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1. Introduction

Professors Gentry and Hoyle [3] define a function $f:X\rightarrow Y$ from one topological

space into another to be c-continuous if for each $xeX$ and each open $V$ containing

$f(x)$ and having compact complement, there exists an open $U$ containing $x$ such
that $f(U)\subset V$. They then proceed to develop several properties of c-continuous
functions. Among the theorems given is the following useful result:

Theorem 1. (Gentry and Hoyle, [3]) Let $f:X\rightarrow Y$ be a function. Then the

following are equivalent:
(1) $f$ is c-continuous.
(2) If $V$ is an open subset of $Y$ with compact complement, then $f^{-1}(V)$ is an

open subset of $X$.
These statements are implied by

(3) If $C$ is a compact subset of $Y$, then $f^{-1}(C)$ is a closed subset of $X$ and,

moreover, if $Y$ is Hausdorff, all the statements are equivalent.

In this paper we prove additional results concerning c-continuous functions.

2. Results

We begin by making three rather straightforward observations about c-con-
tinuous functions.

Theorem 2. The function $f:X\rightarrow Y$ is c-continuous if and only if the inverse

image of each closed compact subset of $Y$ is closed in $X$.
Proof. If the inverse image of each closed compact subset of $Y$ is closed in

$X$, then $f$ is c-continuous by Theorem 1 part (3).

The converse follows from the equivalence of parts (1) and (2) of Theorem 1.

Theorem 3. Let $f:X\rightarrow Y$ be c-continuous and injective. If $Y$ is $T_{1}$ , then $X$

is $T_{1}$ .
Proof. Theorem 2.
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Theorem 4. Let $f;X\rightarrow Y$ be c-continuous, closed and surjective. If $X$ is
normal and $Y$ is $T_{1}$ , then $Y$ is also $T_{2}$ .

Proof. Let $y_{1}\neq y_{2}$ be points in Y. Then $\{y_{1}\}$ and $\{y_{2}\}$ are closed compact

subsets of $Y$ so that by Theorem 2, $f^{-1}(y_{1})$ and $f^{-1}(y_{2})$ are closed subsets of $X$.
The normality of $X$ then gives the existence of two disjoint open sets $U_{1}$ and $U_{2}$

such that $f^{-1}(y_{1})\subset U_{1}$ and $f^{-1}(y_{2})\subset U_{2}$ . Since $f$ is closed, there exist open sets $V_{1}$

and $V_{2}$ of $Y$ such that $y_{1}eV_{1},$ $f^{-1}(y_{1})\subset f^{-1}(V_{1})\subset U_{1},$ $y_{2}\in V_{2}$ and $f^{-1}(y_{2})\subset f^{-1}(V_{2})\subset U_{2}$

by Theorem 11.2 [2, p. 86]. Evidently, $ V_{1}\cap V_{2}=\emptyset$ so $Y$ is $T_{2}$ .
For any topological space $(Y, \sigma)$ , the coIlection of open sets having compact

complements may be used as a base for a topology $\sigma^{\prime}$ on Y. The reason is that
if $U$ and $V$ are open and have compact complements, then their intersection has
a compact complement as may be shown by use of the equality $Y-(U\cap V)=$

$(Y-U)\cup(Y-V)$ . Of course $\sigma^{\prime}\subset\sigma$ and $(Y, \sigma^{\prime})$ is alwayv a compact space. With
these facts, consider the following commutative diagram where $X$ is any topological
space and $f_{*}(x)=f(x)$ for all $x\in X$ :

Evidently, $f$ is c-continuous if and only if $f_{*}$ is continuous. Also, $i$ is con-
tinuous and $i^{-1}$ is c-continuous. We give two further results related to the
diagram.

Theorem 5. Let $f:X\rightarrow(Y, \sigma)$ be c-continuous. If $f_{*}$ is closed (open), then $f$

is closed (open).

