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1. Introduction

It is well-known that, by the famous combinatorial prebundle theory [3] and
the block bundle theory [4], we are able to study many manifolds with some lower
dimensional manifolds as their spines from their spines. Some manifolds, however,
do not have any manifolds as spines. The main purpose of this paper is to find
something like above bundle structures for manifolds with some polyhedra as their
spines. Such bundle-like structures are called singular block bundles (block bundles
with singularity). Briefly speaking, the base spaces of singular block bundles are
fake manifolds which are not necessarily manifolds) and the total spaces of them
are manifolds. Hence, of course, the fibers of the singular block bundles are a
bit complicated. One of the reasons why we consider about such singular block
bundles is to pick up the ‘ standard collapsings” among so many collapsings of
manifolds to the given spines to realize the ” inverse images” of the collapsings
with respect to some sub-polyhedra of the spines geometrically. This problem is
raised by H. Noguchi in our seminar held by All Japan Combinatorial Topology
Study Group.

In \S 2, some well-known propositions are stated.
In \S 3, we define the blocks which are the same objects as those of combina-

torial prebundles and obtain some natural properties of blocks.
The n-dimensional fiber-set $\Phi^{n}$ is introduced in \S 4. $\Phi^{n}$ is the set consisting

of three Polphedra $J^{n},$ $Y^{n}$ and $X^{n}$ , each of which is a homogeneous n-dimensional
polyhedron with simple shape. When we define the singular block bundles later,
the fibers of the blocks are chosen in $\Phi^{n}$ .

The most difficult problem we have to deal with lies in \S 5. We define fake
manifolds which extends the concept of fake surfaces introduced in [2] naturally.
The fake 8urfaces are fake 2-manifold in this definition. The problem mentioned
above is to characterize a pair of simplexes of a simplicial complex whose underlying
polyhedron is a fake manifold. Remark that we assume $\mathfrak{S}_{r}(P)=\emptyset$ for any fake
manifold $P$ throughout this paper (for the numbering of the singularity of a fake
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manifold, see Definition 6, it is a bit different from one in [2]). This assumption

may be allowed, because it does not give any restrictions on manifolds which we
want to deal with as total spaces.

In \S 6, we can define the singular block bundles over fake manifolds. The
blocks are determined according to which singularity of fake manifolds the simplexes

(the base of blocks) are contained in. $Threm1$ states a relation between the

combinatorial prebundles, the block bundles and the singular block bundles. And,

we obtain the required property of the singular block bundles in Theorem 2.

Theorem 2. The total $\epsilon pace$ of a singular block bundle is a manifold which
$collap\epsilon es$ to the base space.

In \S 7, we study about the regular neighborhoods of “ locally unknotted fake

manifolds” in manifolds. And, we obtain the following theorem.

Theorem 4. Let $P$ be a locally unknotted fake $p- man\dot{j}fold$ properly embedded
in a q-manifold V. Then, the regular neighborhood of $P$ in $V$ meeting the
boundary regularly $\dot{j}S$ a singular block bundle over $P$ with fiber-set $\Phi^{q-}$ .

Furthermore, for 3-manifold, we obtain the following.

Theorem 5. Let $V$ be a 3-manifold with boundary. Then, there exists a
closed fake surface $P$ such that $ Vi\epsilon$ a $S\dot{j}ngular$ block bundle over $P$ with fiber-
set $\Phi^{1}$ .

The author thanks all the members of All Japan Combinatorial Topology

Study Group for their kind suggestions and discussions.

2. Preliminaries

In this section, some elementary materials are stated. And, for the other
general properties, refer [51.

For a polyhedron $P$, we define the boundary $\dot{P}$ of $P$ to be the union of the
(closed) free faces of $P$ with respect to the polyhedral collapsings of $P$, that is $\dot{P}$

is the union of the balls contained in $P$ from which we can collapse $P$. And, the

interior $\mathring{P}$ of $P$ is defined by $P=P-\dot{P}$. We say that a polyhedron $P$ is closed
when the boundary $\dot{P}$ is empty.

For a sub-polyhedron $Q$ of a polyhedron $P$, we say that $Q$ is Proper in $P$

when $Q$ satisfies $Q\cap P=\dot{Q}$ .
. For a simplicial complex $K$, we define the boundary $\dot{K}$ to be the union of

the (closed) free faces with respect to the simplicial collapsings of $K$ and their

faces. Then, by the same way, we can define the interior $\mathring{K}$ of $K$, and the others,
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that is, the closed simplicial complex and the proper sub-complex.
Here, we write two well-known propositions.

Proposition 1. Let $P$ and $K$ be a polyhedron and a $simpli_{t\dot{l}}al$ complex,
$respect_{\dot{j}}vely$ . Then, the boundaries $\dot{P}$ and $\dot{K}$ are a sub-polyheclron of $P$ and a
$\epsilon u$ -complex of $K$, respectively.

For a simplicial complex $K$, let $|K|$ denote the underlying polyhedron of $K$.
Then, we have the following.

Proposition 2. Let $K$ be a simplicial complex. Then, we obtain $|\dot{K}|=(|K|)$ ,
that is, the underlying polyhedron of the boundary is the bounnary of the
underlying polyhedron.

3. The blocks.

As is usual, we start with the definition of the blocks, which are the same
obiects as those introduced in the combinatorial pre-bundles (cf. [3]). And fur-
thermore, the sub-blocks and the restricted blocks of the blocks are also defined.

Deflnition 1. (The blocks) Let $F$ be a polyhedron and $A$ an n-simplex. We
define the block $F_{A}$ over $A$ with fiber $F$ to be the polyhedron $A\times F$.

In the above definition, it should be understood that the block $F_{4}$ is empty
when either the simplex $A$ or the fiber $F$ is empty.

Definition 2. (The sub-blocks) Let a block $F_{4}$ be given and let $G$ be a sub-
polyhedron of $F$. We define the sub-block $(F|G)_{A}$ of the block $F_{A}$ with respect to
$G$ to be the sub-polyhedron of $F_{A}$ determined by

$(F_{A}, (F|G)_{4})=(A\times F, A\times G)$ .
The sub-block $(F|G)_{A}$ is said to be proper in the main block $F_{A}$ when $G$ is a

proper sub-polyhedron of $F$.
Deflnition 3. (The restricted blocks) Let a block $F_{A}$ be given and let $B$ be a

face of $A$ . We define the restricted block $(F_{A}|B)$ of the block $F_{4}$ on $B$ to be the
sub-polyhedron of $F_{A}$ determined by

$(F_{4}, (F_{A}|B))=(A\times F, B\times F)$ .
Note that the sub-blocks and the restricted ones are embedded in the respective

main blocks by the natural inclusion maps. And, from the definitions, it is clear
that the sub-blocks and the restricted ones are blocks by themselves. Accordingly,

the sub-block $(F|G)_{A}$ and the restricted one $(F_{A}|B)$ are sometimes denoted by $G_{A}$
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and $F_{B}$ respectively when there may be no confusion.
In the following, the boundary block of a block is introduced.

Deflnition 4. Suppose that a block $F_{A}$ is given. The special sub-block $(F|F)_{A}$

is called the boundary block of $F_{A}$ and is alway8 written $\dot{F}_{A}$ .
As is clearly $8\infty n$ , there is a difference between the boundary block and the

boundary of the block. And hence the boundary of the block $F_{A}$ is denoted by
$(F_{A})$ .

