PROPERTIES OF C-CONTINUOUS FUNCTIONS

By
Paul E. Long and Michael D. Hendrix

(Received April 11, 1973)

1. Introduction

Professors Gentry and Hoyle [3] define a function $f: X \rightarrow Y$ from one topological space into another to be c-continuous if for each $x \in X$ and each open V containing $f(x)$ and having compact complement, there exists an open U containing x such that $f(U) \subset V$. They then proceed to develop several properties of c-continuous functions. Among the theorems given is the following useful result:

Theorem 1. (Gentry and Hoyle, [3]) Let $f: X \rightarrow Y$ be a function. Then the following are equivalent:
(1) f is c-continuous.
(2) If V is an open subset of Y with compact complement, then $f^{-1}(V)$ is an open subset of X.

These statements are implied by
(3) If C is a compact subset of Y, then $f^{-1}(C)$ is a closed subset of X and, moreover, if Y is Hausdorff, all the statements are equivalent.

In this paper we prove additional results concerning c-continuous functions.

2. Results

We begin by making three rather straightforward observations about c-continuous functions.

Theorem 2. The function $f: X \rightarrow Y$ is c-continuous if and only if the inverse image of each closed compact subset of Y is closed in X.

Proof. If the inverse image of each closed compact subset of Y is closed in X, then f is c-continuous by Theorem 1 part (3).

The converse follows from the equivalence of parts (1) and (2) of Theorem 1.
Theorem 3. Let $f: X \rightarrow Y$ be c-continuous and injective. If Y is T_{1}, then X is T_{1}.

Proof. Theorem 2.

Theorem 4. Let $f: X \rightarrow Y$ be c-continuous, closed and surjective. If X is normal and Y is T_{1}, then Y is also T_{2}.

Proof. Let $y_{1} \neq y_{2}$ be points in Y. Then $\left\{y_{1}\right\}$ and $\left\{y_{2}\right\}$ are closed compact subsets of Y so that by Theorem 2, $f^{-1}\left(y_{1}\right)$ and $f^{-1}\left(y_{2}\right)$ are closed subsets of X. The normality of X then gives the existence of two disjoint open sets U_{1} and U_{2} such that $f^{-1}\left(y_{1}\right) \subset U_{1}$ and $f^{-1}\left(y_{2}\right) \subset U_{2}$. Since f is closed, there exist open sets V_{1} and V_{2} of Y such that $y_{1} \in V_{1}, f^{-1}\left(y_{1}\right) \subset f^{-1}\left(V_{1}\right) \subset U_{1}, y_{2} \in V_{2}$ and $f^{-1}\left(y_{2}\right) \subset f^{-1}\left(V_{2}\right) \subset U_{2}$ by Theorem 11.2 [2, p. 86]. Evidently, $V_{1} \cap V_{2}=\varnothing$ so Y is T_{2}.

For any topological space (Y, σ), the collection of open sets having compact complements may be used as a base for a topology σ^{\prime} on Y. The reason is that if U and V are open and have compact complements, then their intersection has a compact complement as may be shown by use of the equality $Y-(U \cap V)=$ $(Y-U) \cup(Y-V)$. Of course $\sigma^{\prime} \subset \sigma$ and (Y, σ^{\prime}) is always a compact space. With these facts, consider the following commutative diagram where X is any topological space and $f_{*}(x)=f(x)$ for all $x \in X$:

Evidently, f is c-continuous if and only if f_{*} is continuous. Also, i is continuous and i^{-1} is c-continuous. We give two further results related to the diagram.

Theorem 5. Let $f: X \rightarrow(Y, \sigma)$ be c-continuous. If f_{*} is closed (open), then f is closed (open).

Proof. Let $M \subset X$ be closed (open). Then $f_{*}(M)$ is closed (open) and the continuity of i gives $i^{-1}\left(f_{*}(M)\right)=f(M)$ closed (open) in (Y, σ).

We might note that under the hypotheses of Theorem 5 , if f is bijective, then f^{-1} is a continuous function.

Theorem 6. Let (Y, σ) be a topological space. If $\left(Y, \sigma^{\prime}\right)$ is Hausdorff, then (Y, σ) is compact and, in particular, $\sigma=\sigma^{\prime}$.