Proof. Let $M\subset X$ be closed (open). Then $f_{*}(M)$ is closed (open) and the
continuity of $i$ gives $i^{-1}(f_{*}(M))=f(M)$ closed (open) in $(Y, \sigma)$ .

We might note that under the hypotheses of Theorem 5, if $f$ is bijective,

then $f^{-1}$ is a continuous function.

Theorem 6. Let $(Y, \sigma)$ be a topological space. If $(Y, \sigma^{\prime})$ is Hausdorff, then
$(Y, \sigma)$ is compact and, in particular, $\sigma=\sigma^{\prime}$ .

Proof. Let $\{U_{\alpha}|\alpha e\Delta\}$ be an open cover of $(Y, \sigma)$ . Since $(Y, \sigma^{\prime})$ is Hausdorff
and $\sigma^{\prime}\subset\sigma$ , there exist open sets $U$ and $V$ in $(Y, \sigma)$ such that $ U\cap V=\emptyset$ and both
$Y-U$ and $Y-V$ are compact. Thus, from the cover $\{U_{\alpha}|\alpha e\Delta\}$ of $Y$ there is a
finite subcollection $\{U_{\alpha_{11}}, U_{\alpha_{12}}, \cdots, U_{\alpha_{1n}}\}$ covering $Y-U$ and a finite subcollection
$\{U_{\alpha_{21}}, U_{\alpha_{22}}, \cdots, U_{\alpha_{2m}}\}$ convering $Y-V$. The fact that $ U\cap V=\emptyset$ then gives the
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finite subcollection $\{U_{\alpha_{11}}, U_{\alpha_{12}}, \cdots, U_{\alpha_{1n}}, U_{\alpha_{21}} , \cdot. U_{\alpha_{2m}}\}$ as a cover of Y. If follows
that $(Y, \sigma)$ is compact.

Since $(Y, \sigma^{\prime})$ is a compact Hausdorff space and $\sigma^{\prime}\subset\sigma,$ $\sigma$ cannot be a strictly
larger topology or else the property of compactness is lost contrary to what has
just been shown. Therefore, $\sigma=\sigma^{\prime}$ .

Corollary. Let $f:X\rightarrow(Y, \sigma)$ be c-continuous. If $(Y, \sigma^{\prime})$ is Hausdorff, then $f$

is continuous.

Proof. The theorem gives $(Y, \sigma)$ compact so that $f$ is continuous by Theorem
5 [3].

The converse of Theorem 6 does not hold as is shown by any finite space
which is not Hausdorff.

We now turn our attention to the interesting relationship between c-con-
tinuous functions and functions which have closed graphs.

Theorem 7. Let $f:X\rightarrow Y$ be a function with closed graph. Then $f$ is c-
continuous.

Proof. Suppose $f$ is not c-continuous at the point $x\in X$. Then there is an
open set $V$ containing $f(x)$ and having a compact complement such that no open
set in $X$ containing $x$ maps into $V$ under $f$. Consider the filterbase $\ovalbox{\tt\small REJECT}^{\prime}(x)$ of all
open sets in $X$ which contain $x$ . It follows that $\ovalbox{\tt\small REJECT}^{\prime}(x)$ converges to $x$ and that
$f(\ovalbox{\tt\small REJECT}(x))=$ {$f(U)|U$ is open and contains $x$} is a filterbase in Y. Since $f(U)\cap(Y-V)$