Here, we state some easy lemma8 about the concepts defined in this $8ection$ .
Lemma 1. Let $(F|G_{1})_{A}$ and $(F|G_{2})_{A}$ be two sub-blocks of a block $F_{A}$ . Put

$G_{1}\cap G_{2}=G_{\epsilon}$ . Then, we obtain

$(G_{1})_{A}\cap(G_{2})_{A}=(G_{8})_{A}$ ,

that is, the intersection of two sub-blocks is again a sub-block.

Lemma 2. Let $(F_{A}|B_{1})$ and $(F_{A}|B_{2})$ be two restricted bloeks of a block $F_{A}$ .
Put $B_{\iota}\cap B_{2}=B_{\epsilon}$ . Then, we obtain

$ F_{z_{1}}\cap F_{B_{2}}=F_{B}\epsilon$

that $ i\epsilon$ , the intersection of two restricted blocks is again a restricted block.
Now, the blocks have the natural maximal structures cohsisting of their sub-

block and the restricted ones. And, the structures of the sub-blocks and the
restricted ones are sub-structures of those of the main blocks.

Let us continue the lemmas. The following one shows the relation between
the sub-block of the restricted block and the restricted block of the sub-block of
a block.

Lemma 3. Let $(F|G)_{4}=G_{A}$ be a sub-block of a block $F_{A}$ and let $(F|G)_{B}$ be a
sub-block of the restricted block $(F_{A}|B)=F_{B}$ of a block $F_{A}$ on B. Then, we obtain

$(F|G)_{B}=(G_{A}|B)$ .
In the following, we show the relation between the boundary block and the

boundary of the block.

Lemma 4. Let $F_{A}$ be a block. Then, we ouain

$(F_{A})=\dot{F}_{A}\cup\bigcup_{B}(F_{A}|B)$ ,

where $B$ is a face of $A$ and $B\neq A$ .



SINGULAR BLOCK BUNDLES 83

4. The n-dimensional fiber-set $\Phi^{n}$ .
In this section, we introduce the concept of the n-dimensional fiber-set $\Phi^{n}$

consisting of three polyhedra each of which has a very simple shape as is seen in
the definition and plays a very important role within our singular block bundles
(defined later) because we choose the fibers of the blocks to be the sub-polyhedra
of the elements of $\Phi^{n}$ .

Deflnition 5. (The n-dimensional fiber-set $\Phi^{n}$) The set $\Phi^{n}=\{J^{n}, Y‘‘, X‘‘\}$ con-
sisting of the three n-dimensional homogeneous polyhedra $J^{*},$ $Y$“ and $X$“ which
are defined below is called the n-dimensional fiber-set.

(0) When $n=0$ , the elements $J^{0},$ $Y^{0}$ and $X^{0}$ of $\Phi^{0}$ are the sub-polyhedra of
$R^{2}$ defined by

$J^{0}=\{(-1,0), (1,0)\}$ ,

$Y^{0}=\{(-1,0), (0, -1), (1,0)\}$ ,

$X^{0}=\{(-1,0), (0, -1), (0,1), (1,0)\}$ .
(1) When $n=1$ , the elements $J^{1},$ $Y^{1}$ and $X^{1}$ of $\Phi^{1}$ are the sub-polyhedra of

$R^{f}$ defined by

$J^{1}=0*J^{0}$ ,

$Y^{1}=0*Y^{0}$ ,

$X^{1}=0*X^{0}$ ,

where $0$ denotes the origin of $R^{2}$ and the symbol $*$ means the ” join”. The
common point $0$ of the elements of $\Phi^{1}$ is called the center of them (or $\Phi^{1}$) and is
written $o(F)$ , where $F$ is an element of $\Phi^{1}$ , or iust $0$ .

(2) When $n\geqq 2$, the element $F$ ’ of $\Phi^{n}$ is defined inductively by

$F^{n}=F^{1}\times J^{n-1}$ ,

where, of course, $F$ is either $J$ or $Y$ or $X$. The common point $(o(F^{1}), o(J^{\prime-1}))$ of
the element $F$“ of $\Phi^{n}$ is called the center of $F$ (or $\Phi^{n}$) and is written $o(F$“$)$ or
$o(\Phi’)$ or just $0$ . And the sub-polyhedron $o(F^{1})\times J^{n-1}$ of $F$ “ is called the core of
$F$“ or $\Phi^{n}$ and is written core $(F$“

$)$ or core $(\Phi^{n})$ .
It is clear, from the definition, that $\Phi^{0}$ contains neither the center nor the

core, and, for $\Phi^{1}$ , it should be understood that the center and the core are the
same.

In the rest of this paper, whenever we say a polyhedron $F$ a fiber, $F$ is
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always a sub-polyhedron of an element of $\Phi^{n}$ for some $n$ . And, for a given fiber
$F$, any sub-polyhedron $G$ of $F$ is called a sub-fiber of $F$.

In the following, we make same definitions about the special sub-fiber8.

Definition 6. Let $F$ be an element of $\Psi$ and let $G$ be a sub-fiber of $F$.
(1) We say that $G$ is strongly proper in $F$ when $G$ is proper in $F$ and is

an n-dimensional homogeneous polyhedron.
(2) We say that $G$ is semi-proper in $F$ when $G$ is an n-ball obtained by

taking the closure of a connected component of $F-core(F)$ .
(3) We say that $G$ is trivial in $F$ when $G$ is the core of $F$.
A sub-fiber $G$ of an element $F$ of $\Phi^{n}$ is said to be normal in $F$ when $G$ is

either strongly proper or semi-proper or trivial or empty in $F$. And, we say that
a sub-block $(F|G)_{A}$ of a block $F_{4}$ is strongly proper or semi-proper or trivial in
$F_{A}$ according whether $G$ is strongly proper or semi-proper or trivial in $F$.
Similarly, when $G$ is normal in $F$, we say that the sub-block $(F|G)_{A}$ is normal
in $F_{4}$ .

Now, the following lemmas are trivial.

Lemma 5. Let $G_{1}$ and $G_{2}$ be two normal sub-fibers of an element $F$ Of $\Phi$ .
Then, the intersection $G_{1}\cap G_{2}$ is again a normal $ s\iota\emptyset$-fiber of $F$.

Hence, we obtain the following.

Lemma 6. Let $(F|G_{1})_{A}$ and $(F|G_{2})_{A}$ be two normal sub-blocks of a block $F_{A}$

with fiber $F$ in $\Phi$ . Then, the intersection $(F|G_{1})_{A}\cap(F|G_{2})_{A}$ is again a normal
sub-block of $F_{A}$ .

5. The base complexes.

In the first part of this section, we define the p-dimensional fake manifolds
which is a generalization of the concept of the fake surfaces introduced in [2],

that is, the fake surfaces are the fake 2-manifolds. And, we define the simplical
fake manifolds, written SFM, naturally. Most of this section is devoted to
characterize the relations between two 8implexes of an SFM as a preparation to
the definition of the singular block bundles in the next section in which the base
complexes are limited only to the SFM $s$ .

Let $St_{1}$ denote the standard p-ball in $R^{q}(q\geqq p+1)$ defined by

$St_{1}=\{(x_{1}, \ldots, x_{p}, 0, \ldots, 0)||x_{\ell}|\leqq 1\}$ .
And, let $B_{1},$ $B_{2}$ and $B$, be ($ p-1\rangle$-balls in $St_{1}$ deflned by
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$B_{1}=\{(x_{1}, \ldots, x_{p-1},0, \cdots, 0)||x_{i}|\leqq 1\}$ ,

$B_{2}=\{(x_{1}, \ldots, x_{p-2},0, x_{p}, 0, \cdots, O)||x|\leqq 1\}$ ,

$B_{\epsilon}=\{(x_{1}, \ldots, x_{p-1},0, \cdots, 0)||x|\leqq 1, x_{p-1}\geqq 0\}$ .
Let us define three $p$-balls $C_{1},$ $C_{2}$ and $C_{\epsilon}$ in $R^{q}$ by the followings.

