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1. Introduction

In [4] Takahashi has proved the following theorem. Let $S$ be a set, $R$ a
ring of subsets of $S,$ $\varphi(R)$ the $\delta$-ring generated by $R,$ $G$ a complete, Hausdorff,
commutative topological group and $m:R\rightarrow G$ a measure. If $m$ has the $B-V$

property, then $m$ can be extended to uniquely a measure $m_{1}$ : $\varphi(R)\rightarrow G$ .
He also raised the following problem: Whether this theorem remains valid

if the $B-V$ property of $m$ is replaced by the locally s-boundedness of $m$ ? In this
paper we shall give the positive answer for the problem. These results are the
extensions of [6].

The author wishes to express his appreciation to Professor M. Takahashi for
his kindly advice.

2. Extension theorems

Let $S$ be a set, $R$ a ring of subsets of $S,$ $\varphi(R)$ the $\delta$-ring (that is, a ring
closed under countable intersection) generated by $R,$ $G$ a complete, Hausdorff,
commutative topological group and $u$ a base for neighborhoods of $0$ in $G$ , consisting
of closed symmetric sets.

Difinition 1. A set function $m:R\rightarrow G$ is called a measure if for every sequence
$\{E_{n}\}$ of mutually disjoint sets of $R$ such that $ E=\bigcup_{n=1}E_{n}eR\infty$ we have $m(E)=\sum_{n=1}^{\infty}m(E_{n})$ .

Deflnition 2. A measure $m:R\rightarrow G$ is called locally s-bounded if for every set
$EeR$ and every sequence $\{E_{n}\}$ of mutually disjoint sets of $R$ with $\bigcup_{n=1}^{\infty}E_{n}\subset E$ we
have $\lim_{n\rightarrow\infty}m(E_{n})=0$ . It is easy to show that if $R$ is a $\delta$-ring, then every measure
$m:R\rightarrow G$ is locally s-bounded.

Theorem 1. If $m:R\rightarrow G$ is locally s-bounded, then $m$ can be extended to
uniquely a measure $m_{1}$ : $\varphi(R)\rightarrow G$ .

Proof. Only the outline of the proof will be given here, since further
complementation is quite easy (for example, see [3] or [6]).
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We put $\tilde{R}=$ { $\bigcup_{=1}E_{n}\infty$ : $E_{n}\in R(n=1,2,$ $\cdots)$ and $\infty\bigcup_{n=1}E_{n}\subset E$ for some set $EeR$}.

Then we have following.
$1^{o}$ . For every set $E=\bigcup_{n=1}^{\infty}E_{n}e\tilde{R}$ there exists a unique set function $\hat{m}$ : $\tilde{R}\rightarrow G$

such that $\lim_{\rightarrow\infty}m(\bigcup_{i=1}^{n}E_{\ell})=\hat{m}(E)$ .
We can prove in the same way as the proof of Lemma 1 of [4].

It follows that $2^{o}$ . $EeR\Rightarrow\hat{m}(E)=m(E)$

$E,$ $F\in\tilde{R}\Rightarrow\hat{m}(E\cup F)+\hat{m}(E\cap F)=\hat{m}(E)+\hat{m}(F)$ .
$3^{o}$ . For every set $E\in\tilde{R}$ and every neighborhood $Ueu$ there exists a set

$A$ $eR$ such that $A\subset E$ and for every set $BeR$ with $B\subset E-A$ we have $m(B)eU$.
In case $EeR$ , it is obvious. Suppose that $Ee\tilde{R}$ and $E\not\in R$ . If it were false,

then there exist a set $Ee\tilde{R}$ and a neighborhood $U\in u$ such that for every set
$A$ $eR$ with $A\subset E$ there exists a set $BeR$ with $B\subset E-A$ and $m(B)\not\in U$. We put

$ A=\phi$ . Then there exists a set $B_{1}\in R$ such that $B_{1}\subset E$ and $m(B_{1})\not\in U$. Next, we
put $A=B_{1}$ . Then there exists a set $B_{2}eR$ such that $B_{2}\subset E-B_{1}$ and $m(B_{2})\not\in U$.
Hence $ B_{1}\cap B_{2}=\phi$ . By induction there exists a sequence $\{B_{n}\}$ of mutually disjoint

sets of $R$ such that $B_{n}\subset B_{1}\cup B_{2}\cup\cdots\cup B_{n-1}$ and $m(B_{n})\not\in U$. By the locally s-
boundedness of $m$ we have $\lim_{n\rightarrow\infty}m(B_{n})=0$ . Therefore we have a contradiction.

