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1. Introduction

Let $U,$ $V$ be two non-empty convex sets in a normed linear space $X$. We
call the points $\overline{u}\in U,\overline{v}eV$ the proximal points of the sets $U,$ $V$ if and only if
$||\overline{u}-\overline{v}||\leq||u-v||$ for all points $u\in U$ and $veV$. In this paper, we are interested
to study the existence, characterizations and the uniqueness of proximal points
and also to obtain some duality results for $d(U, V)$ , the distance between the two
convex sets. Our principal aim, however, is to obtain characterizations of proximal
points. For this purpose we immediately note that the points a G $U,\overline{v}eV$ are
proximal points if and only if $\overline{u}-\overline{v}$ is a point of the minimum norm (projection

point of $0$) in the convex set $U-V=\{u-v/ueU, veV\}$ . This observation would
easily enabIe one to obtain information about the proximal points $\overline{u},\overline{v}$ of $U,$ $V$ in
terms of suitable conditions on the set $U-V$. However, for theoretical as well
as practical purposes, it seems more meaningful and conveninet to formulate
information about the proximal points in terms of conditions on the individual
sets $U,$ $V$, rather than in terms of conditions on the set $U-V$. In the present
exposition we mainly attempt to obtain such results. This approach gives a
unified theory, which yields as special cases, most of the well known results
concerning best approximation from the elements of a convex set due to Garkavi
[7] and [8], Havinson [9], Nikolskii [12], Deutsch and Maserick [4] etc., when one
of the two convex sets $U,$ $V$ is reduced to a single point. The techniques employed
in proving most of the results in this paper are essentially geometric in nature.

Section 2 gives the definitions and basic notations to be used in the rest of
the paper. In Section 3, we develop the geometric tools to be used elsewhere.
The principal result of this section is Theorem 3.2 which extends for the case of
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two convex sets, the separation principle of a point and a convex set employed
by Garkavi [7]. In Section 4, we conside characterizations of proximal points.

Theorem 4.4 generalizes for proximal points a corresponding result of Deutsch
and Maserick [4] (also reproved by Havinson [9]) for best approximation (projection

point) from the elements of a convex set. Next we consider the case when the
dual spaoe $x*$ is strictly $nvex$ and prove that in this case the points $\overline{u}GU$,
$\overline{v}GV$ are proximal points if and only if a $eU$ is the projection point of $\overline{v}$ and
$\overline{v}GV$ is the projection point of $\overline{u}$ (Theorem 4.8). This generalizes, for arbitrary

convex sets, a well known result of Cheney and Goldstein [2] for the case when
$X$ is a Hilbert space and $U,$ $V$ are closed convex sets. A practical motivation for
this result is the following more general convex minimization problem which is
often important in concrete situations.

Suppose $U,$ $V$ are disjoint convex sets in a normed linear space $X$ and $\Phi$ :
$U\times V\rightarrow R^{+}$ is a functional, which is convex in each individual variable $u,$ $v$ (the

other variable being fixed). Then under what conditions, for fixed $\overline{u},\overline{v}$, the
minimization of $\Phi$ in each individual variable ensures the minimization of $\Phi$ in
both the variables ? Theorem 4.8 answers this question for the special case
$\Phi(u, v)=||u-v||$ . Theorem 4.10 combines (and generalizes) the well known charac-
terizations of best approximation from the elements of a linear subspace (Singer

[13]) and from the elements of a convex set (Deutsch and Maserich [4], also
Havinson [9]). Theorems 4.12 and 4.14 give the applications of Theorem 4.10 to
the spaces $L_{p}(E, \Sigma, \mu)$ ($(E,$ $\Sigma,$ $\mu)$ being a $\sigma- finite$ measure space) for the cases $p=1$

and $ 1<p<\infty$ respectively.

In Section 5, we consider some additional characterizations of proximal points

using extreme functionals. Firstly, we restrict our consideration to the case when

both the convex sets $U,$ $V$ are contained in a finite dimensional subspace of $X$

and show that in this case Theorem 4.4 (and hence the majority of the results of
Section 4 which depend on this theorem) can be significantly improved (Theorem

5.4). We next introduce the notion of (nd, $\overline{v}$)-symmetry of convex sets $U,$ $V(\overline{u}GU$,
$\overline{v}eV$ being a fixed pair of points). The assumption of the hypothesis that the
sets $U,$ $V$ are $(\overline{u},\overline{v})$-symmetric enables us to obtain a Garkavi-type characterization
(cf. [8]) for proximal points $\overline{u},\overline{v}$ in terms of the extreme points of the unit sphere

of $X^{*}$ (Theorem 5.10). For the special case when $X=C(T)$ ( $T$ compact Hausdorff)

(resp. $X$ is a subspace of $C(T)$ with ihe induced norm), we use the well known
representations for the extreme points of the unit ball of $X^{*}$ and Theorem 5.10 to
obtain a Kolmogorov-type characterization (cf. [101) for proximal points (Theorem

5.11 resp. Theorem 5.13).
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In Section 6, we introduoe (following Efimov and Ste6kin [6]) the notions of
semi-Chebyshev and Chebyshev pair of convex sets and obtain as easy consequences
of Theorem 4.4, the necessary and sufficient conditions for the pair $U,$ $V$ to be
Chebyshev and semi-Chebyshev respectively (Theorems 6.1, 6.2 respectively).

