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1. Introduction

Let $M$ be a complete metric space with metric $d$ . The well-known Banach’s

fixed point theorem is as follows.

Theorem 1.1. Let $T$ be a mapping of $M$ into itself such that

$d(Tx, Ty)\leq\alpha d(x, y)$ , for all $x,$ $y$ in $M$,

where $0<\alpha<1$ . Then $T$ has a unique fixed point. In [1], Kannan proved the
following theorem.

Theorem 1.2. ([1], Th. 1). Let $T_{1}$ and $T_{2}$ be two mappings of $M$ into itself
such that

$d(T_{1}x, T_{2}y)\leq\beta[d(x, T_{1}x)+d(y, T_{2}y)]$ ,

for all $x,$ $y$ in $M$, where $0<\beta<1/2$ . Then $T_{1}$ and $T_{2}$ have a unique common fixed
point. Recently Srivastava and Gupta gave the following generalisation of Kannan’s

Theorem.

Theorem 1.3. ([3], Th. 2.1). Let $T_{1}$ and $T_{2}$ be two mappings of $M$ into itself

and $p,$ $q$ two positive integers such that

$d(T_{1}^{p}x, T_{2}^{q}y)\leq\alpha d(x, T_{1}^{p}x)+\beta d(y, T_{2}^{q}y)$ ,

for all $x,$ $y$ in $M$, where $\alpha>0,$ $\beta>0,$ $\alpha+\beta<1$ . Then $T_{1}$ and $T_{2}$ have a unique

common fixed point. In the present paper we extend these results to a uniform

space and prove some other results.

2. Preliminary definitions and results

Let (X, E2}’) be a uniform space. A net $\{x_{n} ; n\in D, \geq\}$ in $X$ is said to converge

to an element $x$ in $X$ if for every member $U$ in $\ovalbox{\tt\small REJECT}$, there is an element $N$ in $D$

such that $(x., x)eU$ for all $n$ in $D$ with $n\geq N$. A net $\{x_{n} ; neD, \geq\}$ is said to

be a Cauchy net if for every $U$ in Zl, there is an element $N$ in $D$ such that
$(x_{m}, x_{n})eU$ for all $m,$ $n$ in $D$ with $m\geq N$ and $n\geq N$. The space (X, $\ovalbox{\tt\small REJECT}$ ) is said
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to be complete if every Cauchy net in $X$ converges to a point in $X$ and sequenti-
ally complete if every Cauchy sequence in $X$ converges to a point in $X$.

For any pseudometric $p$ on $X$ and any $r>0$ , we write
$V_{(p.f)}=$ { $(x,$ $y);x,$ $yeX$ and $p(x,$ $ y)<\gamma$}.

From Th. 15 ([2], p. 188) we see that the uniformity {it‘ on $X$ can be generated
by the family $\mathscr{F}$ of all pseudometrIcs on $X$ which are uniformly continuous on
$X\times X$. But we have observed that it is not necessary to take all the members
of -

‘

to generate the uniformity %\acute . (See Th. 2.1.).
Let $p$ be a family of Pseudometrics on $X$ generating the uniformity $\ovalbox{\tt\small REJECT}^{\prime}$.

Denote by $\ovalbox{\tt\small REJECT}$ the family of all sets of the form $\bigcap_{i=1}^{n}V_{(p.r)}i$ where $pe\mathscr{G}^{\partial}$ and $r_{i}>0$ ,
$i=1,2,$ $\cdots,$ $n$ , (the integer $n$ is not fixed). Then clearly $\ovalbox{\tt\small REJECT}\nearrow$ is a base for the
uniformity $\ovalbox{\tt\small REJECT}$.

Let $Ve\ovalbox{\tt\small REJECT}^{\prime}$. Then $V=\bigcap_{i=1}^{I}V_{(p\ell,r\ell)}$ where $P\ell\in\ovalbox{\tt\small REJECT}$ and $r>0,$ $i=1,2,$ $\cdots,$ $n$ . For

each $\alpha>0$, the set $\bigcap_{i=1}V_{(p_{i}.\alpha t)}$ belongs to SY We denote this set by $\alpha V$.
Lemma 2.1. If $Ve\ovalbox{\tt\small REJECT}$ and $\alpha,$

$\beta$ are positive, then

$\alpha(\beta V)=(\alpha\beta)V$ .
Lemma 2.2. If $Ve\ovalbox{\tt\small REJECT}^{\prime}$, and $\alpha,$

$\beta$ are positive, then

$a$ $V\subset\beta V$ when $\alpha<\beta$ .
Lemma 2.3, Let $P$ by any pseudometrIc on $X$ and $\alpha,$

$\beta$ be any two positive
numbers. If

$(x, y)e$ a $V_{(p,^{f}1)}\circ\beta V_{(p.\prime}2$ ) ,
then

$p(x, y)<\alpha r_{1}+\beta r_{z}$ .
Lemma 2.4. If $Ve$ er and $\alpha,$

$\beta$ are positive, then
$\alpha V\circ\beta V\subset(\alpha+\beta)V$ .