We put $H=$ {$A\subset S:A\subset E$ for some set $EeR$}.
$4^{o}$ . For any fixed set $A\in H,$ $\Gamma(A)=\{Be\tilde{R}:A\subset B\}$ is a directed set, when we

write $B_{1}\leqq B_{2}$ if and only if $B_{1}\supset B_{2}$ , for $B_{1},$ $B_{2}e\Gamma(A)$ . The generalized sequence

$\{\hat{m}(B):Be\Gamma(A)\}$ is a Cauchy net in $G$ .
We can prove in the same way as the proof of Lemma 5.1 of [3].

$5^{o}$ . There exists a unique set function $m^{*}:$ $H\rightarrow G$ such that for every set
$A\in H$, every set $Be\Gamma(A)$ and every neighborhood $Ueu$ there exists a set $Ce\Gamma(A)$

with $C\subset B$ and $\hat{m}(C)-m^{*}(A)eU$.
By $4^{o}$ and the completeness of $G$ we put $m^{*}(A)=\lim\{\hat{m}(B):Be\Gamma(A)\}$ . Then

$m^{*}$ has the above property. It follows that $A\in R\Rightarrow m^{*}(A)=\hat{m}(A)=m(A)$ and

A $e\tilde{R}\rightarrow m^{*}(A)=\hat{m}(A)$ .
Definition 3. A set $A\subset S$ is measurable if and only if for every set $MeH$,

$m^{*}(M)=m^{*}(M\cap A)+m^{*}(M-A)$ .
Let $\Sigma$ be the class of measurable sets and $\Sigma_{0}=\Sigma\cap H$. Then we have the

following properties.
$6^{o}$ . (1) $\Sigma$ is an algebra of subsets of $S$ .
(2) $R\subset\Sigma_{0}$ and the set function $m^{*}$ is finitely additive on $\Sigma_{0}$ .
We can prove in the same way as the proof of Lemma 5.4 of [3].
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7’. $A_{n},$ $AeR,$ $A_{n}\uparrow A\Rightarrow\lim_{\rightarrow\infty}\hat{m}(A_{n})=\hat{m}(A)$ .
We can prove in the same way as the proof of Lemma 4.4 of [3].
$8^{o}$ . $\tilde{R}\subset\Sigma_{0}$ .
We can prove in the same way as the proof of Lemma 5.5 of [3].
$9^{o}$ . $A_{n},$ $AeH,$ $A_{n}\uparrow A\Rightarrow\lim_{n\rightarrow\infty}m^{*}(A_{n})=m^{*}(A)$ .
We can prove in the same way as the proof of Theorem 5.6 of [3].

10’. For every set $MeH$ and every sequence $\{A,.\}$ of mutually disjoint sets
of $\Sigma$ we have $m^{*}(M\cap\bigcup_{n=1}^{\infty}A_{n})=\sum_{n=1}^{\infty}m^{*}(M\cap A_{n})$ .

For disjoint sets $A$ , Be $\Sigma$ we have $m^{*}(M\cap(A\cup B))=m^{*}(M\cap(A\cup B)\cap A)$

$+m^{*}(M\cap(A\cup B)-A)=m^{*}(M\cap A)+m^{*}(M\cap B)$ . Therefore for finite sequence $\{A_{n}\}$

it is obvious.
Let $\{A_{n}\}$ be an infinite sequence. We put $B_{n}=M\cap\bigcup_{i=1}^{n}A$ . Then $B_{n}\in H$ and