$\neq\emptyset$ for all $U\in\ovalbox{\tt\small REJECT}(x)$ , then $\mathcal{B}=\{f(U)\cap(Y-V)|U\in\ovalbox{\tt\small REJECT}(x)\}$ is a filterbase and $\mathcal{B}$ is
subordinated to $f(\ovalbox{\tt\small REJECT}(x))$ . Since $Y-V$ is compact, $\mathcal{B}$ has an accumulation point
$yeY-V$. From the fact that $f(x)\neq y$ , the point $(x, y)\not\in G(f)$ , the graph of $f$.
Let $W$ be any open set containing $(x, y)$ . Then there exist open sets $U_{1}$ and $V_{1}$

containing $x$ and $y$ , respectively, such that $(x, y)\in U_{1}\times V_{1}\subset W$. From the fact
that $\ovalbox{\tt\small REJECT}(x)$ converges to $x$ , we have the existence of a $Ue\ovalbox{\tt\small REJECT}(x)$ such that $U\subset U_{1}$ .
This implies that $f(U)\cap(Y-V)\in \mathcal{B}$ ; hence, $(f(U)\cap(Y-V))\cap V_{1}\neq\emptyset$ because $\mathcal{B}$

accumulates to $y$ . Therefore, there exists a point $x_{1}eU_{1}$ such that $f(x_{1})eV_{1}$ so
that $(x_{1}, f(x_{1}))eU_{1}\times V_{1}\subset W$ showing $ W\cap G(f)\neq\emptyset$ . It follows that $(x, y)$ is a
cluster point of $G(f)$ , but $(x, y)\not\in G(f)$ . Consequently, $G(f)$ is not closed which
contradicts the hypothesis that $G(f)$ is closed. We conclude that $f$ is c-continuous.

Since continuous functions need not have closed graphs, we do not expect
that c-continuous functions will have this property either. Then next theorem
gives conditions as to when c-continuous functions will have closed graphs.

Theorem 8. Let $f:X\rightarrow Y$ be c-continuous and let $Y$ be a locally compact
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Hausdorff space. Then $f$ has a closed graph.

Proof. Let $(x, y)$ be a point in $x\times Y$ which does not lie in the graph of $f$.
Then $f(x)\neq y$ and since $Y$ is Hausdorff, there exist open disjoint sets $V_{1}$ and $V_{2}$

containing $f(x)$ and $y$ , respectively. By Theorem 6.2 (2) [2], there exists an open

set $V$ such that $yeV\subset\overline{V}\subset V_{1}$ and $\overline{V}$ is compact. By Theorem 1, $f^{-1}(\overline{V})$ is closed
in $X$ and does not contain $x$ . Since $f$ is c-continuous, there is an open set $U$

containing $x$ and lying in $X-f^{-1}(\overline{V})$ such that $f(U)\subset Y-\overline{V}$. Therefore, $U\times V$

contains $(x, y)$ but no point of $G(f)$ . Thus, the complement of $G(f)$ is open so
that $G(f)$ is closed.

If $f:X\rightarrow Y$, is a given function, then the function $g:X\rightarrow X\times Y$, given by
$g(x)=(x, f(x))$ , is called the graph function with respect to $f$. There are certain
relationships between a function and its graph function, as far as c-continuity is
concerned, that we wish to investigate next.

Theorem 9. Let $f:X\rightarrow Y$ be a function and $X$ a compact space. If the
graph function $g:X\rightarrow X\times Y$ is c-continuous, then $f$ is c-continuous.

Proof. Let $xeX$ and $V$ be an open set containing $f(x)$ such that $Y-V$ is
compact. Then $P_{Y}^{-1}(V)$ is open in $X\times Y$ and, since $X$ and $Y-V$ are compact,
$x\times(Y-V)=(X\times Y)-P_{Y}^{-1}(V)$ is compact. Thus $P_{Y}^{-1}(V)$ is an open set in $X\times Y$

having a compact complement. Therefore, there exists an open set $U$ containing

$x$ such that $g(U)\subset P_{Y}^{-1}(V)$ . It follows that $P_{r}g(U)=f(U)cV$ so that $f$ is c-
continuous.

Theorem 10. Let $X$ and $Y$ be metric spaces where the metric space $x\times Y$

has the property that each closed and bounded subset is compact. Let $f:X\rightarrow Y$

be given. If the graph function $g:X\rightarrow X\times Y$ is c-continuous, then $f$ is c-continuous.

