TOPOLOGICAL-GROUP-VALUED MEASURES

By

SACHIO OHBA

(Received January 27, 1973)

1. Introduction

In [4] Takahashi has proved the following theorem. Let S be a set, R a ring of subsets of $S, \varphi(R)$ the δ -ring generated by R, G a complete, Hausdorff, commutative topological group and $m: R \rightarrow G$ a measure. If m has the B-V property, then m can be extended to uniquely a measure $m_1: \varphi(R) \rightarrow G$.

He also raised the following problem: Whether this theorem remains valid if the B-V property of m is replaced by the locally s-boundedness of m? In this paper we shall give the positive answer for the problem. These results are the extensions of [6].

The author wishes to express his appreciation to Professor M. Takahashi for his kindly advice.

2. Extension theorems

Let S be a set, R a ring of subsets of S, $\varphi(R)$ the δ -ring (that is, a ring closed under countable intersection) generated by R, G a complete, Hausdorff, commutative topological group and u a base for neighborhoods of 0 in G, consisting of closed symmetric sets.

Difinition 1. A set function $m: R \to G$ is called a measure if for every sequence $\{E_n\}$ of mutually disjoint sets of R such that $E = \bigcup_{n=1}^{\infty} E_n \in R$ we have $m(E) = \sum_{n=1}^{\infty} m(E_n)$.

Definition 2. A measure $m: R \to G$ is called locally s-bounded if for every set $E \in R$ and every sequence $\{E_n\}$ of mutually disjoint sets of R with $\bigcup_{n=1}^{\infty} E_n \subset E$ we have $\lim_{n \to \infty} m(E_n) = 0$. It is easy to show that if R is a δ -ring, then every measure $m: R \to G$ is locally s-bounded.

Theorem 1. If $m: R \to G$ is locally s-bounded, then m can be extended to uniquely a measure $m_1: \varphi(R) \to G$.

Proof. Only the outline of the proof will be given here, since further complementation is quite easy (for example, see [3] or [6]).

SACHIO OHBA

We put $\tilde{R} = \{ \bigcup_{n=1}^{\infty} E_n : E_n \in R \ (n=1, 2, \cdots) \text{ and } \bigcup_{n=1}^{\infty} E_n \subset E \text{ for some set } E \in R \}.$ Then we have following.

1°. For every set $E = \bigcup_{n=1}^{\infty} E_n \in \tilde{R}$ there exists a unique set function $\hat{m}: \tilde{R} \to G$ such that $\lim_{n \to \infty} m(\bigcup_{i=1}^{n} E_i) = \hat{m}(E)$.

We can prove in the same way as the proof of Lemma 1 of [4].

It follows that 2°. $E \in R \Longrightarrow \hat{m}(E) = m(E)$

$$E, F \in \tilde{R} \Longrightarrow \hat{m}(E \cup F) + \hat{m}(E \cap F) = \hat{m}(E) + \hat{m}(F)$$
.

3°. For every set $E \in \tilde{R}$ and every neighborhood $U \in u$ there exists a set $A \in R$ such that $A \subset E$ and for every set $B \in R$ with $B \subset E - A$ we have $m(B) \in U$. In case $E \in R$, it is obvious. Suppose that $E \in \tilde{R}$ and $E \notin R$. If it were false, then there exist a set $E \in \tilde{R}$ and a neighborhood $U \in u$ such that for every set $A \in R$ with $A \subset E$ there exists a set $B \in R$ with $B \subset E - A$ and $m(B) \notin U$. We put $A = \phi$. Then there exists a set $B_1 \in R$ such that $B_1 \subset E$ and $m(B_1) \notin U$. Next, we put $A = B_1$. Then there exists a set $B_2 \in R$ such that $B_2 \subset E - B_1$ and $m(B_2) \notin U$. Hence $B_1 \cap B_2 = \phi$. By induction there exists a sequence $\{B_n\}$ of mutually disjoint sets of R such that $B_n \subset B_1 \cup B_2 \cup \cdots \cup B_{n-1}$ and $m(B_n) \notin U$. By the locally s-boundedness of m we have $\lim_{n \to \infty} m(B_n) = 0$. Therefore we have a contradiction.

We put $H = \{A \subset S : A \subset E \text{ for some set } E \in R\}$.

4°. For any fixed set $A \in H$, $\Gamma(A) = \{B \in \tilde{R} : A \subset B\}$ is a directed set, when we write $B_1 \leq B_2$ if and only if $B_1 \supset B_2$, for $B_1, B_2 \in \Gamma(A)$. The generalized sequence $\{\hat{m}(B) : B \in \Gamma(A)\}$ is a Cauchy net in G.

We can prove in the same way as the proof of Lemma 5.1 of [3].

5°. There exists a unique set function $m^*: H \to G$ such that for every set $A \in H$, every set $B \in \Gamma(A)$ and every neighborhood $U \in u$ there exists a set $C \in \Gamma(A)$ with $C \subset B$ and $\hat{m}(C) - m^*(A) \in U$.

By 4° and the completeness of G we put $m^*(A) = \lim \{\hat{m}(B) : B \in \Gamma(A)\}$. Then m^* has the above property. It follows that $A \in R \Longrightarrow m^*(A) = \hat{m}(A) = m(A)$ and $A \in \tilde{R} \Longrightarrow m^*(A) = \hat{m}(A)$.

Definition 3. A set $A \subset S$ is measurable if and only if for every set $M \in H$, $m^*(M) = m^*(M \cap A) + m^*(M-A)$.

Let Σ be the class of measurable sets and $\Sigma_0 = \Sigma \cap H$. Then we have the following properties.

6°. (1) Σ is an algebra of subsets of S.

(2) $R \subset \Sigma_0$ and the set function m^* is finitely additive on Σ_0 .