In Section 7, we are mainly concerned with the problem of estimating $d(U, V)$

by employing some duality results. Theorem 7.1 expresses this as a maximization
problem in the dual space $x*$ . On the other hand, if the two convex sets are in
$X^{*}$ , Theorem 7.4 reduces this problem to an equivalent maximization problem in
X. Theorem 7.7 combines these two results to some extent in a dual manner.
Theorems 7.1, 7.4 and 7.7 generalize the corresponding duality results of Garkavi
[7].

It is a pleasure to thank Dr. P. C. Jain, Professor in the Department of
Mathematics, Indian Institute of Technology, Bombay, for encouragement and
many helpful discussions.

2. Definitions and Notations

Throughout in this and the following sections, let $X$ be a normed linear space
(real or complex) with norm $||\cdot||$ and let $X^{*}$ denote the normed dual of $X,$ $i.e.$ ,

the spaoe of continuous linear functionals $L:X\rightarrow R$ (or $C$) normed by the usual
operator norm $||L||=\sup_{||x||=1}|L(x)|$ . We denote by $S_{x*}$ the unit sphere $\{LGX^{*}/||L||=1\}$

and by $K_{x*}$ the closed unit ball $\{LGX^{*}/||L||\leq 1\}$ of $x*$ . For each $XGX$, let te
denote the cannonical image of $x$ in $x**,$ $i.e$ . the functional defined by $4(x^{*})=$

$x^{*}(x),$ $X^{*}GX^{*}$ . If $E\subseteq X$, then let $B$ denote the set $\{l/XGE\}$ . By the $\sigma(X^{*}, X)-$

topology on $x*$ we will understand the weakest linear topology which can be
imposed on $x*$ such that each $\theta\in X$ is continuous. We call a set $E\subseteq M$ an
extremal subset of $M$ if a proper convex combination $\alpha x_{\iota}+(1-\alpha)x_{2},0<\alpha<1$ of
two points $x_{i},$ $x_{2}eM$ is in $E$ only if both $x_{1}$ and $x_{2}$ are in $E$. An extremal subset
of $M$ consisting of iust one point is called an extreme point of $M$. We shall
denote by $C(M)$ the set of all the extreme points of $M$. A normed linear space
$X$ is called strictly convex if $S_{X}=C(S_{X})$ and it is called uniformly convex if for
each $\epsilon>0$ , there exists a $\delta>0$ such that $||x||=||y||=1$ and $||(x+y)/2||>1-\delta$

imply $||x-y||<\epsilon$ .
The distanoe $d(U, V)$ between the two sets is given by $inf||u-v||$ . The

$\tau\iota eU,veV$

points $\overline{u}GU,\overline{v}eV$ are proximal points if and only if $||\overline{u}-\overline{v}||=d(U, V)$ . Unless
stated otherwise all of our other notations will conform to those given in [5].
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3. Existence of Proximal Points and a Basic Separation Principle

If the convex sets $U,$ $V$ are both compact, then proximal points of $U$ and $V$

exist. This follows immediately from the continuity of the function $||u-v||$ on
$U\times V$ and the compactness of $U\times V$. In general, if $U$ and $V$ are both closed
and one of them is compact, the proximal points may not exist for an arbitaray

normed linear spaoe $X$. However, if $X$ is a uniformly convex Banach space, the
proximal points exist for this case. This is given by the following theorem.

Theorem 3.1. Let $X$ be a uniformly convex Banach spaoe and $U,$ $V$ be two
closed convex sets such that one of them is compact. Then the proximal points
$\overline{u},\overline{v}$ of $U$ and $V$ exist and they are unique if $(U-U)\cap(V-V)=\{0\}$ .

Proof. $U-V$ is $nvex$ if both $U$ and $V$ are convex and $U-V$ is closed if

both $U$ and $V$ are closed and one of them is compact. Thus $U-V$ is a closed
convex set. Since $X$ is a uniformly convex Banach space, by a well known result
[cf. [1], pp. 22] $U-V$ contains a point of the minimum norm. Hence, there exist
$\overline{u}eU_{1}\overline{v}GV$ such that $||\overline{u}-\overline{v}||\leq||u-v||$ for all points $uGU$ and $vGV$. This
establishes the existenoe of proximal points. To prove the uniqueness, suppose
$\overline{u},\tilde{v}$ are proximal points of $U$ and $V$, distinct from $\overline{u},\overline{v}$ . Then $||\overline{u}-\overline{v}||=||\tilde{u}-\tilde{v}||$

