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1. Introduction

Professors Gentry and Hoylé define a function f: X—Y from one topological
space into another to be c-continuous if for each x€ X and each open V containing
f(x) and having compact complement, there exists an open U containing # such
that f(U)CV. They then proceed to develop several properties of c-continuous
functions. Among the theorems given is the following useful result:

Theorem 1. (Gentry and Hoyle, [3]) Let f: X—Y be a function. Then the
following are equivalent :

(1) f is c-continuous.

(2) If V is an open subset of Y with compact complementj, then (V) is an

open subset of X.
These statements are implied by
(8) If C is a compact subset of Y, then f~*(C) is a closed subset of X and,

moreover, if Y is Hausdorff, all the statements are equivalent.
In this paper we prove additional results concerning c-continuous functions.

2. Results

We begin by making ‘three rather straightforward observations about c-con-
tinuous functions.

Theorem 2. The function f: X—Y is c-continuous if and only if the inverse

image of each closed compact subset of Y is closed in X.

Proof. If the inverse image of each closed compact subset of Y is closed in
X, then f is c-continuous by Theorem 1 part (3).
The converse follows from the equivalence of parts (1) and (2) of Theorem 1.

Theorem 3. Let f: X—Y be c-continuous and injective. If Y is T, then X
is T,.

Proof. Theorem 2.
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Theorem 4. Let f: X—>Y be c-continuous, closed and surjective. If X is
normal and Y is T,, then Y is also T,.

Proof. Let y,#%. be points in Y. Then {y,} and {y,} are closed compact
subsets of Y so that by Theorem 2, f~(y,) and f~'(y.) are closed subsets of X.
The normality of X then gives the existence of two disjoint open sets U, and U,
such that f~(y,)c U, and f~*(y,)C U,. Since f is closed, there exist open sets V,
and V, of Y such that y, € Vl,bf‘l(yl) cfY(Vy)cU, y,€ Vyand S (y.) (V) U,
by Theorem 11.2 [2, p. 86]. Evidently, ViNV,=¢@ so Y is Ts,.

For any topological space (Y, o), the collection of open sets having compact
complements may. be used as a base for a topology ¢’ on Y. The reason is that
if U and V are open and have compact complements, then their intersection has
a compact complement as may be shown by use of the equality Y—(UN V)=
Y-U)u(—V). Of course ¢/Cos and (Y, ¢’) is always a compact space. With
these facts, consider the following commutative diagram where X is any topological
space and fx(x)=f(x) for all xe X:

- Evidently, f is c-continuous if and only if fx is continuous. Also, % is con-
tinuous and ¢! is c-continuous. We give two further results related to the
diagram. '

Theorem 5. Let f:X—(Y, o) be c-continuous. If fy is closed (opén), then f
is closed (open).

Proof. Let McX be closed (open). Then fx(M) is closed (open) and the
continuity of 7 gives ¢ (fx(M))=f(M) closed (open) in (Y, o).

We might note that under the hypotheses of Theorem 5, if f is bijective,
then f! is a continuous function.

Theorem 6. Let (Y, o) be a topological space. If (Y, ¢’) is Hausdorff, then
(Y, o) is compact and, in particular, o=d’.

Proof. Let {U,la€ 4} be an open cover of (Y, ). Since (Y, ¢’) is Hausdorff
and ¢’Ca, there exist open sets U and V in (Y, o) such that UN V=@ and both
Y—U and Y—V are compact. Thus, from the cover {U,la€ 4} of Y there is a
finite subcollection {U,,,, Uey,, **+, Usy,} covering Y—U and a finite subcollection
{Uagys Uagsy ** *» Uy} convering Y—V. The fact that UN V=@ then gives the
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finite subcollection {Us,,, Uayss * * 5 Unyns Ungys** s Unsm} 88 & cover of Y. If follows
that (Y, o) is compact.

Since (Y, ¢’) is a compact Hausdorff space and ¢’Co, ¢ cannot be a strictly
larger topology or else the property of compactness is lost contrary to what has
just been shown. Therefore, o=0¢".

Corollary. Let f: X—(Y, o) be c-continuous. If (Y, ¢’) is Hausdorff, then f
is continuous.

Proof. The theorem gives (Y, ¢) compact so that f is continuous by
5 [3].

The converse of does not hold as is shown by any finite space
which is not Hausdorff.

We now turn our attention to the interesting relationship between c-con-
tinuous functions and functions which have closed graphs. ‘

Theorem 7. Let f: X—>Y be a function with closed graph. Then f is c-
continuous.

