10:(@)lIr, B*
=R Hy(R)
by using [3.8), we get
M(I" ) < R¢! exple—t] R+t

for a sequence R,, R,, -+ —co. Hence, by [Lemma 1, we get A(¢)/{<B. This when
combined with [3.7), proves the theorem completely.
Using Lemmas 5 and 6 the following theorem can be proved similarly.

Theorem 4. Let a be fixzed and f(z)= §1Qk(Z)[p(z)]k_1(q;;(Z)$O) be an entire
function of index ¢ and lower g-order A(q), then

.. (my—m,—,) logle—Tm,_, '_'l
N = f ’
(8.9) Ak ’Pni‘}j‘[ e I (1dms, @ I T @)
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where { i3 the degree of p(z) and maximum is taken over all imcreasing
sequences of natural numbers.

Remark. Results given in [8] and [4] follow as particular cases of the above

theorems by taking p(z)=z and ¢=2.
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