$=d(U, V)$ . This gives $||(\overline{u}+\tilde{u})/2-(\overline{v}+\tilde{v})/2||=d(U, V)$ . Sinoe a uniformly convex
normed spaoe is also strictly convex, we get $\overline{u}-\overline{v}=\tilde{u}-\tilde{v}$ I. $e.\overline{u}-\tilde{u}=\overline{v}-\tilde{v}$ and by

the condition $(U-U)\cap(V-V)=\{0\},\overline{u}=\tilde{u}$ and $\overline{v}=\tilde{v}$ .
Remark. If one of $U$ and $V$ say $U$ is a linear subspace, then the condition

$(U-U)\cap(V-V)=\{0\}$ is equivalent to $U\cap(V-V)=\{0\}$ .
In what follows we shall not make the additional assumptions of Theorem 3.1

on the convex sets $U,$ $V$ in order to ensure the existenoe of proximal points.

However, many times we shall assume that the proximal points exist. For
practical purposes, this is often a reasonably good assumption to start with for
studying the characterizations of proximal points. In the following, we prove a
geometric result which is essentially a consequenoe of the separation form of the

Hahn-Bqnach theorem. This will be our main tool for discussing the characteri-
zations of proximal points in the next section. Incidentally, this also extends for
the case of two convex sets, the separation principle of a point and a convex set
employed by Garkavi [61 for studying duality results for approximations from
convex sets ($a1_{8}0$ see Deutsch and Maserick [4]).

Theorem 3.2. Let U. $V$ be convex subsets of $X_{1}$ such that $d(U, V)>0$ . Then
there exists an L $GX^{*}$ such that



PROXIMAL P0INTS OF CONVEX SETS IN NORMED LINEAR SPACES 57

(i) L G $S_{x*}$ and
(3.1)

(ii) $d(U, V)=\inf ReL(U)-\sup ReL(V)$ .
Proof. We need the following lemmas:

Lemma 3.3. Let $K$ be a non-empty set in $X$ and for $0\neq LGX^{*},$ $H$ denote
the hyperplane

(3.2) $\{XGXlReL(x)=a\}$ , then

(3.3) $d(K, H)=||L||^{-1}\inf_{keK}|ReL(k)-a|$ .
From a well-known result of Ascoli (cf. [15], pp. 24), it follows that for a

fixed $keK,$ $d(k, H)=||L||^{-1}|ReL(k)-a|$ . Hence

$d(K, H)=\inf_{keK}d(k, H)=||L||^{-1}\inf_{k\in K}|ReL(k)-a|$ .
Lemma. 3.4. Let $H$ be the hyperplane defined by (3.2), then
(1) If $H$ separates the two convex sets $U,$ $V$ in $X$, then

(3.4) $d(U_{1}H)\leq d(U, V)$ and $d(V, H)\leq d(U, V)$ .
(2) In each neighbourhood of a point in $H$, there exist points strictly on

either side of the hyperplane I. $e$ . points $h_{1},$ $h_{2}$ such that

(3.5) $ReL(h_{1})<a<ReL(h_{2})$ .
The lemma is geometrically obvious and can be easily verified. We omit the details.
To prove the theorem, put $S=\{xGX/d(x, U)<d(U, V)\}$ . Then $S$ is convex and
every point of $U$ is an interior point of $S$ . Also $ S\cap V=\Phi$ By the Hahn-Banach
theorem in separation form (due to Tukey cf. [5] pp. 417), there exists an LeX*

such that $||L||=1$ and

(3.6) $\sup ReL(V)\leq\inf ReL(S)\leq\inf ReL(U)$ .
(Here and in other places, we abbreviate $i^{n}fReL(s)$ by $infReL(S)$ and a similar

abbreviation for the supremum). Let $H$ denote the hyperplane

(3.7) {$xe$ XlRe $L(x)=\sup ReL(V)$}, then $H$ separates $U$ and $V$ .
Using Lemmas 3.3 and 3.4

$infReL(U)-\sup ReL(V)=d(U, H)\leq d(U, V)$ .
If we assume that $d(U, H)<d(U, V)$ , then there exists an $heH$ such that $d(U, h)<$

$d(U_{1}V)$ . Hence $hGS$ and $S$ is a neighbourhood of $h$ which lies on one side of $H$.
This contradicts Lemma 3.4 (2), giving $d(U, H)=d(U, V)$ and the proof is complete.
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Theorem 3.2 states a geometrically evident fact that the distanoe $d(U, V)$

between the two convex sets can be expressed as the distanoe between one of the
two sets and a suitable hyperplane or even as the distanoe between two parallel
hyperplanes, namely the hyperplane $H$ given by (3.7) and the hyperplane $\tilde{H}$ given
by

(3.8) $\tilde{H}=\{xGX/ReL(x)=\inf ReL(U)\}$ ,

Moreover, if in this case one assumes that the proximal points $\overline{u}GU$ and $\overline{v}eV$

exist, then the conclusion of Theorem 3.2 can be strengthened. In this case the
separating hyperplanes $H$ and $\tilde{H}$ given by (3.7) and (3.8) support $V,$ $U$ at $\overline{v},\overline{u}$

respectively, I. $e.$ ,

$ReL(\overline{u})=InfReL(U)$ and $ReL(\overline{v})=\sup ReL(V)$ .
This is given by the following corollary:

Corollary 3.3. Let $U,$ $V$ and $H$ be as in the last theorem. If $\overline{u}GU,\overline{v}eV$

are proximal points then

$ReL(\overline{u})=\inf ReL(U)$ and
(3.9)

$ReL(\overline{v})=\sup ReL(V)$ .
Proof. Since $d(\overline{v}, U)=d(U, V),\overline{v}ecl(S)$ . (Here and in other places $cl(S)$

will denote the closure of $S$).