$C_{1}=$ {$(x,$ $0,$ $x_{p+1},0,$ $\ldots,$ $O)|xeB_{1}$ , OS $x_{p+1}\leqq 1$} ,

$C_{2}=\{(x, 0, x_{p+1},0, \cdots, O)|xeB_{2}, -1\leqq x_{p+1}\leqq 0\}$ ,

$C_{s}=\{(x, 0, x_{p+1},0, \cdots, O)|xeB,, 0\leqq x_{p+1}\leqq 1\}$ .
Define the three polyhedra $St_{\ell},$ $i=2,3,4$ , as follows.

$St_{\ell}=St_{1}\cup\bigcup_{\dot{g}=1}^{i-1}C_{j}$ , $i=2,3$ .

$St=St_{1}\cup C_{\epsilon}$ .
Let $S^{p}$ denote the set of $St,$ $i=1,$ $\cdots,$

$4$ .
These are, clearly, the $p$-dimensional cases of those descibed in Fig. 1 in [2].

Fig. 1-1. Fig. 1-2.

Fig. 1-3.
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Deflnition 5. A polyhedron $P$ is said to be a fake p-manifold if, for any
point $x$ of $P,$ $st(x, P)$ belongs to the set $S^{p}$.

Following [2], we define the i-th singularity for a fake p-manifold. Let $x$ be
a point of a fake manifold $P$. Then, for $i=1,2,3,$ $x$ is said to be of type $i$ if
$st(x, P)$ is $St_{\ell}$ and $x$ is contained in the interior of $st(x, P)$ . And, $x$ is said to be
of type $i+3$ , if $st(x, P)=St$ and $x$ belongs to the boundary of $st(x, P)$ , for
$i=1,2,3$ . When $st(x, P)$ is $St,$ $x$ is said to be of type7.

Deflnition 6. For a fake manifold $P$, the closure of the set {$xe$ Plx is of
type $i$} is called the i-th singularity of $P$ and is written $\mathfrak{S}_{\ell}(P),$ $i=1,$ $\ldots,$

$7$ .
Remark. The numbering of the singularities of the fake surfaces is different

from one of [2], that is, for a fake surface $P$, the $6$-th singularity $\mathfrak{S}_{t}(P)$ of [2]

is the $7$-th singularity $\mathfrak{S}_{7}(P)$ in the above definition.
Now, we state two propositions concerning with the fake manifolds, which

are easily proved from the definition.

Proposition 3. Let $P$ be a fake p-maifold. Then, we obtain the following.
(1) The i-th singularity $\mathfrak{S}_{\ell}(P)$ is a homogeneous sub-polyhedron of $P$, for

$i=1,$ $\cdots,$
$7$ .

(2) $\mathfrak{S}_{1}(P)=P$.
(3) For $i=2,3,5,6,7,$ $\mathfrak{S}(P)$ is contained in $\mathfrak{S}_{2}(P)$ .
(4) When $\mathfrak{S}_{2}(P)\dot{j}S$ non-empty, $\mathfrak{S}_{2}(P.)$ is of $dimens\dot{j}onp-1$ .
(5) When $\mathfrak{S}_{\epsilon}(P)$ is non-empty, then $\mathfrak{S}_{\epsilon}(P)$ is $a(p-2)$-manifold.
Proof. The proofs are, as we mentioned, established by the standard way.

And, here, we give just a proof of the condition (5) as an example. For any

point $x$ of $\mathfrak{S}_{8}(P)$ , we have $st(x, P)=St_{1}\cup C_{1}\cup C_{2}$ from the definition. Then, it is
easy to see $st(x, \mathfrak{S}_{\epsilon}(P))=C_{1}\cap C_{2}$ . Hence, $\mathfrak{S}_{s}(P)$ is a $(p-2)$-manifold, because
$C_{1}\cap C_{2}=B_{1}\cap B_{2}$ is a $(p-2)$-ball.

Using the fact $st(x, P)=st(x, si(x, P))$ , we can prove the following proposition

easily.

Proposition 4. Let $P$ be a fake p-manifold. Suppose that the boundary $\dot{P}$

is non-empty. Then, $\dot{P}$ is a fake $(p-1)- man\dot{j}fold$ .
Following [2], let $U(P)$ and $M(P)$ denote the 3-rd derived neighborhood of

$\mathfrak{S}_{2}(P)$ in a fake manifold $P$ and the closure of the complement of $U(P)$ in $P$,

respectively. It is not difficult to see that the polyhedra $U(P)$ and $M(P)$ are
independent from the choice of the triangulation of $P$. Of course, $M(P)$ is a
p-manifold, if $P$ is of dimension $p$ . And note that $M(P)$ also denote the set of
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the connected components of the manifold $M(P)$ .
We do not develope, here, the general theory of the fake manifolds any more.

And, we go to the main problem in this section.
A simplical complex $K$ is said to be a simplicial fake $p$-manifold, denoted

by p-SFM, if the underlying polyhedron of $K$, written $|K|$ , is a (polyhedral) fake
p-manifold. Then, for an SFM $K$, we obtain naturally the sub-complex $\mathfrak{S}(K)$ of
$K$, called the i-th singularity of $K$, triangulating the i-th singularity $\mathfrak{S}(P)$ of
the fake manifold $P=|K|$ .

Let $K$ be an SFM. And, let $A$ be a simplex of $K$ and $C$ a face of $A$ . By
$D(A, C)$ , we denote the closure of the union of the connected components of

$|st(C, \mathfrak{S}_{\ell}(K))|-|st(C, \mathfrak{S}_{+1}(K))|$ ,

each of whose closures contains $A$ .
Deflnition 7. Let $K$ be an SFM. Let $A$ and $B$ be two simplexes of $K$

satisfying the condition $ A\cap B=C\neq\emptyset$ . We say that $A$ and $B$ belong to the same
side (in $K$), when $D_{1}(A, C)=D_{1}(B, C)$ .

For two simplexes $A$ and $B$ of an SFM $K$ satisfying $ A\cap B\neq\emptyset$ , we say that
$A$ and $B$ belong to the distinct sides (in $K$ ), when $A$ and $B$ do not belong to the
same side (in $K$).

For the set of pairs consisting of two simplexes of an SFM belonging to the
distinct sides, it is necessary to define the smaller sub-sets as follows.

Deflnition 8. Suppose that $A$ and $B$ are simplexes of an SFM $K$ belonging
to the distinct sides. Put $A\cap B=C$ and dim $K=p$ .

(1) We say that $A$ and $B$ are l-related (in $K$), if dim $(D_{1}(A, C)\cap D_{1}(B, C))$

$=p-2$ . (See Fig. 1-1)

(2) We say that $A$ and $B$ are 2-related (in $K$ ), if one of the following two
conditions is satisfied. (See Fig. 1-2)

(2-a) dim $(D_{1}(A, C)\cap D_{1}(B, C))=p-1$ .
(2-b) dim $(D_{2}(A, C)\cap D_{2}(B, C))=p-2$ .
(3) We say that $A$ and $B$ are 3-related (in $K$), if $A$ and $B$ are neither 1-

nor 2-related. (See Fig. 1-3).