Note 2.1. Let $P$ be any pseudometrIc on $X$ and $\alpha,$
$\beta,$

$\gamma$ and three positIve
numbers. If

$(x, y)e$ a $V_{(p_{f}1)^{Q}}\beta V_{(p.2)^{O}}’\gamma V_{(p.rg)}$ .
then

$p(x, y)<ar_{1}+\beta r_{2}+\gamma r_{8}$ .
Lemma 2.5. Let $x,$ $yeX$. Then for every $V$ in $\wp$ there is a positive number

$\lambda$ such that $(x, y)e\lambda V$.
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The proofs of the Lemmas 2.1-2.5 are simple.

Lemma 2.6. Let $V$ be any member of $\ovalbox{\tt\small REJECT}^{\prime}$. Then there is a pseudometric $P$ on
$X$ such that

$V=V_{(p.1)}$ .
Proof. Let $x,$ $y$ be any two points of $X$. Then by Lemma 2.5, there is a

$\lambda>0$ such that $(x, y)\in\lambda V$. Write

$A_{(x.y)}=$ {$\lambda;\lambda>0$ and $(x,$ $y)e\lambda V$}.

Now we define $p(x, y)$ by

$p(x, y)=Inf\{\lambda;\lambda eA_{(x.y)}\}$ .
If $xeX_{1}$ then clearly $(x, x)\in\lambda V$ for any $\lambda>0$ . This shows that $A_{(x.x)}=\{\lambda;\lambda>0\}$ .
So

$p(x, x)=InfA_{(x.x)}=0$ .
Again since $V$ is symmetric it follows that $A_{(x.y)}=A_{(y,x)}$ . So

$p(x, y)=p(y, x)\geq 0$ .
Now let $x,$ $y,$ $z$ be any three points of $X$. Choose $\epsilon>0$ arbitrarily. Take
$\alpha=p(x, z)+\dot{\epsilon}$ and $\beta=p(z, y)+\epsilon$ . Then $a\in A_{(x,)}$ and $\beta eA_{(*\cdot y)}$ . That $(x, z)e\alpha V$,

and $(z, y)e\beta V$. This gives that

$(x, y)e\beta V\circ\alpha V=aV\circ\beta V\subset(\alpha+\beta)$ V. [By Lemma 2.4]

Thus $\alpha+\beta eA_{(\cdot,y)}$ . So
$ p(x, y)\leq\alpha+\beta=p(x, z)+p(z, y)+2\epsilon$ .

Since $\epsilon>0$ is arbitrary we get

$p(x, y)\leq p(x, z)+p(z, y)$ .
Therefore $p$ is a pseudometric on $X$.

Let $x,$ $yeX$ and $p(x, y)<1$ . Choose any $\alpha$ with $p(x, y)<\alpha<1$ . Then $\alpha eA_{(x.y)}$

which gives that $(x, y)eaV\subset V$. [By Lemma 2.2] So

(1) $V_{(p.1)}\subset V$ .
Again, let $(x, y)eV$. Since $V\in\ovalbox{\tt\small REJECT}^{\prime}$, we can express $V=\bigcap_{i=1}^{\iota}V_{(p.f)},$ $pe^{p}$ and $r_{\ell}>0$ .
Write $a_{\ell}=p(x, y)$ , then $0\leq\alpha_{i}/r_{\ell}<1$ , $(i=1,2, \cdots, n)$ . Let $\theta=\max\{a/r$ ; $i=1,2$ ,

. $n$}. Then $0\leq\theta<1$ . Choose any positive $\alpha$ with $\theta<\alpha<1$ . We have

$p_{i}(x, y)=\alpha_{\ell}=(\frac{\alpha_{l}}{r_{\ell}})r_{\ell}\leq\theta r_{\ell}<ar_{\ell}$ , $(i=1,2, \cdots, n)$ .
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So

$(x, y)\in\bigcap_{i=1}^{n}V_{(p\ell.\alpha r\ell)}=\alpha V$ ,

and hence $p(x, y)\leq\alpha<1$ . Thus

(2) $V\subset V_{(p.1)}$ .
From (1) and (2) we get

$V=V_{(p.1)}$ .
Note 2.2. We shall call $P$ the Minkowski’s pseudometric of $V$ in analogy with

the Minkowski’s Functional of a convex and balanced set in a linear topological
space.