Proof. Let $\left\{U_{\alpha} \mid \alpha \in \Delta\right\}$ be an open cover of (Y, σ). Since $\left(Y, \sigma^{\prime}\right)$ is Hausdorff and $\sigma^{\prime} \subset \sigma$, there exist open sets U and V in (Y, σ) such that $U \cap V=\varnothing$ and both $Y-U$ and $Y-V$ are compact. Thus, from the cover $\left\{U_{\alpha} \mid \alpha \in \Delta\right\}$ of Y there is a finite subcollection $\left\{U_{\alpha_{11}}, U_{\alpha_{12}}, \cdots, U_{\alpha_{1 n}}\right\}$ covering $Y-U$ and a finite subcollection $\left\{U_{\alpha_{2}}, U_{\alpha_{22}}, \cdots, U_{\alpha_{2}}\right\}$ convering $Y-V$. The fact that $U \cap V=\varnothing$ then gives the
finite subcollection $\left\{U_{\alpha_{11}}, U_{\alpha_{12}}, \cdots, U_{\alpha_{1 n}}, U_{\alpha_{21}}, \cdots, U_{\alpha_{2 m}}\right\}$ as a cover of Y. If follows that (Y, σ) is compact.

Since (Y, σ^{\prime}) is a compact Hausdorff space and $\sigma^{\prime} \subset \sigma, \sigma$ cannot be a strictly larger topology or else the property of compactness is lost contrary to what has just been shown. Therefore, $\sigma=\sigma^{\prime}$.

Corollary. Let $f: X \rightarrow(Y, \sigma)$ be c-continuous. If $\left(Y, \sigma^{\prime}\right)$ is Hausdorff, then f is continuous.

Proof. The theorem gives (Y, σ) compact so that f is continuous by Theorem 5 [3].

The converse of Theorem 6 does not hold as is shown by any finite space which is not Hausdorff.

We now turn our attention to the interesting relationship between c-continuous functions and functions which have closed graphs.

Theorem 7. Let $f: X \rightarrow Y$ be a function with closed graph. Then f is c continuous.

Proof. Suppose f is not c-continuous at the point $x \in X$. Then there is an open set V containing $f(x)$ and having a compact complement such that no open set in X containing x maps into V under f. Consider the filterbase $\mathscr{\mathscr { K }}(x)$ of all open sets in X which contain x. It follows that $\mathscr{U}(x)$ converges to x and that $f(\mathscr{U}(x))=\{f(U) \mid U$ is open and contains $x\}$ is a filterbase in Y. Since $f(U) \cap(Y-V)$ $\neq \varnothing$ for all $U \in \mathscr{U}(x)$, then $\mathscr{B}=\{f(U) \cap(Y-V) \mid U \in \mathscr{U}(x)\}$ is a filterbase and \mathscr{B} is subordinated to $f(\mathscr{U}(x))$. Since $Y-V$ is compact, \mathscr{B} has an accumulation point $y \in Y-V$. From the fact that $f(x) \neq y$, the point $(x, y) \notin G(f)$, the graph of f. Let W be any open set containing (x, y). Then there exist open sets U_{1} and V_{1} containing x and y, respectively, such that $(x, y) \in U_{1} \times V_{1} \subset W$. From the fact that $\mathscr{U}(x)$ converges to x, we have the existence of a $U \in \mathscr{U}(x)$ such that $U \subset U_{1}$. This implies that $f(U) \cap(Y-V) \in \mathscr{B}$; hence, $(f(U) \cap(Y-V)) \cap V_{1} \neq \varnothing$ because \mathscr{B} accumulates to y. Therefore, there exists a point $x_{1} \in U_{1}$ such that $f\left(x_{1}\right) \in V_{1}$ so that $\left(x_{1}, f\left(x_{1}\right)\right) \in U_{1} \times V_{1} \subset W$ showing $W \cap G(f) \neq \varnothing$. It follows that (x, y) is a cluster point of $G(f)$, but $(x, y) \notin G(f)$. Consequently, $G(f)$ is not closed which contradicts the hypothesis that $G(f)$ is closed. We conclude that f is c-continuous.

Since continuous functions need not have closed graphs, we do not expect that c-continuous functions will have this property either. Then next theorem gives conditions as to when c-continuous functions will have closed graphs.

Theorem 8. Let $f: X \rightarrow Y$ be c-continuous and let Y be a locally compact

Hausdorff space. Then f has a closed graph.
Proof. Let (x, y) be a point in $X \times Y$ which does not lie in the graph of f. Then $f(x) \neq y$ and since Y is Hausdorff, there exist open disjoint sets V_{1} and V_{2} containing $f(x)$ and y, respectively. By Theorem 6.2 (2) [2], there exists an open set V such that $y \in V \subset \bar{V} \subset V_{1}$ and \bar{V} is compact. By Theorem 1, $f^{-1}(\bar{V})$ is closed in X and does not contain x. Since f is c-continuous, there is an open set U containing x and lying in $X-f^{-1}(\bar{V})$ such that $f(U) \subset Y-\bar{V}$. Therefore, $U \times V$ contains (x, y) but no point of $G(f)$. Thus, the complement of $G(f)$ is open so that $G(f)$ is closed.