Henoe from (3.6) $ReL(\overline{v})\geq\inf ReL(cl(S))=\inf ReL(S)\geq\sup ReL(V)$

Also $ReL(\overline{v})\leq\sup ReL(V)$ . Thus $ReL(\overline{v})=\sup ReL(V)$ .
Next from (3.1)

$||\overline{u}-\overline{v}||=\inf ReL(U)-\sup ReL(V)$

$=\inf ReL(U)-ReL(\overline{v})$

$\leq ReL(\overline{u})-ReL(\overline{v})=ReL(\overline{u}-\overline{v})$

$\leq|L(\overline{u}-\overline{v})|$

$\leq||\overline{u}-\overline{v}||$ .
Henoe equality must prevail throughout this chain of inequalities, giving $ReL(\overline{u})$

$=\inf ReL(U)$ . This proves the corollary.

4. Characterizations of Proximal Points

In this section, we obtain characterizations of proximal points which are
essentially geometric in character. Firstly we note that the points $\overline{u}GU,\overline{v}eV$

are proximal points if and only if $\overline{u}-\overline{v}\in U-V$ is a point of the minimum norm
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(projection point of $0$ in $U-V$). Hence, we can at onoe apply the well known

characterizations of best approximations from the elements of convex sets and
obtain the following:

Theorem 4.1. (Singer) Let $U,$ $V$ be convex subsets of $X$ such that $d(U, V)>0$ .
Then $\overline{u}GU,\overline{v}\in V$ are proximal points if and only if, there exists $LGS_{X}*$ such

that

(4.1) $ReL(u-v)\geq||\overline{u}-\overline{v}||$ $(ueU, vGV)$ .
Theorem 4.2. (Deutsch and Maserick, Havinson) Let $U,$ $V$ be convex subsets

of $X$ such that $d(U, V)>0$ . Then $\overline{u}\in U,\overline{v}\in V$ are proximal points if and only if

there exists an $LeX^{*}$ such that

(i) $LGS_{x*}$ ,

(4.2) (ii) $ReL(\overline{u}-\overline{v})\geq ReL(u-v)$ , $(uGU, vGV)$ ,

(iii) $L(\overline{u}-\overline{v})=||\overline{u}-\overline{v}||$ .
Theorem 4.3. (Garkavi) Let $U,$ $V$ be convex subsets of $X$ such that $d(U, V)>0$ .

Then a $GU,\overline{v}\in V$ are proximal points if and only if for each $(u, v)GU\times V$, there
exists an $L=L_{(u,v)}eX^{*}$ such that

(i) L $Gg(S_{x*})$ ,

(4.3) (ii) $ReL(\overline{u}-\overline{v})\geq ReL(u-v)$ ,

(iii) $L(\overline{u}-\overline{v})=||\overline{u}-\overline{v}||$ .
In the above theorems, the characterizations of proximal points are essentially

expressed in terms of conditions on the set $U-V$. However, for practical purposes,

it is often convenient to have characterizations in terms of conditions on the
individual sets $U,$ $V$. In the following, we propose to obtain characterizations of

this type. Here we shall mainly employ Theorem 3.2 and Corollary 3.3.

Theorem 4.4. Let $X$ be an arbitrary normed linear spaoe and $U,$ $V$ be convex
subsets of $X$, such that $d(U, V)>0$ . Then $\overline{u}GU,\overline{v}GV$ are proximal points if and
only if there exists an L $GX^{*}$ such that

(i) $LeS_{x*}$ ,
(ii) $ReL(\overline{u}-u)\leq 0$ , for each $uGU$ .

(4.4)
and $ReL(\overline{v}-v)\geq 0$ , for each $vGV$ ,

(iii) $L(\overline{u}-\overline{v})=||\overline{u}-\overline{v}||$ .
Proof. The ’ necessity ‘ part follows from Corollary 3.3. To prove the
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’ sufficiency’ part, let $LeX^{*}$ satisfy (i), (ii) and (iii). Then for each $ueU$ and
$vGV$, we have

$||\overline{u}-\overline{v}||=L(\overline{u}-\overline{v})=ReL(\overline{u})-ReL(\overline{v})$

$=\inf ReL(U)-\sup ReL(V)$

$\leq ReL(u)-ReL(v)$

$\leq|L(u-v)|$

$\leq||u-v||$ .
Henoe $\overline{u},\overline{v}$ are proximal points of $U,$ $V$ respectively.