Proof. Suppose f is not c-continuous at the point € X. Then there is an
open set V containing f(x) and having a compact complement such that no open
set in X containing ¢ maps into V under f. Consider the filterbase Z’(x) of all
open sets in X which contain x. It follows that %/ (x) converges to # and that
f(Z (x))={f(U)|U is open and contains #} is a filterbase in Y. Since f(U)N(Y—V)
+@ for all Ue Z (%), then Z={f(U)N(Y—V)|Ue Z (x)} is a filterbase and <7 is
subordinated to f(Z'(x)). Since Y—V is compact, <% has an accumulation point
y€Y—V. From the fact that f(x)+*y, the point (%, y) € G(f), the graph of f.
Let W be any open set containing (x,%). Then there exist open sets U, and V;
containing = and y, respectively, such that (x,%)e U, X V,cW. From the fact
that Z7(x) converges to #, we have the existence of a Ue Z (¢) such that Uc U,.
This implies that f(U)N(Y—V)e &; hence, (F(UN(Y—V)N V.3 because &
accumulates to y. Therefore, there exists a point z, € U, such that f(x,)e V, so
that (x,, f(®))€ U, X V,C W showing WNG(f)*+@. It follows that (x,¥) is a
cluster point of G(f), but (z, y) € G(f). Consequently, G(f) is not closed which
contradicts the hypothesis that G(f) is closed. We conclude that f is c-continuous.

Since continuous functions need not have closed graphs, we do not expect
that c-continuous functions will have this property either. Then next theorem
gives conditions as to when c-continuous functions will have closed graphs.

Theorem 8. Let f:X—Y be c-continuous and let Y be a locally compact
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Hausdorff space. Then f has a closed graph.

Proof. Let (x,y) be a point in X XY which does not lie in the graph of f.
Then f(x)*y and since Y is Hausdorff, there exist open disjoint sets V, and V,
containing f(x) and y, respectively. By Theorem 6.2 (2) [2], there exists an open
set V such that y€ Vo Vc V, and V is compact. By [Theorem 1, f*(V) is closed
in X and does not contain . Since f is c-continuous, there is an open set U
containing # and lying in X—f-*(V) such that f(U)cY—V. Therefore, UXV
contains (x,y) but no point of G(f). Thus, the complement of G(f) is open so
that G(f) is closed.

If f:X>Y, is a given function, then the function g: X—>XXY, given by
g(x)=(z, f(x)), is called the graph function with respect to f. There are certain
relationships between a function and its graph function, as far as c-continuity is
concerned, that we wish to investigate next.

Theorem 9. Let f: X—Y be a function and X a compact space. If the
graph function g: X—>XXY is c-continuous, then f is c-continuous.

Proof. Let x€X and V be an open set containing f(x) such that Y-Vis
compact. Then P37 (V) is open in XX Y and, since X and Y—V are compact,
XX(Y—-V)=(XXY)—P3 (V) is compact. Thus P7'(V) is an open set in XXY
having a compact complement. Therefore, there exists an open set U containing
x such that g(U)cP3 (V). It follows that Prg(U)=f(U)CV so that f is c-
continuous.

Theorem 10. Let X and Y be metric spaces where the metric space XXY
has the property that each closed and bounded subset is compact. Let f:X-Y
be given. If the graph function g: X—>X XY is c-continuous, then f is c-continuous.

Proof. Let 2z€ X and let V be an open set in Y containing f(x) such that
Y—V is compact. Then Y—V is closed and bounded, hence, there exists a positive
real number @ such that Y— V is contained in the basic open set B(f(x),a). Now
let B(x, b)‘be any basic open set containing . Then B(x, b) X B(f(x), a) is closed
and bounded in XXY so is compact by hypothesis. Let V,=B(f(x), d) where
0<d<c and c=p(f@@), Y—V)>0. It follows that (B, b)x V)U[XXY)—
B(z, b) X B(f(x), a)]= W is an open set containing (x, f(¢)) having a closed bounded,
hence compact, complement. Since g is c-continuous, there exists an open
UcB(z,b) containing & such that g(U)cW. From the construction of W,
F(U)=Pyp(g(U))c V showing f is c-continuous at the point . Thus f is c-con-

tinuous.
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A function f: X—Y may have its graph function c-continuous while f is not
c-continuous, as the following example shows.