Proof. Let $xeX$ and let $V$ be an open set in $Y$ containing $f(x)$ such that
$Y-V$ is compact. Then $Y-V$ is closed and bounded, hence, there exists a positive

real number $a$ such that $Y-V$ is contained in the basic open set $B(f(x), a)$ . Now
let $B(x, b)$ be any basic open set containing $x$ . Then $\overline{B(X_{1}b)\times B(f(x)_{1}a)}$ is closed
and bounded in $x\times Y$ so is compact by hypothesis. Let $V_{1}=B(f(x), d)$ where
$0<d<c$ and $c=\rho(f(x), Y-V)>0$ . It follows that $(B(x, b)\times V_{1})\cup[(X\times Y)-$

$\overline{B(x,b)\times B(f(x),a)]}=W$ is an open set containing $(x, f(x))$ having a closed bounded,

hence compact, complement. Since $g$ is c-continuous, there exists an open
$U\subset B(x, b)$ containing $x$ such that $g(U)\subset W$. From the construction of $W$,
$f(U)=P_{y}(g(U))cV$ showing $f$ is c-continuous at the point $x$ . Thus $f$ is c-con-
tinuous.
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A function $f:X\rightarrow Y$ may have its graph function c-continuous while $f$ is not
c-continuous, as the following example shows.

Example 1. Let $R$ represent the reals with the standard topology and let
$(R, \sigma)$ be the reals with the right-ray topology. (Open sets have the form $R,$ $\emptyset$

or $\{x|x>a\}.$ ) Then $i:(R, \sigma)\rightarrow R$ is not c-continuous. To see this, consider the
point $i(1)=1$ and any open set $V$ about $i(1)$ such that (1) the complement of $V$

is compact and (2) there exists a point $z\in R$ such that $z>1$ and $z\not\in V$. Then
evidently no open $U\subset(R, \sigma)$ containing the point 1 has the property that $f(U)\subset V$.

To see that $g:(R, \sigma)\rightarrow(R, \sigma)\times R$ is c-continuous, we need only to note that

the only open set in $(R, \sigma)\times R$ having compact complement is $(R, \sigma)\times R$ . The

reason is that if $W$ is open in $(R, \sigma)\times R$ and $(x_{0}, y_{0})\not\in W$, then each point in
$\{(x, y_{0})|x<x_{0}\}$ does not belong to $W$ so that the non-compactness of the comple-

ment of $W$ follows immediately.

Theorem 11. Let $X$ and $Y$ be metric spaces where $Y$ has the property that
each closed and bounded subset of $Y$ is compact. If $f:X\rightarrow Y$ is c-continuous,

then the graph function $g:X\rightarrow X\times Y$ is c-continuous.

Proof. Let $xeX$ and consider the point $(x, f(x))eX\times Y$. Let $W$ be an open

set in $x\times Y$ containing $(x, f(x))$ such that $(X\times Y)-W$ is compact. Thus $(X-Y)$

$-W$ is closed and bounded. Therefore, there exist basic open sets $B(x, a)$ and
$B(f(x), b)$ such that $(X\times Y)-W\subset B(x, a)\times B(f(x), b)$ . Since $(x, f(x))$ does not
belong to the compact set $(X\times Y)-W$, there exist open sets $B(x, a^{\prime})$ and $B(f(x), b^{\prime})$

such that $a^{\prime}\leq a,$ $b^{\prime}\leq b/2$ and $B(x, a^{\prime})\times B(f(x), b^{\prime})\subset W$. Now let $ V=B(f(x), b^{\prime})\cup$

[ $Y-\overline{B(f(x),b)]}$ . Since $\overline{B(f(x),b)}$ is closed and bounded, hence, compact by hypo-

thesis, we have $V$ an open set containing $f(x)$ which has a compact complement.