Theorem 4.4 generalizes Theorem 4.2, which is an extension of a corresponding
result of Deutsch and Maserick [41 (also reproved by Havinson [9]) for best
approximation from the elements of a convex set. Geometrically, it states that
the points a $GU,\overline{v}GV$ are proximal points if and only if there exist a pair of
parallel hyperplanes, each of which separates the two convex sets and such that
one of them supports $U$ at $\overline{u}$ and the other supports $V$ at $\overline{v}$ .

In what follows let us denote by $-\ovalbox{\tt\small REJECT}_{(\overline{u}.\overline{v})}$ , the set

$\{L\in S_{X}\cdot lL(\overline{u}-\overline{v})=||\overline{u}-\overline{v}||\}$ .
We note that $\mathscr{M}_{(\overline{u},\overline{v})}$ is non-empty by the Hahn-Banach theorem and also $-\ovalbox{\tt\small REJECT}_{(\overline{u},\overline{v})}$

is a $\sigma(X^{*}, X)$ –closed (and hence compact), convex, extremal subset of $S_{x*}$ (cf.
Singer [18], pp. 59). As a simple consequence of Theorem 4.4, we obtain the
following corollary, which gives a Kolmogorov-type characterization of the proximal
points.

Corollary 4.5. Let $U,$ $V$ be convex subsets of $X$ such that $d(U, V)>0$ . Then
$\overline{u}eU,\overline{v}GV$ are proximal points if and only if

$ D_{(u,\overline{u})}=\{LG\mathscr{M}_{(\overline{u}.\overline{v})}/ReL(\overline{u}-u)\leq 0\}\neq\Phi$ for each $ueU$ and
(4.5)

$\min_{LeD_{(u\overline{u})}},\{ReL(\overline{u}-u). ReL(\overline{v}-v)\}\leq 0$ , for each $u\in U$ and $vGV$.
Proof. The necessity follows at once from Theorem 4.4. To prove the

sufficiency we note first that $D_{(u,\overline{u})}$ is a $\sigma(X^{*}, X)$ –compact set and the map $ L\rightarrow$

$ReL(\overline{u}-u)$ . $ReL(\overline{v}-v)$ is $\sigma(X^{*}, X)$ –continuous. Hence by (4.5), for each $ueU$
and $veV$, there exists an $L=L_{(u.v)}G-\ovalbox{\tt\small REJECT}_{(\overline{u},\overline{v})}$ satisfying: $ReL(\overline{u}-u)\leq 0$ and $ReL(\overline{v}-v)$

$\geq 0$ . The remaining proof follows exactly as in the sufficiency part of Theorem
3.4.

In the case when $X$ is a Hibert space, Theorem 4.4 assumes a more convenient
form. This is due to the isometric isomorphism between $X$ and its dual $x*$ . The
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functional $L$ of Theorem 4.4 corresponds in this case to the vector $(\overline{u}-\overline{v})/||\overline{u}-\overline{v}||$

and this leads to the corollary.

Corollary 4.6. Let $U,$ $V$ be convex subsets of a Hilbert space $X$ and $d(U, V)$

$>0$ . Then a G $U,\overline{v}\in V$ are proximal points if and only if

(1) $Re\langle v-\overline{v},\overline{u}-\overline{v}\rangle\leq 0$ $(vGV)$ ,
(4.6)

(2) $Re\langle u-\overline{u},\overline{u}-\overline{v}\rangle\geq 0$ $(uGU)$ ,

or the reverse inequalities hold in (4.6), that is,

(1) $Re\langle u-\overline{u},\overline{u}-\overline{v}\rangle\leq 0$ $(ueU)$ and
(4.7)

(2) $Re\langle v-\overline{v},\overline{u}-\overline{v}\rangle\geq 0$ $(vGV)$ .
Corollary (4.6) although not stated explicitly in the above form is essentially due
to Cheney and Goldstein [2]. Again in [2], Cheney and Goldstein prove the
following interesting charactrization of proximal points for the case when $X$ is a
Hilbert space and $U,$ $V$ are closed convex subsets of $X$.

Theorem 4.7. (Cheney and Goldstein) Let $U,$ $V$ be closed convex subsets of a
Hilbert spaoe $X$. Then the points $\overline{u}GU,\overline{v}GV$ are proximal points if and only if
they are the fixed points of $P_{\sigma}P_{r}$ and $P_{V}P_{\sigma}$ respectively, that is, $P_{\sigma}P_{V}\overline{u}=\overline{u}$ and
$P_{V}P_{\sigma}\overline{v}=\overline{v}$, where $P_{\sigma},$ $P_{V}$ are the projections onto $U,$ $V$ respectively.

In the proof of Theorem 4.7, Cheney and Goldstein [2] employ the necessity
part of the conditions of Corollary 4.6 and the Lipschitz property satisfied by the
projection operator, in order to prove the sufficiency part of Theorem 4.7.