Suppose that an SFM $K$ is given. Let $\Omega(K)$ denote the set of pairs $(A, B)$

consisting of two simplexes $A$ and $B$ of $K$ with $ A\cap B\neq\emptyset$ . Here, we define four
sub-sets $\Omega_{\ell}(K)$ of $\Omega(K),$ $i=1,$ $\ldots,$

$4$ , as follows–
(1) For $i=1,2,3,$ $\Omega_{\ell}(K)$ consists of the element $(A, B)$ such that $A$ and $B$

are i-related.
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(2) $\Omega(K)$ consists of the elements $(A, B)$ such that $A$ and $B$ belong to the
same side.

Lemma 7. Let $K$ be an SFM and $(A, B)$ an element of $\Omega(K)$ . Then, both
$A$ and $B$ are contained in either $K-\mathfrak{S}_{2}(K)$ or $\mathfrak{S}_{2}(K)-\mathfrak{S}_{\epsilon}(K)$ or $\mathfrak{S}_{\epsilon}(K)$ .

Proof. It is clear that there exist unique numbers $i$ and $j$ such that $\mathfrak{S}_{\ell}(K)$

$-Q_{\ell+1}(K)$ contains $A$ and $\mathfrak{S}_{j}(K)-Q_{j+1}(K)$ contains $B,$ $i,$ $j=1,2,3$ , where $Q_{\ell+1}(K)$

$=\mathfrak{S}_{+1}(K)$ if $i=1,2$ , and $ Q(K)=\emptyset$ . And, we have to show $i=j$ .
Case 1. Suppose $i=1$ and $j\geqq 2$ . Then, $A\cap B=C$ is contained in $\mathfrak{S}_{2}(K)$ . Let

us consider
$P=|st(C, K)|-|st(C, \mathfrak{S},(K))|$ .

Now, $P$ has at least two connected components, just one of which, say $E$, contains
$\mathring{A}$ , because $K-\mathfrak{S}_{2}(K)$ contains $A$ . Hence, we obtain $D_{1}(A, C)=\overline{E}$, that is, $D_{1}(A, C)$

is the closure of $E$. On the other hand, $D_{1}(B, C)$ contains at least two components
of $P$, because $B$ is contained in $\mathfrak{S}_{2}(K)$ . Thus, we obtain $D_{1}(A, C)\neq D_{1}(B, C)$ .

Case 2. Suppose $(i, j)=(2,8)$ . In this case, $C$ is contained in $\mathfrak{S}_{s}(K)$ and hence
$P$ has six connected components, iust three of which are contained in $D_{1}(A, C)$ .
On the other hand, we obtain $D_{1}(B, C)=P$. Hence, we see $D_{1}(A, C)\neq D_{1}(B, C)$ .
Thus, $(A, B)$ can not be an element of $\Omega(K)$ . This complete the proof.

By the similar argument to one used in the proof of Lemma 7, we have the
following lemmas.

Lemma 8. Let $K$ be an SFM and $(A, B)$ an element of $\Omega(K)$ . Suppose that
$A$ and $B$ are $conta\dot{j}ned$ in $\mathfrak{S}_{s}(K)$ . Then, $(A, B)$ is an element of $\Omega(K)$ .

Proof. It is clear, because, putting $C=A\cap B$ , we obtain $D_{1}(A, C)=st(C, K)$

$=D_{1}(B, C)$ .
Lemma 9. Let $K$ be an $SFM$. Suppose that $A$ and $B$ are simplexes of

$K$ and $\mathfrak{S}(K)-Q_{l+1}(K)$ contains $A$ and $B$ is contained in $\mathfrak{S}_{j}(K)-Q_{\ell+1}(K)$ ,
$i,$ $j=1,2,3$ , where $Q_{\ell+1}(K)=\mathfrak{S}_{\ell+1}(K)$ for $i=1,2$ , and $ Q_{4}(K)=\emptyset$ . Put $C=A\cap B$.

(1) If $(A, B)$ is an element of $\Omega_{1}(K)$ , then $i=1=j$ and $C$ is eontained in
$\mathfrak{S}_{\epsilon}(K)$ .

(2) If $(A, B)$ is an element of $\Omega_{2}(K)$ , then $i\neq 3\neq j$ and $ Ci\epsilon$ containe$d$ in
$\mathfrak{S}_{k}(K)$ where $k=\min(i, j)+1$ .

(8) If $(A, B)$ is an element of $\Omega_{\epsilon}(K)$ , then $i\neq j$ and $C$ is contained in
$\mathfrak{S}_{2}(K)$ .

Here, we have a proposition.
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Proposition 5. Let $K$ be an $SFM$. Then, we $obtain$ the following.
(1) $\Omega_{\ell}(K)\cap\Omega_{j}(K)=\emptyset$ , if $i\neq j$ .
(2) $\Omega(K)=\bigcup_{:=1}^{4}\Omega(K)$ .
Proof. (1) is easily seen from the above lemmas. To prove that $\Omega(K)$ is

contained in $\bigcup_{i=\iota}\Omega_{\ell}(K)$ , take an element $(A, B)$ of $\Omega(K)$ and put $C=A\cap B$ . There

exists a unique integer $i$ such that $\mathfrak{S}_{\ell}(K)-Q_{\ell+1}(K)$ contains $C,$ $i=1,2,3$ . Then,

considering the star of $C$ in a suitable sub-complex $\mathfrak{S}_{j}(K)$ , we obtain $D_{j}(A, C)$ and
$D_{j}(B, C)$ and hence we can find the sub-set $\Omega_{k}(K)$ of $\Omega(K)$ containing the pair

$(A, B)$ .
Proposition 6. Let $K$ be an SFM and $K_{1}$ be a sub-division of K. And, let

$(A, B)$ and $(A_{1}, B_{1})$ are elements of $\Omega_{\ell}(K)$ and $\Omega_{j}(K_{1})$ , respectively. Putting

$C=A\cap B$ and $C_{\iota}=A_{1}\cap B_{1}$ , suppose that $A_{1},\mathring{B}_{1}$ and $b_{1}$ are contained in $\mathring{A},\mathring{B}$ and
$\delta$, respectively. Then, we obtain $i=j$ .

Proof. It is not hard to prove, because, making use of the pseudo radial
projection, we can find

dim $(D_{\ell}(A, C)\cap D_{\ell}(B, C))=\dim(D_{\ell}(A_{1}, C_{1})\cap D(B_{1}, C_{1}))$ .
Now, remember that we assumed $\mathfrak{S}_{\tau}(P)=\emptyset$ for any fake manifold $P$ considered

in this paper as mentioned in the introduction (for the numbering of the singu-

larities of $P$, recall Definition 6 and its remark). Then, it is clearly seen that
this assumption implies the same condition that $\mathfrak{S}_{7}(K)$ is empty for any SFM $K$

(in this paper).

In this situation, let us review Proposition 4 as follows.

Proposition 4’. Let $K$ be a p-SFM with non-empty boundary K. Then, $\dot{K}$

is a closed $(p-1)$-SFM and we obtain
$\mathfrak{S}(\dot{K})=\mathfrak{S}_{\ell}(K)\cap\dot{K}$ .

for $i=1,2,3$ .
Proof. It is immediate from the facts that

$\mathfrak{S}(K)\cap\dot{K}=\mathfrak{S}_{+\theta}(K)$ ,

$\mathfrak{S}_{+3}(K)=\mathfrak{S}(\dot{K})$ ,

for $i=1,2,3$ .
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6. The singular block bundles.