Since $f$ is c-continuous, there exists an open set $U\subset B(x, a^{\prime})$ such that $f(U)\subset V$.
Therefore, $g(U)=\bigcup_{zeU}(z, f(z))\subset B(x, a^{\prime})\times V=B(x, a^{\prime})\times[B(f(x), b^{\prime})\cup(Y-\overline{B(f(x),b))]}$

$\subset W$ which implies $g$ is c-continuous at $x$ .
We leave as an open question the existence of a function $f:X\rightarrow Y$ which is

c-continuous but whose graph function is not c-continuous. There are several
conditions given in [8] under which c-continuous functions are also continuous.
We offer an additional condition in the next theorem.

Theorem 12. Let $f:X\rightarrow Y$ be c-continuous and let $X$ be first countable and

let $Y$ be countably compact, locally compact and Hausdorff. Then $f$ is continuous.

Proof. Suppose $f$ is not continuous at the point $xeX$. Then there exists
an open set $V\subset Y$ containing $f(x)$ such that every open $U\subset X$ containing $x$ has
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the property that $f(U)\not\subset V$. Let $ U_{1}\supset U_{2}\supset\cdots$ be a countable base at $x$ and let
$x_{n}eU_{n}$ be a point such that $f(x_{n})\not\in V$. Then $(x_{n})$ converges to $x$ and the sequence
$(f(x.))$ has an accumulation point $y\not\in V$ in the countably compact space Y. There
exist open sets $V_{1}$ and $V_{2}$ such that $f(x)eV_{1}\subset V,$ $yeV_{2}$ and $ V_{1}\cap V_{2}=\emptyset$ in the
Hausdorff space Y. Also, there exists an open set $W\subset Y$ such that $y\in W\subset\overline{W}\subset V_{2}$

and $\overline{W}$ is compact due to the locally compact Hausdorff hypothesis. Thus, $Y-$ va
is an open set containing $f(x)$ whose complement is compact. But if $U$ is any
open set containing $x$ , there exists a $U_{n}\subset U$ and a point $x.eU_{n}$ such that $f(x.)eW$
due to the fact that $(f(x.))$ accumulates to $y$ . Consequently, $f(U)\not\subset Y-\overline{W}$. This
contradicts the hypothesis that $f$ is c-continuous and implies $f$ is continuous.

Theorem 9 of [3] states that if $f;X\rightarrow Y$ is continuous and biiective onto the
Hausdorff space $Y$, then $f^{-1}$ : $Y\rightarrow X$ is c-continuous. After two definitions, we
show that the condition of continuity may be replaced with the weaker condition
of almost-continuity.

Definition 1 [5]. A function $f:X\rightarrow Y$ is almost continuous if for each $xeX$

and each open $V$ containing $f(x)$ , there exists an open $U$ containing $x$ such that
$f(U)\subset\overline{V}^{0}$ . ( $\overline{V}^{0}$ denotes the interior of the closure of $V.$ )

Definition 2 [4]. A space $Y$ is nearly compact if every open cover of $Y$ has
a finite subcollection, the interiors of the closures of which cover Y.

Theorem 13. Let $f:X\rightarrow Y$ be an almost-continuous biiective function onto
the Hausdorff space Y. Then $f^{-1}$ : $Y\rightarrow X$ is c-continuous.

Proof. Let $F\subset X$ be compact. Then $f(F)$ is nearly compact by Theorem
3.2 [4]. But since $Y$ is Hausdorff, $f(F)$ is closed by Theorem 2.1 [1]. Now
$(f^{-1})^{-1}(F)=f(F)$ is closed so that $f^{-1}$ is c-continuous by Theorem 1 [3].

We note that by use of Theorem 1 [3], it is not difficult to prove that if
$f:X\rightarrow Y$ is almost-continuous and $Y$ is Hausdorff, then $f$ is also c-continuous. If
the Hausdorff condition on $Y$ is removed, then neither function need imply the
other.
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