Theorem 2.1. Every uniformity for the set $X$ can be generated by a family
of pseudometrics on $X$ which are uniformly continuous on $X\times X$.

Proof. Let $\ovalbox{\tt\small REJECT}$ be a uniformity for the set $X$. Let $\mathcal{B}$ be a subfamily of %’

such that $\mathcal{B}$ is a base for Zl, each member of $\mathcal{B}$ is symmetric and no member of
$\mathcal{B}$ is equal to $X\times X$. For each $V$ in $\mathcal{B}$, choose a sequence $\{U_{n}^{(V)}\}_{n=0}^{\infty}$ of symmetric
sets in $\ovalbox{\tt\small REJECT}$ with

$U_{n+1^{\circ}}^{(V)}U_{n+1}^{(V)}\circ U_{n+1}^{(V)}\subset U_{n}^{(V)}$ , where $U_{0}^{(V)}=X\times X$, and $U_{1}^{(V)}=V$.
By the Metrization Lemma ([2], Ch. 6, \S 12, p. 185) there is a Pseudometric $d_{V}$ on
$X$ such that

(3) $U_{n}^{(V)}\subset\{(x, y);d_{V}(x, y)<2^{-n+2}\}\subset U_{n-1}^{(V)}$ .
Let $\mathscr{G}^{\partial}=\{d_{V} ; Ve\mathcal{B}\}$ . Denote by SY the uniformity for $X$ generated by the family
$\ovalbox{\tt\small REJECT}$ of pseudometrics on $X$. Write

$W_{(V.r)}=\{(x, y);d_{\gamma}(x, y)<r\}$ .
Let $U$ be any member of $\ovalbox{\tt\small REJECT}^{\prime}$. Then there is a set $V$ in $\mathcal{B}$ with $V\subset U$. From
(3) we have

$W_{(V.1)}\subset U_{1}^{(V)}=V$ .
So $W_{(V.1)}\subset U$ which gives that $Ue\ovalbox{\tt\small REJECT}^{\prime}$ and hence $\ovalbox{\tt\small REJECT}\subset\ovalbox{\tt\small REJECT}^{\prime}$.

Next let $We$ SY Then there are finite number of members $V_{1},$ $V_{2},$
$\cdots,$

$V_{m}$ in
$\mathcal{B}$ and $\gamma_{\ell}>0,$ $(i=1,2, \cdots, m)$ such that

$\bigcap_{l=1}^{m}W_{(r_{\ell^{f}i})}\subset W$ .
Choose positive integers $n_{1},$ $n_{2},$ $\cdots,$ $n_{m}$ such that

$2^{-m}\ell^{+2}<r_{\ell\prime}$ $(i=1,2, \cdots, m)$ .
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From (3) we have

$U_{n}^{(V)}\subset\{(x, y);d_{V\ell}(x, y)<2^{-n}\ell^{+2}\}<W_{(V.\ell)}f$ $(i=1,2, \cdots, m)$ .
Write $U=\bigcup_{:=1}^{m}U_{n}^{(V)}$ . Then Ue%’ and $U\subset\bigcap_{i=1}W_{(V_{\ell^{f}}.\ell)}\subset Wm$ which gives that $We$ E7,

and so $\ovalbox{\tt\small REJECT}^{\prime}\subset\ovalbox{\tt\small REJECT}$. Therefore we have
$\ovalbox{\tt\small REJECT}=\ovalbox{\tt\small REJECT}$ .

Since each $W_{\langle V.r)}$ is a member of Zl, it follows from Th. 11 ([2], Chap. VI, p. 183)

that $d_{V},$ $(Ve\mathcal{B})$ is uniformly continuous on $X\times X$.

3. Results on flxed point of operators

In this section we assume that (X, $\ovalbox{\tt\small REJECT}$ ) is a uniform space which is sequentially

complete and also a Hausdorff space. Further we suppose that .7 is a fixed family

of pseudometrics on $X$ which generates the uniformity %’. We denote by $\ovalbox{\tt\small REJECT}$ the

family of all sets of the form $\bigcap_{:=1}^{n}V_{(p_{i^{f}i})},$ $p_{\ell}\in\ovalbox{\tt\small REJECT}$ and $r_{\ell}>0$ (the integer $n$ is not
fixed).