In the following, we generalize the above theorem of Cheney and Goldstein
to the case when $X$ is a normed linear space whose dual $X^{*}$ is strictly convex
and $U,$ $V$ are arbitrary convex subsets of $X$ such that $d(U, V)>0$ . (This includes
for example the spaces $J_{p},$ $1<p<\infty,$ $p\neq 2$ , which are not Hilbert $8paces$).

Theorem 4.8. Let $X$ be a normed linear spaoe whose dual spaoe $x*$ is
strictly convex and $U,$ $V$ be two convex subsets of $X$ such that $d(U, V)>0$ . Then
a $eU,\overline{v}GV$ are proximal point if and only if $\overline{u}$ is the nearest point (projection

point) of $\overline{v}$ in $U$ and $\overline{v}$ is the nearest point (projection point) of $\overline{u}$ in $V$, that is,

$||\overline{u}-\overline{v}||=\inf_{ueU}||u-\overline{v}||$ and
(4.8)

$||\overline{u}-\overline{v}||=\inf_{v\in V}||\overline{u}-v||$ .
Proof. The necessity is obvious. To prove the sufficiency, we need the

following lemma;
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Lemma 4.9. Let $X^{*}$ be strictly convex and $0\neq XGX$. There exists at most
one $LeX^{*},$ $||L||=1$ such that $L(x)=||x||$ .

We censider the hyperplane
$\ovalbox{\tt\small REJECT}=\dagger LGX^{*}/t(L)=||x||\}$ in $x*$ . If there exists an L $GX^{*}$ such that $||L||=1$

and $t(L)=||x||$ , then $d(O, \mathscr{G})=1$ . For if $L_{1}G\ovalbox{\tt\small REJECT}$, then $||x||||L_{1}||\geq l(L_{1})=||x||$ .
Henoe $||L_{1}||\geq 1$ . Sinoe $x*$ is strictly convex, there exists at most one element of
$\mathscr{G}$ where $d(O, \mathscr{F})$ is attained and the lemma is proved.

Now suppose that $\overline{u}GU,\overline{v}eV$ satisfy (4.8) then $\overline{u},\overline{v}$ are proximal points of
the sets $U,$ $\{v\leftarrow\}$ as well as of the sets $\{\overline{u}\},$ $V$. Henoe by Theorem 4.4 there exist
$L_{1},$ $L_{2}eX^{*}$ satisfying

(1) $L_{1},$ $L_{a^{G}}S_{x*}$ ,
(2) $ReL_{1}(\overline{u}-u)\leq 0$ $(uGU)$ , and

(4.1)
$ReL_{2}(v-v)\geq 0$ $(vGV)$ ,

(8) $L_{1}(\overline{u}-\overline{v})=L_{2}(\overline{u}-\overline{v})=||\overline{u}-\overline{v}||$ ,

(1) and (3) of (4.9) and Lemma 4.9 gives $L_{1}=L_{2}=L$ say. Henoe (4.4) is satisfied
and by Theorem (4.4) $\overline{u},\overline{v}$ are proximal points of $U,$ $V$. This completes the proof.

We note that the necessity part in Theorem 4.8 is obviously true for an
arbitrary normed linear spaoe $X$, however, the sufficiency part may fail to hold
if the dual space $X^{*}$ is not strictly convex.

Examples. (1) Let $X=C[0,1]$ with the supremum. Take

$U=\{(1-\alpha)+\alpha tl0\leq\alpha\leq 1\}$ and $V=\{\beta t/0\leq\beta\leq 1\}$ .
Here $d(U, V)=0$ and the proximal points correspond to $\alpha=\beta=1$ .

$||(1-\alpha)+\alpha t-\beta t||=1-\alpha$ , if $\alpha\leq\beta$ ,
$=1-\beta$ , if $\alpha>\beta$ .

For any $r,$ $0\leq r\leq 1$ , the points $(1-r)+rt$ of $U$ and $rt$ of $V$ are nearest points to
each other from the other set but the points corresponding to $r=1$ are the only
proximal points.

(2) Let $X=R^{2}$ with the norm $||(x_{1}, x_{2})||=\max(|x_{1}|, |x_{2}|)$ . Take

$U=\{(\alpha, 0)/1\leq\alpha\leq 2\}$ and $V=\{(0, \beta)/1\leq\beta\leq 2\}$ .
Heren $d(U, V)=1$ and the proximal points correspond to $\alpha=\beta=1$ . For a fixed
$\alpha_{0},1\leq\alpha_{0}\leq 2$, all the points $(0, \beta),$ $\beta\leq\alpha_{0}$ of $V$ are the nearest points to the point
$(\alpha_{0},0)$ of $U$ and likewise for a fixed $\beta_{0},1\leq\beta_{0}\leq 2$ , all the points $(\alpha, 0),$ $\alpha\leq\beta_{0}$ of $U$

are the nearest points to the point $(0, \beta_{0})$ of $V$. Thus for any $r,$ $1\leq r\leq 2$ , the
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points $(r, 0),$ $(0, r)$ of $U$ and $V$ are the nearest points to each other from the
other set. However, the points corresponding to $r=1$ are the only proximal
points. In the same example, if we take $U,$ $V$ as the open line segments corre-
sponding to $0<a<1$ and $0<\beta<1$ respectively. Then $d(U_{1}V)=1$ , the proximal
points do not exist and as before for any $r,$ $1\leq r\leq 2$ , the points $(r, 0),$ $(0, r)$ are
the projection points of each other.