We can prove in the same way as the proof of Lemma 5.4 of [3].

102

7°. $A_n, A \in \mathbb{R}, A_n \uparrow A \Longrightarrow \lim \hat{m}(A_n) = \hat{m}(A).$

We can prove in the same way as the proof of Lemma 4.4 of [3]. 8°. $\tilde{R} \subset \Sigma_0$.

We can prove in the same way as the proof of Lemma 5.5 of [3].

9°. $A_n, A \in H, A_n \uparrow A \Longrightarrow \lim m^*(A_n) = m^*(A).$

We can prove in the same way as the proof of Theorem 5.6 of [3].

10°. For every set $M \in H$ and every sequence $\{A_n\}$ of mutually disjoint sets of Σ we have $m^*(M \cap \bigcup_{n=1}^{\infty} A_n) = \sum_{n=1}^{\infty} m^*(M \cap A_n)$.

For disjoint sets $A, B \in \Sigma^{n=1}$ we have $m^*(M \cap (A \cup B)) = m^*(M \cap (A \cup B) \cap A)$ $+ m^*(M \cap (A \cup B) - A) = m^*(M \cap A) + m^*(M \cap B)$. Therefore for finite sequence $\{A_n\}$ it is obvious.

Let $\{A_n\}$ be an infinite sequence. We put $B_n = M \cap \bigcup_{i=1}^n A_i$. Then $B_n \in H$ and $B_n \uparrow M \cap \bigcup_{n=1}^{\infty} A_n$. Therefore by 9° $m^*(M \cap \bigcup_{n=1}^{\infty} A_n) = \lim_{n \to \infty} m^*(B_n) = \lim_{n \to \infty} \sum_{i=1}^n m^*(M \cap A_i)$ = $\sum_{n=1}^{\infty} m^*(M \cap A_n)$.

11°. The set function m^* is countably additive on Σ_0 .

By 10° it is obvious.

12°. Σ is a σ -algebra of subsets of S.

Let $\{A_n\}$ be a sequence of Σ such that $A_n \uparrow A$. For every set $M \in H$ we have

$$m^*(M) = \lim_{n \to \infty} m^*((M \cap A_n) \cup (M-A)) = \min_{n \to \infty} \{m^*(M \cap A_n) + m^*(M-A)\}$$
$$= m^*(M \cap A) + m^*(M-A).$$

Then we have $A \in \Sigma$.

13°. Σ_0 is a δ -ring of subsets of S.

It is obvious.

Since $R \subset \Sigma_0$ and Σ_0 is δ -ring we have $\varphi(R) \subset \Sigma_0$. Let m_1 be the restriction of m^* to $\varphi(R)$. Then $m_1: \varphi(R) \to G$ is a measure such that for every set $A \in R$ $m_1(A) = m(A)$. The uniqueness of m_1 is obvious by §2. Proposition 6 of [1].

Definition 4. A measure $m: R \to G$ has the B-V property if and only if for every set $E \in R$ and every neighborhood $U \in u$ there exists a positive integer Nsuch that, for every finite sequence $\{E_i\}_{1 \le i \le N}$ of mutually disjoint sets of Rwith $\bigcup E_i \subset E$ there exists a positive integer $i_0(1 \le i_0 \le N)$ such that $m(E_{i_0}) \in U$.

Theorem 2. If $m: R \rightarrow G$ have B - V property, then m is locally s-bounded. **Proof.** It is obvious.

For every set $V \subset G$ and every positive integer k we put

SACHIO OHBA

$$k V = \{ \sum_{i=1}^{k} y_i : y_i \in V, \quad i=1, 2, \dots, k \}.$$

Definition 5. A set $K \subset G$ is called bounded if for every neighborhood $U \in u$ there exists a positive integer k such that $K \subset kU$.

Theorem 3. Suppose that G has the following properties:

(1) every singleton set in G is bounded.

(2) if $\{a_n\}$ is a sequence in G such that $a_n \notin U$ $(n=1, 2, \cdots)$ for some neighborhood $U \in u$, then the set $\{\sum_r a_{n_r}: \{a_{n_r}\}\)$ is a finite subsequence of $\{a_n\}\)$ is not bounded. Then the following statements are equivalent.

(A) m is locally s-bounded.

(B) for every set $E \in R$ the set $\{m(F): F \subset E, F \in R\}$ is bounded.

Proof. The proof of $(A) \Longrightarrow (B)$ is obvious by Theorem 3.2.1 of [5].

 $(B) \Longrightarrow (A)$. If it were false, then there exist a set $A \in R$, a sequence $\{A_n\}$ of mutually disjoint sets of R with $A_n \subset A$ and a neighborhood $U \in u$ such that $m(A_n) \notin U$ for all n. By (2) the set $\{\sum_r m(A_{nr}) : \{m(A_{nr})\}\)$ is a finite subsequence of $\{m(A_n)\}\}$ is not bounded. Therefore we have a contradiction.

REFERENCES

- [1] N. Dinculeanu, Vector Measures, Pergamon Press, New York. 1967.
- [2] G.G. Gould, Extensions of vector-valued measures, Proc. London Math. Soc. 16 (1966) 685-704.
- [3] M. Sion, Outer measures with values in a topological group, Proc. London Math. Soc. 19 (1969) 89-106.
- [4] M. Takahashi, On topological-additive-group-valued measures, Proc. Japan Acad. 42 (1966) 330-334.
- [5] T. Traynor, s-bounded additive set functions, Vector and Operator Valued Measures and Applications, Academic Press, New York 1973 (p. 355-p. 365).
- [6] S. Ohba, Extensions of vector measures (Japanese), Sūgaku, 24 (1972) 215-217.

Kanagawa University Rokkaku-bashi, Kanagawa-ku Yokohama, Japan.

104