By an operator on $X$ we mean a mapping of $X$ into itself.

Theorem 3.1. Let $T$ be an operator on $X$ such that for any $V$ in $\ovalbox{\tt\small REJECT}$ and
$x,$ $y$ in $X$,

$(Tx, Ty)e$ a $V$, if $(x, y)eV$ ,

where $0<\alpha<1$ . Then $T$ has a unique fixed point in $X$.
Proof. Let $x_{0}$ be an arbitrary but fixed point of $X$. Define the sequence

$\{x_{n}\}$ in $X$ by
$x_{n}=Tx_{n-1}$ , $(n=1,2, \cdots)$ .

Let $V$ be any member of $\ovalbox{\tt\small REJECT}^{\prime}$. Choose a positive number $\lambda$ such that

$(x_{0}, x_{1})\in\lambda V=W$ , say.

Then
$We\ovalbox{\tt\small REJECT}$ and $\mu We\ovalbox{\tt\small REJECT}$ for any $\mu>0$ .

We have
$(x_{1}, x_{2})=(Tx_{0}, Tx_{1})eaW$ ,

$(x_{2}, x_{6})=(Tx_{1}, Tx_{2})e\alpha(\alpha W)=\alpha^{f}W$ ,

and by induction
$(x_{n}, x_{n+1})e\alpha^{n}W$ .

Let $n$ and $m(>n)$ be any two positive integers. Then since
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$(x_{n}, x_{n+1})e\alpha^{n}W$ and $(x_{n+1}, x_{n+2})\in\alpha^{n+1}W$ ,
we get

$(x_{n}, x_{n+2})e\alpha^{n}W\circ a^{n+1}W\subset(\alpha^{n}+\alpha^{n+1})$ W. [By Lemma 2.4]

Similarly we have
$(x_{n}, x_{n+8})e(\alpha^{n}+\alpha^{n+1}+a^{n+2})W$ ,

and proceeding in this way we obtain

$(x_{n}, x_{m})e(a^{n}+a^{n+1}+\cdots+\alpha^{m-1})W\subset\frac{\alpha^{n}}{1-\alpha}W=\frac{\lambda\alpha^{n}}{1-\alpha}V$ .
Since $0<\alpha<1$ , we can choose a positive integer $n_{0}$ such that $\lambda\alpha^{n}/(1-\alpha)<1$ when
$n\geq n_{0}$ . Then $(x_{n}, x_{m})eV$ when $n\geq n_{0}$ . Thus $\{x_{n}\}$ is a Cauchy sequence.

Since $X$ is sequentially complete, there is a point $\xi$ in $X$ such that

$\xi=Ltx_{n}n\rightarrow\alpha$

From the given condition it is obvious that $T$ is continuous. So

$T(x_{n})\rightarrow T(\xi)$ as $ n\rightarrow\infty$ ,
that is,

$x_{n+1}\rightarrow T(\xi)$ .
Since $X$ is a Hausdorff space, $\xi=T(\xi)$ . Let $\eta$ be a point in $X$ such that $\eta=T(\eta)$ .
Take any $V$ in $\ovalbox{\tt\small REJECT}$. Choose $\lambda>0$ such that

$(\xi, \eta)e\lambda V=W$ , say.
Then

$(\xi, \eta)=(T(\xi), T(\eta))\in\alpha W$ .
This gives that

$(\xi, \eta)ea(\alpha W)=\alpha^{2}W$ ,

and after $n$ steps we obtain
$(\xi, \eta)ea^{n}W=(\lambda\alpha^{n})V$ .

Cfioose $n$ so large that $\lambda a^{n}<1$ . Then

$(\xi, \eta)eV$ .
Since $V$ is arbitarary, it follows that $\xi=\eta$ . This completes the proof.

Theorem 3.2. Let $T_{1}$ and $T_{2}$ be two operators on $X$ such that for any two
members $V_{1},$ $V_{2}$ in $\ovalbox{\tt\small REJECT}$ and $x,$ $y$ in $X$,

$(T_{1}x, T_{2}y)\in a$ $V_{1^{Q}}\beta V_{2}$ ,
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if $(x, T_{1}x)\in V_{1}$ and $(y, T_{2}y)\in V_{2}$ where $a,$ $\beta$ are independent of $x,$ $y,$ $V_{1},$ $V_{2}$ and
$\alpha>0,$ $\beta>0,$ $\alpha+\beta<1$ . Then $T_{1}$ and $T_{2}$ have a unique common fixed point.