In this section, we make the definition of the singular block bundles and
state some basic theorems about them.

Definition 9. (The singular block bundles) Let $K$ be an SFM with dimension
$k$ , and let $\Phi^{n}$ the n-dimensional fiber-set. Then, $B_{k}^{n}(K)$ is defined to be the set
of the polyhedra $\eta$ satisfying the following three conditions (1), (2) and (3).

(1) For any simplex $A$ of $K$, there exists a block $F_{A}$ uniquely, called the
block of $\eta$ , whose fiber $F$ is chosen in $\Phi^{n}$ as follows.

$\left\{\begin{array}{l}F=J, when A belongs to K-\mathfrak{S},(K),\\F=Y^{n}, when A belongs to \mathfrak{S}_{z}(K)-\mathfrak{S}_{\epsilon}(K) ,\\F=X ‘‘, when A belongs to \mathfrak{S}_{s}(K).\end{array}\right.$

(2) $\eta$ is a polyhedron satisfying

$\eta=\bigcup_{AeK}F_{A}$ ,

that is, $\eta$ is the union of the blocks of $\eta$ , where the simplex $A$ of the SFM $K$

should be identified with $A\times o(F)$ of the block $F_{A}$ .
(8) (The intersections of the blocks of $\eta$)

Let $A,$ $B$ and $C$ be the simplexes of $K$ with $A\cap B=C$, and $(F_{1})_{A},$ $(F_{l})_{B}$ and
$(F_{\epsilon})_{G}$ the blocks of $\eta$ over $A,$ $B$ and $C$, respectively. Then, the intersection

$(F_{1})_{A}\cap(F_{2})_{B}=((F_{\iota})_{A}|C)\cap((F_{2})_{B}|C)$ ,

and there exist strongly proper sub-blocks $(F_{\iota})_{0}$ and $(F_{2})_{C}$ of $(F_{\epsilon})_{0}$ satisfying
$(F_{1})_{C}=((F_{1})_{A}|C)$ ,
$(F_{2})_{0}=((F_{2})_{B}|C)$ .

Furthermore, we require the following three conditions from (a) through (c). (See
Fig. 2)

(a) When the pair $(A, B)$ is an element of $\Omega_{1}(K),$ $(F_{1})_{0}\cap(F_{1})_{0}$ should be a
trivial sub-block of $(F_{t})_{0}$

(b) When the pair $(A, B)$ is an element of $\Omega_{2}(K)\cup\Omega,(K),$ $(F_{1})_{0}$ and $(F_{t})_{0}$ are
different as sub-blocks of $(F_{\epsilon})_{0}$ .

(c) When the pair $(A, B)$ is an element of $\Omega(K),$ $(F_{\iota})_{0}$ and $(F,)_{0}$ are the
same sub-blocks of $(F_{t})_{C}$ .

An element of the set $B_{k}^{n}(K)$ is called an $(n, k)$-singular uock bundle over
the SFM $K$. Sometimes, if there is no confusion, we call it simply a block bundle
or ju8t a bundle.
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Fig. 2-1.

Fig. 2-2.

Fig. 2-3.

Now, we define the restricted bundles of an element of $B_{k}^{n}(K)$ on the subsets
of the SFM $K$.

Deflnition 10. Let $L$ be a sub-set of an SFM $K$, that is, $L$ is just a set of
simplexes of $K$, and let $\eta$ be an element of $B_{k}^{n}(K)$ . Then, the restrided bundle
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of $\eta$ on $L$ is defined by

$(\eta|L)=\bigcup_{AeL}F_{A}$ ,

that is, the restricted bundle $(\eta|L)$ is the union of the blocks $F_{A}$ of $\eta$ with $A$ in $L$ .
Remark. In Definition 10, it should be remarked that $L$ is not necessarily

an SFM and is not even a sub-complex of $K$. And, in general, the restricted
bundles may not be singular block bundles, even if the sub-set is an SFM.

Now, the isomorphism and the equivalence of the singular block bundles are
defined naturally.

Deflnition 11. Suppose that $\eta_{1}$ and $\eta_{2}$ are two elements of $B_{b}^{n}(K)$ . Then, we
say that $\eta_{\iota}$ and $\eta_{2}$ are isomorphic, denoted by $\eta_{1}\approx\eta_{2}$ , whenever there exists a
homeomorphism from $\eta_{1}$ onto $\eta_{2}$ which is the identity on $K$ and sends the blocks
of $\eta_{1}$ onto those of $\eta_{2}$ .

Deflnition 12. Let $K_{1}$ denote a sub-division of an SFM $K$. Suppose that $\eta$

and $\eta_{1}$ are elements of $B_{k}^{n}$ and $B_{k}^{n}(K_{1})$ , respectively. Then, we say that $\eta_{1}$ is a
sub-division of $\eta$ , whenever, for any block $F_{A}$ of $\eta$ over a simplex $A$ of $K$, we
obtain

$F_{A}=\bigcup_{B}F_{B}$ ,

where $F_{B}$ is the block of $\eta_{1}$ over a simplex $B$ of $K_{1}$ such that $ B\circ$ is contained in $A^{O}$ .
Deflnition 13. Suppose that $\alpha$ and $\beta$ are elements of $B_{k}^{n}(K)$ and $B_{k}^{n}(L)$ ,

respectively, and $|K|=|L|$ . Then, we say that $\alpha$ and $\beta$ are equivalent, written
$\alpha\sim\beta$ , whenever there exist sbu-divisions $\alpha_{1}$ and $\beta_{1}$ of $\alpha$ and $\beta$ , respectively, with
$\alpha_{1}\approx\beta_{1}$ .

Kato proved the following in [3].

Theorem A. Let $\eta$ be a prebundle over a complex L. If $K$ is collapsible,
then $\eta$ is trivial as a prebundle.

Applying a similar argument to that he used in [3], we are able to obtain
the following propositions.

Proposition 7. Let $\eta$ be an $(F, 0)$-prebundle over $K$ with $F$ in $\Phi^{n}$ and $K_{\iota}a$

sub-division of K. Then, there exists a sub-division of $\eta$ over $K_{1}$ .
Corollary to Proposition 7. Suppose that $\eta$ is an $(F, 0)$-prebundle over $K$

with $F$ in $\Phi$ and $|K|$ is $\iota ollap_{S\dot{j}}ble$ . Then, $\eta$ is trivial as a prebundle.

Proof. Assuming Proposition 7, we obtain a proof by the same way as in [8].
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Proposition 8. Let $\eta$ be an $(F, 0)$-prebundle over $Kw$ith $F$ in $\Phi$ and $K_{1}a$

sub-division of K. Suppose that $\eta_{1}$ and $\eta_{2}$ are two sub-divisions of $\eta$ over $K_{1}$ .
Then, there exists an isomorphism between $\eta_{1}$ and $\eta_{2}$ which is isotopic to the
identity as a homeomorphism of $\eta$ onto itself keeping $K$ fixed.