The particular case, when one of the two convex sets $U,$ $V$ is either a convex
cone or a linear subspace, is of considerable interest. In this case, one requires
the following easily established facts:

If $V$ is a cone ( $i$ . $e$ . $\alpha veV$ whenever $veV$ and $\alpha\geq 0$) and $\sup ReL(V)<\infty$ ,
then $supReL(V)=0$ . Hence, in particular, if in Theorem 4.4 $V$ is a convex cone,
then the separating hyperplane given by L $GX^{*}$ supports $V$ at the origin. Also
if $V$ is a linear subspaoe and either $infReL(V)>-\infty$ or $\sup ReL(V)<\infty$ , then
$ LeV^{\perp}\equiv$ {$LGX^{*}/L(v)=0$ for all $vGV$}. Moreover, if $U,$ $V$ are both cones (or

linear subspaces), then $d(U, V)=0$ . Thus in the case, when $V$ is a subspaoe (resp.

convex cone) and $U$ is a convex set such that $d(U, V)>0$ , Theorem 4.4 reduces
to the following:

Theorem 4.10. Let $X$ be an arbitrary normed linear space, $U$ be a convex
set and $V$ be a subspace (resp. convex cone) such that $d(U, V)>0$ . Then $\overline{u}GU$,
$\overline{v}\in V$ are proximal points if and only if there exists an LGX* such that

(i) $LGS_{x*}$ ,
(ii) $ReL(\overline{u}-u)\leq 0$ $(uGU)$ and

(4.10)
L $GV^{\perp}$ (resp. $ReL(\overline{v})=0$) ,

(iii) $L(\overline{u})=||\overline{u}-\overline{v}||$ .
Theorem 4.10 combines (and generalizes) the well known characterizations of best
approximations from the elements of a linear subspaoe (Singer [13]) and best ap-
proximations from the elements of a convex set (Deutsch and Maserick [4] and
Havinson [9]).

As applications of Theorem 4.10, we consider characterizations of proximal
points in the case of the spaoe $L_{p}(E, \Sigma, \mu),$ $ 1\leq p<\infty$ . Here let $(E, \Sigma, \mu)$ denote a
a-finite measure spaoe and let $L_{p}(E, \Sigma, \mu)$ . $ 1\leq p<\infty$ (resp. $ p=\infty$) denote the spaoe
of complex valued functions p-th power $\mu$-integrable (resp. $\mu$ measurable and $\mu-$

essentially bounded on $E$), endowed with the norm:

llx $||=(\int_{E}|x(t)|^{p}d\mu)^{1/p}$ (resp. 1 I $x||=essteE$ $sup|x(t)|$).
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In what follows, let $Z(x)$ denote the set $\{tGE/x(t)=0\}$ . Firstly, we consider
$X=L_{1}(E, \Sigma, \mu)$ . In this case we have.

Lemma 4.11. Let $U$ be a convex set and $V$ be the subspace spanned by a
fixed element $vGX$, such that $d(U, V)>0$ . Then $\overline{u}eU,$ $0eV$ are proximal points
if and only if

(i) $|\int_{E\backslash Z(\overline{u})}v$ agn $\overline{u}d\mu|\leq\int_{Z(\overline{u})}|v|d\mu$ ,

(ii) For each $ueU$ we have

(4.11) $Re\int_{E\backslash Z(\overline{u})}(\overline{u}-u)$ sgn a $d\mu\leq 0$ if $\int_{Z(\overline{u})}|v|d\mu=0$ and

$\int_{Z(\overline{u})}|v|d\mu\cdot Re\int_{E\backslash Z(\overline{u})}(\overline{u}-u)$ sgn $\overline{u}d\mu\leq Re\{\int_{E\backslash Z(\overline{u})}v$ sgn $\overline{u}d\mu$

$\times\int_{Z(\overline{u})}(\overline{u}-u)$ sgn $vd\mu\}$ ,

if $\int_{Z(\overline{u})}|v|d\mu>0$ .
(Here sgn $a=a/|a|$ if $\alpha\neq 0$ , sgn $\alpha=0$ if $\alpha=0$).