Proof. Let $x_{0}$ be an arbitrary but fixed point of $X$. Define the sequence
$\{x_{n}\}$ in $X$ as follows.

$x_{1}=T_{1}x_{0}$ , $x_{2}=T_{2}x_{1}$ , $x_{s}=T_{1}x_{2}$ , $x_{4}=T_{2}x_{8},$ $\cdots$ ,

We prove the theorem by the following steps.
(I) The sequence $\{x_{n}\}$ converges to a point $\xi$ in $X$. Let $V$ be any member

of $\ovalbox{\tt\small REJECT}$. Denote by $p$ the Minkowski’s pseudometric of $V$. Let $x,$ $y$ be any two
points of $X$. Write $p(x, T_{1}x)=r_{1}$ and $p(y, T_{2}y)=r_{2}$ and take $\epsilon>0$ . Then

$(x, T_{1}x)e(r_{1}+\epsilon)V$ and $(y, T_{2}y)e(r_{2}+\epsilon)V$ .
So by the given condition we have

$(T_{1}x, T_{2}y)e\alpha(r_{1}+\epsilon)V\circ\beta(r_{2}+\epsilon)V$ .
By Lemma 2.3 we have

$p(T_{1}x, T_{2}y)>\alpha(\gamma_{1}+\epsilon)+\beta(r_{2}+\epsilon)$

$=ar_{1}+\beta r_{2}+(\alpha+\beta)\epsilon$ .
Since $\epsilon>0$ is arbitrary,

(4) $p(T_{1}x, T_{2}y)\leq ap(x, T_{1}x)+\beta p(y, T_{2}y)$ .
Now take any positive number $\lambda$ with

$\lambda\geq p(x_{0}, x_{1})$ .
We have

$p(x_{1}, x_{2})=p(T_{1}x_{0}, T_{2}x_{1})$

$\leq ap(x_{0}, T_{1}x_{0})+\beta p(x_{1}, T_{2}x_{1})$ [By (4)]
$=\alpha p(x_{0}, x_{1})+\beta p(x_{1}, x_{2})$ .

$p(x_{1}, x_{2})\leq\frac{\alpha}{1-\beta}p(x_{0}, x_{1})$

$\leq\frac{a\lambda}{1-\beta}$ .

$p(x_{2}, x_{\epsilon})=p(T_{2}x_{1}, T_{1}x_{2})$

$=p(T_{1}x_{2}, T_{2}x_{1})$

$\leq\alpha p(x_{2}, T_{1}x_{2})+\beta p(x_{1}, T_{2}x_{1})$

$=\alpha p(x_{2}, x_{8})+\beta p(x_{1}, x_{2})$ .
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$p(x_{2\prime}x_{8})\leq\frac{\beta}{1-a}p(x_{1}, x_{2})$

$\leq\lambda\cdot\frac{a}{1-\beta}$
. $\frac{\beta}{1-a}$ .

By induction

$p(x_{2n-1}, x_{2n})\leq\lambda(\frac{\alpha}{1-\beta})^{n}(\frac{\beta}{1-\alpha})^{n-1}$

and

$p(x_{2n}, x_{2n+1})\leq\lambda(\frac{a}{1-\beta})^{n}(\frac{\beta}{1-a})^{n}$

Write $\mu=\alpha/(1-\beta)\cdot\beta/(1-\alpha)$ . Since $a+\beta<1$ , we have $0<\mu<1$ . Take any two
positive integers $n$ and $m(>n)$ . Then

$p(x_{2n}, x_{2m})\leq p(x_{2n}, x_{2n+1})+p(x_{2n+1}, x_{2n+2})+\cdots+p(x_{2m-1}, x_{2m})$

$\leq\lambda[\mu^{n}+\frac{\alpha}{1-\beta}\mu^{n}+\mu^{n+1}+\frac{\alpha}{1-\beta}\mu^{n+1}+\cdots+\frac{\alpha}{1-\beta}\mu^{m-1}]$

$=\lambda(1+\frac{\alpha}{1-\beta})[\mu^{n}+\mu^{n+1}+\cdots+\mu^{m-1}]$

$<\frac{1+\alpha-\beta}{1-\beta}$ . $\frac{\lambda\mu^{n}}{1-\mu}$ .