Proof. The proof of Proposition 7 (Corollary to Proposition 7) and Proposition
8 almost parallels that of [3] or [4]. It goes by induction of $k=\dim K$. If $k=0$ ,
there is nothing to prove. And, if $F=J$ , they are already proved in [3] and [4].
So, we may assume that $F$ is either $Y$ or $X$“. First of all, note the following

statement $(^{*})$ .
$(^{*})$ Suppose that $A$ is a simplex and $h$ is a homeomorphism of $F\times A$ onto

itself. Then, we have

$h(core(F)\times A)=core(F)\times A$ .
A proof of $(^{*})$ may be obtained easily. Let us consider the connected components
$E_{\ell}^{\prime}$ of $F\times A$ -core $(F)\times A$ . Then, the closure $E_{\ell}$ of $E_{i}^{\prime}$ is a ball with a common
face core $(F)\times A$ . Furthermore, we can regard $E_{\ell}$ as core $(F)\times A\times I$, because $F$

is either core $(Y^{n})\times Y^{1}$ or core $(X^{n})\times X^{1}$ and $I$ is chosen to be a semi-proper sub-
fiber of $Y^{1}$ or $X^{1}$ . We show that any homeomorphism $f$ from $F\times A$ onto itself
can be extended to a homeomorphism $g$ from $F\times A$ onto itself which is isotopic

to the identity keeping $A$ fixed provided that $f$ is isotopic to the indentity keeping
$A$ flxed. Let us consider the restriction $f_{\iota}$ of $f$ on core $(F)\times A$ . Since $f_{1}$ is
isotopic to the identity keeping $A$ fixed and core $(F)\times A$ is a $(J-10)$-prebundle
over $A$ , we can extend $f_{1}$ to a homeomorphism of core $(F)\times A$ onto itself which
is isotopic to identity keeping $A$ fixed. This extension is written $f_{2}$ . Then, $f$, can
be extended to a homeomorphism $f_{\ell 8}$ of $E$ onto itself which $i_{8}$ isotopic to the
identity, because $F\times A\cup core(F)\times A$ is an $(n+k-1)$-face of the $(n+k)$-ball $E_{\ell}$ .
Now, combining $f_{\ell 8}$ , we obtain the required homeomorphism $g$ . And, the required
isotopy is also obtained, because the isotopies in the above extension steps can be
chosen to be the extensions of the formers. Then. the rest of the proof is not
hard to see, using the $8keleton$-wise extension argument.

From the above propositions, we obtain the existence and uniqueness of sub-
division of singular block bundles as follows.

Proposition 9. (a) Let $\eta$ be an element of $B_{k}^{n}(K)$ and $K_{\iota}$ a sub-division of
K. Then, there exists a sub-division of $\eta$ in $B_{k}^{n}(K_{1})$ .

(b) Let $\eta_{1}$ and $\eta_{2}$ be elements of $B_{k}^{n}(K_{\iota})$ . If $\eta_{\iota}$ and $\eta$, are sub-divisions of
$\eta$ , then there exists an $\dot{j}somorphism$ between $\eta_{1}$ and $\eta_{2}$ which is isotopic to the
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identdy keeping $K$ fixed.

Proof. Let $A$ be a simplex of $K$. Then, it is known that the restricted
bundle $(\eta|A)$ of $\eta$ on $A$ can be regarded as an $(F, 0)$ -preblundle by the natural
structure defined below. Note that $(\eta|A)$ is the block $F_{A}$ of $\eta$ over $A$ . Let $B$

denote a proper face of $A$ . We define the block $F_{B}$ over $B$ to be the sub-block
of the block $G_{B}$ of $\eta$ over $B$ which appears as the intersection of $F_{A}$ and $G_{B}$ .
Thus, we can define the blocks over all the faces of $A$ . It is clear that they
together with $F_{A}$ make $(\eta|A)$ an $(F, 0)$-prebundle over $\overline{A}$ with $F$ in $\Phi^{n}$ , where $\overline{A}$

means the simplicial complex $con8isting$ of $A$ and its faces. We write this pre-
bundle $F(\overline{A})$ . Let $A_{1},$

$\cdots,$
$A_{n}$ be the simplexes of $K$ arranged in the order of

increasing dimension. Then, applyng Proposition 7 and Proposition 8 to $F(\overline{A}_{\ell})$ ,
we have the required properties by induction.

Since the isomorphisms and the equivalences of $(n, k)$-singular block bundles
are equivalenoe relations, we regard $B_{k}^{n}(K)$ and $B_{k}^{n}(|K|)$ as the sets of the
isomorphism classes and the equivalence classes of $(n, k)$-singular block bundles
over $K$, respectively. When we write $B_{p}(P)$ for a fake p-manifold $P$, it always
means the set of the equivalence classes of the $(n, p)$-singular block bundles over
an SFM $K$ with $P=|K|$ .

Now, we easily obtain the following.

Proposition 10. The correspondence from $B_{k}^{n}(K)$ to $B_{k}^{n}(|K|)$ defined by
sending each $(n, k)$-singular block bundles to its equivalence class is a bijection.

Here, we introduce the notion of $8ub$-SFM in SFM.

Deflnition 14. Let $L$ be a sub-complex of an SFM $K$. Then, $L$ is said to be
a sub-SFM of $K$, when $L$ is an SFM and $\mathfrak{S}(L)-\mathfrak{S}_{\ell+1}(L)$ is contained in $\mathfrak{S}(K)$

$-\mathfrak{S}_{\ell+1}(K)$ for $i=1,2,3$ . (See Fig. 3).

We have a relation between our singular block bundles and the combnatorial
prebundles or the block bundles.

Fig. 3.
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Theorem 1. Let $\eta$ be an element of $B_{k}^{n}(K)$ . If @$2(K)$ is empty, then $\eta$ is a
combinatorial prebundle or a block bundle over $K$.

Proof. We can prove it directly and easily by comparing their definitions.
It is clearly seen that there exists a singular block bundle which is neither a

block bundle nor a prebundle. Conversely, a block bundle is a singular block
bundle. But there exists a combinatorial prebundle which is not a singular block
bundle.

For an element $\eta$ of $B_{k}^{n}(K)$ , we write the boundary of the singular block
bundle $\eta$ as $\dot{\eta}$ and the boundary of the polyhedron $\eta$ as $(\eta)$ .

Suppose that a polyhedron $P$ collapses to a proper sub-polyhedron $Q$ of $P$.
Put the collapsing $\alpha$ . We say that $\alpha$ is admissible if $\alpha$ is obtained by a collapsing
$\alpha_{1}$ followed by a second one $\alpha_{2}$ such that $\alpha_{1}$ is a collapsing of $P$ to $Q\cup N(\dot{Q},\dot{P})$

and $\alpha_{2}$ is one of Q U $N(\dot{Q},\dot{P})$ to $Q$ , where $N(\dot{Q},\dot{P})$ denotes a regular neighborhood
of $\dot{Q}$ in $\dot{P}$.

Lemma 10. Let $\eta$ be an element of $B_{k}^{n}(K)$ . Suppose that $(A, B)$ is an element
of $\Omega_{2}(K)$ and $C=A\cap B$. Let $(F_{1})_{A},$ $(F_{2})_{B}$ and $(F_{s})_{C}$ are the blocks of $\eta overA,$ $B$

and $C$, respectively.
(1) If $A$ and $B$ are contained in $\Subset_{2}(K)-\mathfrak{S}_{\epsilon}(K)$ , then $(F_{1})_{A}\cap(F_{2})_{B}\dot{j}\epsilon a$

strongly proper sub-block of $(F_{\epsilon})_{0}$ .
(2) If either $A$ or $B$ is not in $\mathfrak{S}_{2}(K)-\mathfrak{S}_{\epsilon}(K)$ , then, $(F_{1})_{A}\cap(F_{2})_{B}$ is a semi-

proper sub-block of $(F_{\epsilon})_{C}$ .
Proof. (1) We may regard $F_{1}$ and $F_{2}$ as $Y^{n}$ , because both $A$ and $B$ are

contained in $C\infty_{2}(K)-\mathfrak{S}_{\epsilon}(K)$ . And, by Lemma 9, $C$ is contained in $\mathfrak{S}_{S}(K)$ . Hence
$F_{\epsilon}=X$“. From the definition, $F_{1}$ and $F_{2}$ are different in $F_{\epsilon}$ . Then, it is clear
that $F_{1}\cap F_{2}=J$“, and hence we see that

$(F_{1})_{A}\cap(F,)_{B}=(J^{n})_{C}$ ,

$i_{8}$ a strongly proper $8ub$-block of $(X^{n})_{0}=(F_{\epsilon})_{C}$ .
(2) By the similar argument to the above, we obtain the result.