$B_{n}\uparrow M\cap\infty\bigcup_{n=1}A_{n}$ . Therefore by $9^{o}$ $ m^{*}(M\cap\bigcup_{n=1}A_{n})=\lim_{n\rightarrow\infty}m^{*}(B_{n})=\lim_{n\rightarrow\infty}\sum_{i=1}^{n}m^{*}(M\cap A_{\ell})\infty$

$=\sum_{=1}^{\infty}m^{*}(M\cap A_{n})$ .
$11^{o}$ . The set function $m^{*}$ is countably additive on $\Sigma_{0}$ .
By $10^{o}$ it is obvious.
$12^{o}$ . $\Sigma$ i8 a $\sigma$-algebra of subsets of $S$ .
Let $\{A_{n}\}$ be a sequence of $\Sigma$ such that $A_{n}\uparrow A$ . For every set $MeH$ we have

$ m^{*}(M)=\lim_{n\rightarrow\infty}m^{*}((M\cap A_{n})\cup(M-A))=mi1\{m^{*}(M\cap A_{n})+m^{*}(M-A)\}n\rightarrow\infty$

$=m^{*}(M\cap A)+m^{*}(M-A)$ .
Then we have A $ e\Sigma$ .

$13^{o}$ . $\Sigma_{0}$ is a $\delta$-ring of subsets of $S$ .
It is obvious.
Since $R\subset\Sigma_{0}$ and $\Sigma_{0}$ is $\delta$-ring we have $\varphi(R)\subset\Sigma_{0}$ . Let $m_{1}$ be the restriction

of $m^{*}$ to $\varphi(R)$ . Then $m_{1}$ : $\varphi(R)\rightarrow G$ is a measure such that for every set AeR
$m_{1}(A)=m(A)$ . The uniqueness of $m_{1}$ is obvious by \S 2. Proposition6 of [1].

Definition 4. A measure $m:R\rightarrow G$ has the $B-V$ property if and only if for
every set $E\in R$ and every neighborhood $U\in u$ there exists a positive integer $N$

such that, for every finite sequence $\{E_{\ell}\}_{1\leq i\leqq N}$ of mutually disjoint sets of $R$

with $\cup E_{\ell_{i=1}}^{N}\subset E$ there exists a positive integer $i_{0}(1\leqq i_{0}\leqq N)$ such that $m(E_{\ell_{0}})eU$.
Theorem 2. If $m:R\sim G$ have $B-V$ property, then $m$ is locally s-bounded.

Proof. It is obvious.
For every set $V\subset G$ and every positive integer $k$ we Put
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$kV=\{\sum_{i=1}^{k}y_{\ell} : y_{\ell}\in V, i=1,2, \cdots, k\}$ .

Definition 5. A set $K\subset G$ is called bounded if for every neighborhood $Ueu$

there exists a positive integer $k$ such that $K\subset kU$.
Theorem 3. Suppone that $G$ has the following properties:
(1) every singleton set in $G$ is bounded.
(2) if $\{a_{n}\}$ is a sequence in $G$ such that $a.\not\in U(n=1,2, \cdots)$ for some neighbor-

hood $Ueu$ , then the set {$\sum_{\prime}a_{n_{r}}$ : $\{a_{n_{r}}\}$ is a finite subsequence of $\{a_{*}\}$ } is not bounded.

Then the following statements are equivalent.

(A) $m$ is locally $s\cdot bounded$ .
(B) for every set $EeR$ the set $\{m(F):F\subset E, FeR\}$ is bounded.

Proof. The proof of $(A)\Rightarrow(B)$ is obvious by Theorem 3.2.1 of [5].

$(B)\Rightarrow(A)$ . If it were false, then there exist a set $AeR$ , a sequence $\{A_{n}\}$ of

mutually disjoint sets of $R$ with $A_{n}\subset A$ and a neighborhood $Ueu$ 8uch that
$m(A_{n})\not\in U$ for all $n$ . By (2) the set {$\sum_{r}m(A_{nr}):\{m(A_{n_{r}})\}$ is a finite subsequence of

$\{m(A_{n})\}\}$ is not bounded. Therefore we have a contradiction.
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