Choose a positive integer $n_{0}$ such that

$\frac{1+\alpha-\beta}{1-\beta}\cdot\frac{\lambda\mu^{n}}{1-\mu}<1$ , when $n\geq n_{0}$ .
Then

$p(x_{2n}, x_{m})<1$ for $m>n\geq n_{0}$ .
This gives that

$(x_{2\pi}, x_{2m})eV$ , when $m>n\geq n_{0}$ .
Therefore $\{x_{l*}\}$ is a Cauchy sequence in $X$. Since $X$ is sequentially complete,

there is a point $\xi$ in $X$ such that
$\xi=Ltx_{2n}n\rightarrow\alpha$

Take $V$ and $p$ as above. Let $n$ be any positive integer. Then

$p(\xi, x_{2n+1})\leq p(\xi, x_{2n})+p(x_{2n}, x_{2n+1})$

$\leq p(\xi, x_{2n})+\lambda\mu^{n}\rightarrow 0$ as $ n\rightarrow\infty$ .
This gives that $p(\xi, x_{2n})<1$ if $n\geq n_{1}$ where $n_{1}$ is some positive integer. So

$(\xi, x_{f^{n+1}})eV$ when $n\geq n_{1}$ .
Thus $\{x_{2n+1}\}$ also converges to $\xi$ . Hence $\{x_{n}\}$ converges to $\xi$ .
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(II) $\xi$ is a common fixed point of $T_{1}$ and $T_{2}$ . Let $V$ be any member of $\ovalbox{\tt\small REJECT}$.
Denote by $P$ the Minkowski’s pseudometric of $V$. For any positive integer $n$ we
have

$p(\xi, T_{1}\xi)\leq p(\xi, x_{2n})+p(T_{2}x_{2n-1}, T_{1}(\xi))$

$\leq p(\xi, x_{2n})+\alpha p(\xi, T_{1}\xi)+\beta p(x_{2n-1}, x_{2n})$ . [By (4)]

Letting $ n\rightarrow\infty$ we obtain
$p(\xi, T_{1}\xi)\leq\alpha p(\xi, T_{1}\xi)$ .

Since $0<\alpha<1$ , we get $p(\xi, T_{1}\xi)=0$ . So
$(\xi, T_{1}\xi)eV$ .

$V$ being arbitrary and $X$ being a Hausdorff space we have

$\xi=T_{1}\xi$ .
Similarly we can show that $\xi=T_{2}\xi$ .

(III) $\xi$ is the unique common fixed point of $T_{1}$ and $T_{2}$ . Let $\eta$ be a point in
$X$ with $\eta=T_{1}\eta$ . Take any member $V$ of er. Then since

$(\eta, T_{1}\eta)=(\eta, \eta)eV$

and
$(\xi, T_{2}\xi)=(\xi, \xi)\in V$ ,

we have
$(\eta, \xi)\in\alpha V\circ\beta V\subset(a+\beta)V\subset V$ .

Since $V$ is arbitrary it follows that $\eta=\xi$ . Similarly if $\eta eX$ and $\eta=T_{2}\eta$ , then
$\eta=\xi$ . This completes the proof of the theorem.

Corollary 3.2.1. Let $T_{1}$ and $T_{2}$ be two operators and $p,$ $q$ be two positive
integers such that for any $V_{1},$ $V_{2}$ in $\ovalbox{\tt\small REJECT}$ and $x,$ $y$ in $X$

$(T_{1}^{p}, T_{2}^{q})\in aV_{1^{\circ}}\beta V_{2}$ ,

if $(x, T_{1}^{p}x)eV_{1}$ and $(y, T_{2}^{q}y)eV_{2}$ where $a,$ $\beta$ are independent of $x,$ $y,$ $V_{1},$ $V_{2}$ and
$\alpha>0,$ $\beta>0,$ $\alpha+\beta<1$ . Then $T_{1},$ $T_{2}$ have a unique common fixed point.

Theorem 3.3. Let $T_{1}$ and $T_{2}$ be two operators on $X$ such that for any $V_{1},$ $V_{2}$

in er and $x,$ $y$ in $X$

$(T_{1}x, T_{2}y)e\alpha V_{1}\circ\beta V_{2}$ ,

if $(y, T_{1}x)eV_{1}$ and $(x, T_{2}y)eV_{2}$ where $\alpha,$
$\beta$ are independent of $x,$ $y,$ $V_{1},$ $V_{2}$ and

$a>0,$ $\beta>0\alpha+\beta<1$ . Then $T_{1}$ and $T_{2}$ have a unique common fixed point.