If $f: X \rightarrow Y$, is a given function, then the function $g: X \rightarrow X \times Y$, given by $g(x)=(x, f(x))$, is called the graph function with respect to f. There are certain relationships between a function and its graph function, as far as c-continuity is concerned, that we wish to investigate next.

Theorem 9. Let $f: X \rightarrow Y$ be a function and X a compact space. If the graph function $g: X \rightarrow X \times Y$ is c-continuous, then f is c-continuous.

Proof. Let $x \in X$ and V be an open set containing $f(x)$ such that $Y-V$ is compact. Then $P_{Y}^{-1}(V)$ is open in $X \times Y$ and, since X and $Y-V$ are compact, $X \times(Y-V)=(X \times Y)-P_{\bar{Y}}^{-1}(V)$ is compact. Thus $P_{Y}^{-1}(V)$ is an open set in $X \times Y$ having a compact complement. Therefore, there exists an open set U containing x such that $g(U) \subset P_{\bar{Y}}^{-1}(V)$. It follows that $P_{r} g(U)=f(U) \subset V$ so that f is c continuous.

Theorem 10. Let X and Y be metric spaces where the metric space $X \times Y$ has the property that each closed and bounded subset is compact. Let $f: X \rightarrow Y$ be given. If the graph function $g: X \rightarrow X \times Y$ is c-continuous, then f is c-continuous.

Proof. Let $x \in X$ and let V be an open set in Y containing $f(x)$ such that $Y-V$ is compact. Then $Y-V$ is closed and bounded, hence, there exists a positive real number a such that $Y-V$ is contained in the basic open set $B(f(x), a)$. Now let $B(x, b)$ be any basic open set containing x. Then $\overline{B(x, b) \times B(f(x), a)}$ is closed and bounded in $X \times Y$ so is compact by hypothesis. Let $V_{1}=B(f(x), d)$ where $0<d<c$ and $c=\rho(f(x), Y-V)>0$. It follows that $\left(B(x, b) \times V_{1}\right) \cup[(X \times Y)-$ $\overline{B(x, b) \times B(f(x), a)]}=W$ is an open set containing $(x, f(x))$ having a closed bounded, hence compact, complement. Since g is c-continuous, there exists an open $U \subset B(x, b)$ containing x such that $g(U) \subset W$. From the construction of W, $f(U)=P_{Y}(g(U)) \subset V$ showing f is c-continuous at the point x. Thus f is c-continuous.

A function $f: X \rightarrow Y$ may have its graph function c-continuous while f is not c-continuous, as the following example shows.

Example 1. Let R represent the reals with the standard topology and let (R, σ) be the reals with the right-ray topology. (Open sets have the form R, \varnothing or $\{x \mid x>a\}$.) Then $i:(R, \sigma) \rightarrow R$ is not c-continuous. To see this, consider the point $i(1)=1$ and any open set V about $i(1)$ such that (1) the complement of V is compact and (2) there exists a point $z \in R$ such that $z>1$ and $z \notin V$. Then evidently no open $U \subset(R, \sigma)$ containing the point 1 has the property that $f(U) \subset V$.

To see that $g:(R, \sigma) \rightarrow(R, \sigma) \times R$ is c-continuous, we need only to note that the only open set in $(R, \sigma) \times R$ having compact complement is $(R, \sigma) \times R$. The reason is that if W is open in $(R, \sigma) \times R$ and $\left(x_{0}, y_{0}\right) \notin W$, then each point in $\left\{\left(x, y_{0}\right) \mid x<x_{0}\right\}$ does not belong to W so that the non-compactness of the complement of W follows immediately.

Theorem 11. Let X and Y be metric spaces where Y has the property that each closed and bounded subset of Y is compact. If $f: X \rightarrow Y$ is c-continuous, then the graph function $g: X \rightarrow X \times Y$ is c-continuous.

Proof. Let $x \in X$ and consider the point $(x, f(x)) \in X \times Y$. Let W be an open set in $X \times Y$ containing $(x, f(x))$ such that $(X \times Y)-W$ is compact. Thus ($X-Y$) $-W$ is closed and bounded. Therefore, there exist basic open sets $B(x, a)$ and $B(f(x), b)$ such that $(X \times Y)-W \subset B(x, a) \times B(f(x), b)$. Since $(x, f(x))$ does not belong to the compact set $(X \times Y)-W$, there exist open sets $B\left(x, a^{\prime}\right)$ and $B\left(f(x), b^{\prime}\right)$ such that $a^{\prime} \leq a, b^{\prime} \leq b / 2$ and $B\left(x, a^{\prime}\right) \times B\left(f(x), b^{\prime}\right) \subset W$. Now let $V=B\left(f(x), b^{\prime}\right) \cup$ $[Y-\overline{B(f(x), b)]}$. Since $\overline{B(f(x), b)}$ is closed and bounded, hence, compact by hypothesis, we have V an open set containing $f(x)$ which has a compact complement. Since f is c-continuous, there exists an open set $U \subset B\left(x, a^{\prime}\right)$ such that $f(U) \subset V$. Therefore, $\quad g(U)=\bigcup_{z \in U}(z, f(z)) \subset B\left(x, a^{\prime}\right) \times V=B\left(x, a^{\prime}\right) \times\left[B\left(f(x), b^{\prime}\right) \cup(Y-\overline{B(f(x), b))}]\right.$ $\subset W$ which implies g is c-continuous at x.