Example 1. Let R represent the reals with the standard topology and let
(R, ) be the reals with the right-ray topology. (Open sets have the form R, @
or {x|x>a}.) Then %:(R,0)—>R is not c-continuous. To see this, consider the
point i(1)=1 and any open set V about (1) such that (1) the complement of V
is compact and (2) there exists a point z€ R such that 2>1 and 2¢ V. Then
evidently no open UC(R, ¢) containing the point 1 has the property that f(U)cC V.

To see that ¢:(R, 0)—(R, o)X R is c-continuous, we need only to note that
the only open set in (R, ¢) X R having compact complement is (R,s)XR. The
reason is that if W is open in (R,0)XR and (%, %) ¢ W, then each point in
{(@, Yo)lx<x,} does not belong to W so that the non-compactness of the comple-
ment of W follows immediately.

Theorem 11. Let X and Y be metric spaces where Y has the property that
each closed and bounded subset of Y is compact. If f:X—-Y is c-continuous,
then the graph function g: X—>XXY is c-continuous.

Proof. Let x€ X and consider the point (%, f(x))€ XXY. Let W be an open
set in XX Y containing (x, f(x)) such that (XXY)—W is compact. Thus (X—Y)
—W is closed and bounded. Therefore, there exist basic open sets B(x, @) and
B(f(), b) such that (XXY)—WcB(®,a)XB(f(x),b). Since (x,f(x)) does not
belong to the compact set (XX Y)— W, there exist open sets B(x, a’) and B(f(x), ¥')
such that a’<a, ¥<b/2 and B(x, a’)XB(f(x), /)cW. Now let V=B(f(x), ¥)U
[Y—B(f@), B)]. Since B(f (), b) is closed and bounded, hence, compact by hypo-
thesis, we have V an open set containing f(x) which has a compact complement.
Since f is c-continuous, there exists an open set Uc B(x, a’) such that f(U)C V.
Therefore, g(U)= U (2, f(2)) CB(w, @)X V=B(, &) X [B(f@), ¥) U (Y—-B(f®), b))l
c W which implies g is c-continuous at .

We leave as an open question the existence of a function f:X—Y which is
c-continuous but whose graph function is not c-continuous. There are several
conditions given in [3] under which c-continuous functions are also continuous.
We offer an additional condition in the next theorem.

Theorem 12. Let f:X—Y be c-continuous and let X be first countable and

let Y be countably compact, locally compact and Hausdorff. Then f is continuous.

Proof. Suppose f is not continuous at the point x€ X. Then there exists
an open set VCY containing f(x) such that every open UCX containing « has
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the property that f(U)ZV. Let U,DU,D--- be a ecountable base at = and let
w,;e U. be a point such that f(x,)¢ V. Then (x,) converges to 2 and the sequence
(f(x,)) has an accumulation point ¥ € V in the countably compact space Y. There
- exist open sets V; and V, such that f(x)e VicV, yeV, and V;NV,=% in the
Hausdorff space Y. Also, there exists an open set WY such that ye Wc Wc V,
and W is compact due to the locally compact Hausdorff hypothesis. Thus, Y—W
is an open set containing f(¥) whose complement is compact. But if U is any
open set containing #, there exists a U,C U and a point «, € U, such that f(x,)e W
due to the fact that (f(x,)) accumulates to y. Consequently, f(U)Z Y—W. This
contradicts the hypothesis that f is c-continuous and implies f is continuous.

of [3] states that if f: X—Y is continuous and bijective onto the
Hausdorff space Y, then f-':Y—X is c-continuous. After two definitions, we
show that the condition of continuity may be replaced with the weaker condition
of almost-continuity.

Definition 1 [5]. A function f: X—Y is almost continuous if for each xe X
and each open V containing f(x), there exists an open U containing # such that
FU)c V°. (V" denotes the interior of the closure of V.)

Definition 2 [4]. A space Y is nearly compact if every open cover of Y has
a finite subcollection, the interiors of the closures of which cover Y.

Theorem 13. Let f:X—Y be an almost-continuous bijective function onto
the Hausdorff space Y. Then f~': Y—X is c-continuous.

Proof. Let FCX be compact. Then f(F) is nearly compact by Theorem
3.2 [4]. But since Y is Hausdorff, f(F) is closed by Theorem 2.1 [1]. Now
(S F)=f(F) is closed so that f-* is c-continuous by Theorem 1 [3].

We note that by use of Theorem 1 [3], it is not difficult to prove that if
S :X—>Y is almost-continuous and Y is Hausdorff, then f is also c-continuous. If
the Hausdorff condition on Y is removed, then neither function need imply the
other.
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