The proof is similar to that of Th. 3.2.
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Corollary 3.3.1. Let $T_{1}$ and $T_{2}$ be two operators on $X$ and $p,$ $q$ be two positive
integers such that for any $V_{1},$ $V_{2}$ in $\ovalbox{\tt\small REJECT}\nearrow$ and $x,$ $y$ in $X$

$(T_{1}^{p}x, T_{2}^{q}y)\in\alpha V_{1^{\circ}}\beta V_{2}$ ,

if $(y, T_{1}^{p}x)eV_{1}$ and $(x, T_{2}^{q}y)eV_{2}$ , where $a,$ $\beta$ are independent of $x,$ $y,$ $V_{1},$ $V_{2}$ , and
$\alpha>0,$ $\beta>0,$ $\alpha+\beta<1$ . Then $T_{1}$ and $T_{2}$ have a unique common fixed point.

Theorem 3.4. Let $T_{1}$ and $T_{2}$ be two operators on $X$ such that for any three
members $V_{1},$ $V_{2},$ $V_{8}$ in $\ovalbox{\tt\small REJECT}^{\prime}$ and $x,$ $y$ in $X$

$(T_{1}x, y)e\alpha V_{\iota^{\circ}}\beta V_{2^{\circ}}\gamma V_{8}$ ,

if $(x, T_{1}x)eV_{1},$ $(x, y)eV_{2},$ $(y, T_{2}y)eV_{8}$ where $\alpha,$
$\beta,$

$\gamma$ are independent of $x,$ $y,$ $V_{1}$ ,
$V_{2},$ $V_{8}$ and $\alpha>0,$ $\beta>0,$ $\gamma>0,$ $a+\beta+\gamma<1$ . Then $T_{1}$ and $T_{2}$ have a unique common
fixed point.

Proof. Let $x_{0}$ be an arbitrary but fixed point of $X$. Define the sequence
$\{x_{n}\}$ and take $V$ and $P$ as in the proof of Th. 3.2. Write

$p(x, T_{1}x)=\gamma_{1}$ , $p(x, y)=r_{2}$ , $p(y, T_{2}y)=r_{\epsilon}$ ,

and take $\epsilon>0$ . Then

$(x, T_{1}x)e(r_{1}+\epsilon)V$, $(x, y)e(r_{2}+\epsilon)V$, $(y, T_{2}y)e(r_{8}+\epsilon)V$ .
So by the given condition we have

$(T_{1}x, T_{2}y)\in a(r_{1}+\epsilon)Vo\beta(r_{2}+\epsilon)V\circ\gamma(r_{3}+\epsilon)V$ .
By Note 2.1,

$p(T_{1}x, T_{2}y)<\alpha(r_{1}+\epsilon)+\beta(r_{2}+\epsilon)+\gamma(r_{s}+\epsilon)$

$=\alpha r_{1}+\beta r_{2}+\gamma r_{8}+(a+\beta+\gamma)\epsilon$ .
Since $\epsilon>0$ is arbitrary,

(5) $p(T_{1}x, T_{2}y)\leq ap(x, T_{1}x)+\beta p(x, y)+\gamma p(y, T_{2}y)$ .
Now take a positive number $\lambda$ with $\lambda\geq p(x_{0}, x_{1})$ . Then

$p(x_{1}, x_{2})=p(T_{1}x_{0}, T_{2}x_{1})$

$\leq ap(x_{0}, T_{1}x_{0})+\beta p(x_{0}, x_{1})+\gamma p(x, T_{2}x_{1})$

$\leq ap(x_{0}, x_{1})+\beta p(x_{0}, x_{1})+\gamma p(x_{1}, x_{2})$ , [By (5)]

or
$p(x_{1}, x_{2})\leq\frac{a+\beta}{1-\gamma}p(x_{0\prime}x_{1})$

$\leq\lambda\frac{\alpha+\beta}{1-\gamma}$ ,
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$p(x_{2}, x_{3})=p(T_{1}x_{2}, T_{2}x_{1})$

$\leq ap(T_{1}x_{2}, x_{2})+\beta p(x_{1}, x_{2})+\gamma p(x_{1}, T_{2}x_{1})$

$=ap(x_{2}, x_{8})+\beta p(x_{1}, x_{2})+\gamma p(x_{1}, x_{2})$ ,
or

$p(x_{2}, x_{8})\leq\frac{\beta+\gamma}{1-\alpha}p(x_{1}, x_{2})$

$\leq\lambda\frac{(\alpha+\beta)(\beta+\gamma)}{(1-\gamma)(1-\alpha)}$ ,

$p(x_{8}, x_{4})=p(T_{1}x_{2}, T_{2}x_{8})$

$\leq\alpha p(T_{1}x_{2}, x_{2})+\beta p(x_{2}, x_{8})+\gamma p(x_{3}, T_{2}x_{8})$