We leave as an open question the existence of a function $f: X \rightarrow Y$ which is c-continuous but whose graph function is not c-continuous. There are several conditions given in [3] under which c-continuous functions are also continuous. We offer an additional condition in the next theorem.

Theorem 12. Let $f: X \rightarrow Y$ be c-continuous and let X be first countable and let Y be countably compact, locally compact and Hausdorff. Then f is continuous.

Proof. Suppose f is not continuous at the point $x \in X$. Then there exists an open set $V \subset Y$ containing $f(x)$ such that every open $U \subset X$ containing x has
the property that $f(U) \not \subset V$. Let $U_{1} \supset U_{2} \supset \cdots$ be a countable base at x and let $x_{n} \in U_{n}$ be a point such that $f\left(x_{n}\right) \notin V$. Then $\left(x_{n}\right)$ converges to x and the sequence $\left(f\left(x_{n}\right)\right)$ has an accumulation point $y \notin V$ in the countably compact space Y. There exist open sets V_{1} and V_{2} such that $f(x) \in V_{1} \subset V, y \in V_{2}$ and $V_{1} \cap V_{2}=\varnothing$ in the Hausdorff space Y. Also, there exists an open set $W \subset Y$ such that $y \in W \subset \bar{W} \subset V_{2}$ and \bar{W} is compact due to the locally compact Hausdorff hypothesis. Thus, $Y-\bar{W}$ is an open set containing $f(x)$ whose complement is compact. But if U is any open set containing x, there exists a $U_{n} \subset U$ and a point $x_{n} \in U_{n}$ such that $f\left(x_{n}\right) \in W$ due to the fact that $\left(f\left(x_{n}\right)\right)$ accumulates to y. Consequently, $f(U) \not \subset Y-\bar{W}$. This contradicts the hypothesis that f is c-continuous and implies f is continuous.

Theorem 9 of [3] states that if $f: X \rightarrow Y$ is continuous and bijective onto the Hausdorff space Y, then $f^{-1}: Y \rightarrow X$ is c-continuous. After two definitions, we show that the condition of continuity may be replaced with the weaker condition of almost-continuity.

Definition 1 [5]. A function $f: X \rightarrow Y$ is almost continuous if for each $x \in X$ and each open V containing $f(x)$, there exists an open U containing x such that $f(U) \subset \bar{V}^{0} . \quad\left(\bar{V}^{0}\right.$ denotes the interior of the closure of V.)

Definition 2 [4]. A space Y is nearly compact if every open cover of Y has a finite subcollection, the interiors of the closures of which cover Y.

Theorem 13. Let $f: X \rightarrow Y$ be an almost-continuous bijective function onto the Hausdorff space Y. Then $f^{-1}: Y \rightarrow X$ is c-continuous.

Proof. Let $F \subset X$ be compact. Then $f(F)$ is nearly compact by Theorem 3.2 [4]. But since Y is Hausdorff, $f(F)$ is closed by Theorem 2.1 [1]. Now $\left(f^{-1}\right)^{-1}(F)=f(F)$ is closed so that f^{-1} is c-continuous by Theorem 1 [3].

We note that by use of Theorem 1 [3], it is not difficult to prove that if $f: X \rightarrow Y$ is almost-continuous and Y is Hausdorff, then f is also c-continuous. If the Hausdorff condition on Y is removed, then neither function need imply the other.

REFERENCES

[1] Donald Carnahan, Locally Nearly-Compact Spaces, Boll. Un. Mat. Stal. (4) 6 (1972), pp. 146-153.
[2] J. Dugundji, Topology, Allyn and Bacon, Boston (1966).
[3] Karl R. Gentry and Hughes B. Hoyle, III, C-continuous Functions, The Yokohama Math. Jour., Vol. XVIII, No. 2 (1970), pp. 71-76.
[4] M. K. Singal and Aska Mathur, On Nearly Compact Spaces, Boll. Un. Mat. Stal. (4), 2 (1969) pp. 702-710.
[5] M.K. Singal and Asha Rani Singal, Almost-Continuous Mappings, The Yokohama Math. Jour., 16 (1968), pp. 63-73.

The University of Arkansas
Fayetteville, AR. 72701