Lemma 11. Let $\eta$ be an element of $B_{k}^{n}(K)$ . Suppose that $(A, B)$ is an
element of $\Omega_{t}(K)$ and $C=A\cap B$ . Let $(F_{1})_{A},$ $(F_{2})_{B}$ and $(F_{\epsilon})_{0}$ are the blocks of $\eta$

over $A,$ $B$ and $C$, respectively. Then, either $(F_{1})_{C}=((F_{1})_{A}|C)$ or $(F_{2})_{0}=((F,)_{B}|C)$

equals to $(F_{\epsilon})_{0}$ .
Proof. It is not hard to prove by the $8imilar$ argument to one used in the

proof of Lemma 10.
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Here, we state a theorem which is essentially important in the singular block
bundle theory. It shows the difference between the combinatorial prebundles and
the singular block bundles.

Theorem 2. Let $\eta$ be an element of $B_{k}^{n}(K)$ .
(1) $\eta$ is an $(n+k)$-manifold in which $K$ is properly embedded.
(2) $(\eta)=(\eta|\dot{K})\cup\bigcup_{AeK}\dot{F}_{A}$ , where $F_{A}$ is the block of $\eta$ over $A$ .
(3) $\eta$ collapses to $K$ admissibly.

Proof. To show (1), it is sufficient to prove that $(\eta|st(v, K)-lk(v, K))=A$

is an $(n+k)$-ball.

Case 1. Suppose that $v$ is a vertex contained in $K-\mathfrak{S}_{2}(K)$ . Then, $st(v, K)$

is a k-ball and hence it is easily seen that $A$ is an $(n+k)$-ball.

Case 2. Suppose that $v$ is a vertex contained in $\mathfrak{S}_{2}(K)-\mathfrak{S}_{\epsilon}(K)$ . Let $E_{1},$ $E$,
and $E_{\epsilon}$ denote the closures of the connected components of

$|st(v, K)|-|st(v, \mathfrak{S}_{2}(K))|$ .
Then, $E$ can be regarded as a set of simplexes of $K-\mathfrak{S},(K)$ and is a k-ball.
Thus, $(\eta|E)$ is an $(n+k)$-ball for $i=1,2,3$ . On the other hand, $(\eta|st(v, \mathfrak{S}_{2}(K))$

$-lk(v, \mathfrak{S}_{2}(K)))$ is homeomorphic to $Y‘‘\times st(v, \mathfrak{S}_{2}(K))$ . And, $Y‘‘\times st(v, @_{t}(K))$ can
be written as $Y^{n}\times B^{k-1}$ , since $st(v, \mathfrak{S}_{2}(K))$ is a $(k-1)$-ball $B^{k-1}$ . Now, $Y^{*}\times B^{k-1}$

is disconnected into three components $E_{1}^{\prime},$ $E_{2}^{\prime}$ and $E_{3}^{\prime}$ where $E_{\ell}^{\prime}$ is an $(n+k-1)$-ball
with $Ei\cap E_{j}^{\prime}=core$ $(Y$“$)$ $\times B^{k-1}$ , that is, $E_{1}^{\prime},$ $E_{2}^{\prime}$ and $E_{8}^{\prime}$ are the $clo8ures$ of the con-
nected components of $Y^{n}\times B^{k-1}$ –core $(Y)\times B^{k-1}=(Y^{n}-core(Y))\times B^{k-1}$ . Now,

put $(\eta|E_{1})\cap(\eta|E_{2})=(\eta|E_{\iota})\cap(\eta|E_{2})=E_{1}^{\prime}$ . It is seen from the definition. Hence, it
is known that $A^{\prime}=(\eta|E_{1})U(\eta|E_{2})$ is an $(n+k-1)$-ball. And, then, $A^{\prime}\cap(\eta|E_{\iota})$

$=\dot{A}^{\prime}\cap(\eta|E_{\epsilon})=E_{2}^{\prime}\cup E_{s}^{\prime}$ again from the definition. Since $A=A^{\prime}\cup(\eta|E_{s}),$ $A$ must be
an $(n+k)$-ball.

Case $S$ . Suppose that $v$ is contained in $\mathfrak{S}_{\epsilon}(K)$ .
Step 1. In this case, there exist six connected components in

$|st(v, K)|-|st(v, \mathfrak{S},(K))|$ ,

each of whose closures is written $E,$ $i=0,$ $\ldots,$
$5$ , and the numbering of $E’ s$ is

chosen so that

$\left\{\begin{array}{ll}dim (E_{i}\cap E_{+j})=k-1, & j=1,2,\\dim (E_{l}\cap E_{\ell+},)=k-2 , & \end{array}\right.$
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Fig. 4.

where the numbers are taken by mod 6, (See Fig. 4). Then, $E$ is a k-ball for
$i=0,$ $\ldots,$

$5$ , and $E_{\ell}$ can be regarded as a set of simplexes of $K-\mathfrak{S},(K)$ . And, it
is known that $(\eta|E_{\ell})$ is an $(n+k)$-ball for $i=0,$ $\ldots,$

$5$ .
Step 2. Let us consider

$P=|st(v, \mathfrak{S}_{2}(K))|-|st(v, \mathfrak{S}_{\epsilon}(K))|$ .
Then, $P$ has four connected components and their closures $H_{i},$ $i=0,$ $\ldots,$

$3$ , are
$(k-1)$-balls satisfying

$H\cap H_{j}=\dot{H}_{\ell}\cap\dot{H}_{j}=st(v, \mathfrak{S}_{\epsilon}(K))$ ,

where $i\neq j$ and of course $st(v, \mathfrak{S},(K))$ is a $(k-2)$-ball. And, $H_{\ell}$ can be regarded
as a set of simplexes contained in $\mathfrak{S}_{2}(K)-\mathfrak{S}_{s}(K)$ and hence $(\eta|H)$ is $Y^{n}\times H_{\ell}$ . We
may assume the numbering of $H_{\ell}’ s$ as follows. (See Fig. 4)

$\left\{\begin{array}{ll}E_{0}\cap E_{\iota}=H_{0} . & E_{\iota}\cap E_{8}=H_{\iota} ,\\E_{8}\cap E=H_{2} , & E\cap E_{\iota}=H_{t}.\end{array}\right.$

Now $E_{\ell j}^{\prime},$ $j=1.2,3$ , is defined to be the closure of a connected component of
( $Y$“–core $(Y)$) $\times H$ . Of course, $E_{\ell j}^{\prime}$ is an $(n+k-1)$-balls.