$=ap(x_{2}, x_{8})+\beta p(x_{2}, x_{8})+\gamma p(x_{8}, x_{4})$ ,
or

$p(x_{8\prime}x)\leq\frac{\alpha+\beta}{1-\gamma}p(x_{2}, x_{8})$

$\leq\lambda(\frac{\alpha+\beta}{1-\gamma})^{2}(\frac{\beta+\gamma}{1-\alpha})$ .
By induction,

$p(x_{2n-1}, x_{2n})\leq\lambda(\frac{a+\beta}{1-\gamma})^{n}(\frac{\beta+\gamma}{1-a})^{n-1}$

and

$p(x_{2n}, x_{2n+1})\leq\lambda(\frac{\alpha+\beta}{1-\gamma})(\frac{\beta+\gamma}{1-\alpha})^{n}$

Write $\mu=(a+\beta)/(1-\gamma)\cdot(\beta+\gamma)/(1-a)$ . Then $0<\mu<1$ , as $a+\beta+\gamma<1$ . Then we com-
plete the proof as in Th. 3.2.

Corollary 3.4.1. Let $T_{1}$ and $T_{2}$ be two operators on $X$ and $p,$ $q$ be two
positive integers such that for any three members $V_{1},$ $V_{2},$ $V_{8}$ in $\ovalbox{\tt\small REJECT}$ and $x,$ $y$ in $X$,

$(T_{1}^{p}x, T_{2}^{q}y)e$ a $V_{1^{\circ}}\beta V_{2^{\circ}}\gamma V_{8}$ ,

if $(x, T_{1}^{p}x)eV_{1},$ $(x, y)\in V_{2},$ $(y, T_{2}^{q}y)eV_{3}$ where $a,$ $\beta,$
$\gamma$ are independent of $x,$ $y$ ,

$V_{1},$ $V_{2},$ $V_{3}$ and $a>0,$ $\beta>0,$ $\gamma>0,$ $a+\beta+\gamma<1$ . Then $T_{1}$ and $T_{2}$ have a unique
common fixed point.

Theorem 3.5. Let $T_{1}$ and $T_{2}$ be two operators on $X$ such that for any three
members $V_{1},$ $V_{2},$ $V_{3}$ in $\ovalbox{\tt\small REJECT}\nearrow$ and $x,$ $y$ in $X$

$(T_{1}x, T_{2}y)e$ a $V_{1}\circ\beta V_{2}\circ\gamma V_{8}$ ,

if $(y, T_{1}x)eV_{1},$ $(x, y)eV_{2}$ , $(x, T_{2}y)\in V_{8}$ where $\alpha,$
$\beta,$

$\gamma$ are independent of $x,$ $y$ ,
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$V_{1},$ $V_{2},$ $V_{8}$ and $\alpha>0,$ $\beta>0,$ $\gamma>0,$ $a+\beta+\gamma<1$ . Then $T_{1}$ and $T_{2}$ have a unique

common fixed point.
The proof is similar to that of Th. 3.4.
Corollary 3.5.1 Let $T_{1}$ and $T_{2}$ be two operators on $X$ and $p,$ $q$ be two

positive integers such that for any three members $V_{1},$ $V_{2},$ $V_{8}$ in $\ovalbox{\tt\small REJECT}$ and $x,$ $y$ in $X$,

$(T_{1}^{p}x, T_{2}^{q}y)e\alpha V_{1^{O}}\beta V_{2^{\circ}}\gamma V_{8}$ ,

if $(y, T_{1}^{p}x)eV_{1},$ $(x, y)eV_{2},$ $(x, T_{2}^{q}y)eV_{8}$ where $\alpha,$
$\beta,$

$\gamma$ are independent of $x,$ $y$ ,

$V_{1},$ $V_{2},$ $V_{\epsilon}$ and $a>0,$ $\beta>0,$ $\gamma>0,$ $a+\beta+\gamma<1$ .
Then $T_{1}$ and $T_{2}$ have a unique common fixed point.

I am much indebted to Dr. P. C. Bhakta Jadavpur University, for his kind
help and guidance in the preparation of this paper.
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