Step 3. Put $A=(\eta|E_{0})U\cdots\cup(\eta|E_{\ell})$ . First, it is known that $A_{\iota}$ is an $(n+k)-$

ball, because both $(\eta|E_{0})$ and $(\eta|E_{1})$ are $(n+k)$-balls as mentioned in Step 1 and
$(\eta|E_{0})\cap(\eta|E_{\iota})=(\eta|E_{0})\cap(\eta|E_{1})$ is some $E_{0j}^{\prime}$ , say $E_{01}^{\prime}$ . Then, $A_{\iota}\cap(\eta|E_{2})$ is a common
face $E_{02}^{\prime}\cup E_{03}^{\prime}$ of $A_{1}$ and $(\eta|E_{2})$ . Thus, $A_{2}$ is an $(n+k)$-ball. Now, we prove that
$A_{\epsilon}$ is an $(n+k)$-ball. We may have

$(\eta|E_{2})\cap(\eta|E_{\epsilon})=E_{21}^{\prime}$ ,

$(\eta|E_{\iota})\cap(\eta|E_{\epsilon})=E_{11}^{\prime}$ .
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Note that $E_{21}^{\prime}\cup E_{11}^{\prime}$ is an $(n+k-1)$-ball because $E_{21}^{\prime}\cap E_{11}^{\prime}=\dot{E}_{21}^{\prime}\cap\dot{E}_{11}^{\prime}$ is an $(n+k-2)-$

ball which is the closure of a connected component of $(X^{n}-core(X^{n}))\times st(v, \mathfrak{S}_{\epsilon}(K))$ .
Since $A_{2}\cap(\eta|E_{8})=A_{2}\cap(\eta|E_{8})=E_{21}^{\prime}UE_{11}^{\prime}$ is a common face of $A_{2}$ and $(\eta|E_{\epsilon}),$ $A_{t}$ must
be an $(n+k)$-ball. Using the similar argument to the above, successively, it is
known that $A$ and $A_{f}(=A)$ are $(n+k)$-balls which is the required property.

(2) It is rather trivial.
(3) Note that $F\times A$ collapses to $F\times A$ where $F$ is a collapsible polyhedron and

$A$ is a simplex. Suppose that $A_{1},$
$\ldots,$

$A_{m}$ be the simplexes of $K-\dot{K}$ arranged in
the order of decreasing dimension. Since our fibers $J$“, $Y$“ and $X$“ are collapsible,

we can apply the above collapsing to the block $(F_{i})_{A\ell}$ of $\eta$ , inductively. Then, we
obtain the required admissible collapsing from $\eta$ to $K$.

Theorem 3. Let $L$ be a sub-SFM of an SFM $K$ and $\eta$ an element of
$B_{k}^{n}(K)$ . Then, $(\eta|L)$ is an element of $B_{p}^{n}(L)$ , where $p=\dim L$ .

Proof. It is immediate from the definition.

7. Regular neighborhoods of locally unknotted fake manifolds in manifolds.

In Theorem 2, it is shown that any element of $B_{p}^{n}(P)$ is an abstract regular
neighborhood of $P$. In this section, we consider about regular neighborhoods of
fake manifolds in manifolds, as a converse to the above.

First of all, let us introduce the concept of ” local unknottedness” of fake
manifolds in manifolds.

Definition 14. Let $St$ be an element of $S^{p}$ and let $B$ denote the q-ball

defined by
$B=\{(x_{1\prime}\cdots, x_{q})||x_{\ell}|\leqq 1\}$ .

Then, the pair $(B, St)$ is colled a standard pair.

Deflnition 15. Let $P$ be a fake p-manifold properly embedded in a q-manifold

V. Take a point $x$ of $P$. We say that $P$ is locally unknotted at $x$ in $V$, if the
pair $(st(x, V),$ $st(x, P))$ is homeomorphic to the standard pair. And, if $P$ is locally

unknotted at any point of $P$ in $V_{1}$ we say that $P$ is locally unknotted in $V$.
The purpose of this section is to show the following theorem.

Theorem 4. Let $P$ be a locally unknotted fake p-manifold in a q-manifold
$V$ and $N$ the regular neighborhood of $P$ in $V$ meeting the boundary regularly.
Then, $N$ belongs to $B_{p}^{q-p}(P)$ and $(N|\dot{P})=N\cap\dot{V}$.

Now, we state some lemmas.
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Lemma 12. Let $(B, St)$ be a standard pair. Then, $B$ belongs to $B_{p}^{q-p}(St)$ .
Proof. Case 1. When $St=St_{1}$ , we can regard $B=St\times J^{q-p}$ . Hence, $B$ is an

element of $B_{p}^{q-p}(St)$ .
Case 2. Suppose $St=St_{2}$ . The proof of this case is done through two steps.
Step 1. First, we prove the case when $q-p=1$ . Let us consider B–St which

has three connected components each of whose closures is a q-ball, denoted by
$B_{1}$ , $B_{2}$ and $B_{8}$ , with $St\cap B_{\ell}=A_{\ell}$ a $(q-1)$-face of $B_{\ell},$ $i=1,2,8$ . We can regard
$B=A_{\ell}\times[0,1]$ with $A_{\ell}=A_{\ell}\times O$ . Since $\mathfrak{S}_{2}(St)$ is a $(p-1)$-ball contained in $A_{\ell}$ ,
$\mathfrak{S}_{2}(St)\times[0,1]=C_{i}$ is a proper p-ball in $B$ . Put $C=C_{1}\cup C_{2}\cup C_{S}$ . Then, it is clear
to see $C=\mathfrak{S}_{2}(St)\times Y$. $C$ is the union of the blocks over $\mathfrak{S}_{2}(St)$ . Now, $B-C$ has
three connected components each of whose closures is a q-ball, denoted by $D_{1},$ $D$,
and $D_{\epsilon}$ . It iu seen that $C\cap D_{\ell}$ is a $(q-1)$-face of $D_{\ell}$ which is a union of sub-
blocks of $C$. Put $S=St\cap D_{t}$ . Then, it is not hard to see $D_{i}=S\times J$, where $J$ is
a strongly proper sub-fiber of Y. Thus, $B$ is an element of $B_{p}^{q-p}(St)$ .

Step 2. Here, we deal with the case $q-p\geqq 2$ . Let us consider the $(p+1)-$

ball $B^{\prime}$ defined by
$B^{\prime}=\{(x_{1}, \ldots, x_{p+1},0, \cdots, O)||x_{\ell}|\leqq 1\}$ .

Then, $(B^{\prime}, St)$ is a standard pair with codimension 1 and we can write $B=B^{\prime}$

$\times J^{q-p-1}$ . Since $B^{\prime}$ is a singular block bundle over $St$ by the structure obtained
in Step 1, it is easily seen that $B$ is an element of $B_{p}^{q-p}(St)$ by taking the fibers
to be $F\times J^{q-p-1}$ , where $F$ means the fiber of $B^{\prime}$ .

Case 3. Suppose $St=St_{\epsilon}$ . By a similar argument to that of Case 2, we obtain
the conclusion.

Proof of Theorem 4. By the similar argument to that of [4], together with
Lemma 12 above, it is not hard to obtain a proof of Theorem 4.

Finally, we state a theorem about 3-manifolds. Note that any 3-manifold
with boundary has a closed fake surface as its spine [1]. And, it is clear that
any fake surface properly embedded in a 3-manifold is locally unknotted. Thus,
we have the following.

Theorem 5. Let $V$ be a 3-manifold with $bo$undary. Then, there exists a
closed fake surface $P$ such that $V$ is a singular block bundle over $P$ with
fiber-set $\Phi^{1}$ .
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