The lemma follows readily from Theorem 4.10 and the fact that $L_{\iota}^{*}=L_{\infty}$ . In fact,

following arguments similar to those in Singer [16], we easily note that the
function $hGL_{\infty}$ which corresponds to the functional $L$ of Theorem 4.10 is given
by:

$h(t)=sgn\overline{u}(t)$ if $\int_{Z(\overline{u})}|v|d\mu=0$ and if $\int_{Z(\overline{u})}|v|d\mu>0$ then

$h(t)=\left\{\begin{array}{ll}sgn \overline{u}(t) & if tGE\backslash Z(\overline{u}),\\-\frac{\int_{E\backslash Z(\overline{u})}v8gn(\overline{u})d\mu}{\int_{Z(\overline{u})}|v|d\mu}sgnv(t) & if tGZ(\overline{u}).\end{array}\right.$

Lemma 4.11 generalizes the ‘ basic variational lemma’ of Kripke and Rivlin [11]

which was used by them as the basic tool in their detailed exposition on $L_{1}$

approximation. Lemma 4.11 leads to the following characterization theorem for
proximal points in $L_{1}$ .

Theorem 4.12. Let $U$ be a convex set and $V$ be a subspace in $L_{\iota}$ such that
$d(U, V)>0$ . Then the following statements are equivalent.
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(1) $\overline{u}eU,\overline{v}\in V$ are proximal points.
(2) we have

(i) $|\int_{E\backslash Z(\overline{u}-\overline{v})}v$ sgn $(\overline{u}-\overline{v})d\mu|\leq\int_{Z(\overline{u}-\overline{v})}|v|d\mu$ for each $vGV$,

(4.12) (ii) $Re\int_{E\backslash Z(\overline{u}-\overline{v})}(\overline{u}-u)$ sgn
$(\overline{u}-\overline{v})d\mu\leq\frac{1}{\int_{Z(\overline{u}-\overline{v})}|v|d\mu}$

$\times Re\{\int_{E\backslash Z(\overline{u}-\overline{v})}v$ sgn $(\overline{u}-\overline{v})d\mu\int_{Z(\overline{u}-\overline{v})}(\overline{u}-u)$ sgn $(\overline{u}-\overline{v})d\mu\}$ .

for each $uGU$ and $veV$.
(Here we adopt the convention $0/0=0$ in the right hand side of (ii)).

(3) We have (4.12) (i) and (ii) with $Z(\overline{u}-\overline{v})$ replace by $P(\overline{u}-\overline{v})$ where

$P(\overline{u}-\overline{v})=Z(\overline{u}-\overline{v})\backslash \bigcap_{v\in V}Z(v)$ .

The implication (1) $\Leftrightarrow(2)$ follows at once from Lemma 4.11 and the fact that
$\overline{u}eU,\overline{u}GV$ are proximal points if and only if $\overline{u}-\overline{v}GU-V$ (convex) and $0e[\{v\}]$

are proximal points for each $veV$ (here and in other places $[\{v\}]$ denotes the
linear span of $\{v\}$). The implication (2) $\Leftrightarrow(8)$ follows easily from an argument

similar to that of Singer [18] (see Theorem 1.7, pp. 46).

We now consider the spaoes $L_{p}(E, \Sigma, \mu),$ $ 1<p<\infty$ and in the following e8tab1ish
results analogous to Lemma 4.11 and Theorem 4.12 for these spaces.

Lemma 4.13. Let $U$ be a convex set and $V$ be the subspaoe spanned by a
fixed element $v$ in $L_{p},$ $ 1<p<\infty$ , such that $d(U, V)>0$ . Then $\overline{u}eU,$ $OGV$ are
proximal points if and only if

(i) $Re\int_{E}(\overline{u}-u)|\overline{u}|^{p-1}$ sgn $\overline{u}d\mu\leq 0$ $(uGU)$ ,

(4.14)

(ii) $\int_{E}v|\overline{u}|^{p-1}$ sgn $\overline{u}d\mu=0$ .

From the fact that $L_{p}^{*}=L_{q}$ where $(1lp)+(1/q)=1$ and the conditions under which
equality holds in Holder’s inequality, one readily notes that the functional $L$ of

Theorem 4.10 corresponds to the element

$z=\frac{|\overline{u}|^{p-1}sgn\overline{u}}{||\overline{u}||^{p’ q}}$ of $L_{q}$ .

The lemma now easily follows from Theorem 4.10.
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Theorem 4.14. Let $U$ be a convex set and $V$ be a subspace in $L_{p},$ $ 1<p<\infty$ ,
such that $d(U, V)>0$ . Then a $eU,\overline{v}\in V$ are proximal points if and only if

(i) $Re\int_{E}(\overline{u}-u)|\overline{u}-\overline{v}|p-1$ sgn $(\overline{u}-\overline{v})d\mu\leq 0$ $(ueU)$ ,

$\int_{E}v|\overline{u}-\overline{v}|^{p-1}$ sgn $(\overline{u}-\overline{v})d\mu=0$ $(vGV)$ .
The theorem follows immediately from the Lemma 4.13 since $\overline{u}eU,\overline{v}GV$ are
proximal points if and only if $\overline{u}-\overline{v}GU-V,$ $0G[\{v\}]$ are proximal points for each
$veV$.

5. Characterization of Proximal Points Using Extreme Functionals

Here we first note that in the (important) special case when the convex sets
$U,$ $V$ are contained in a finite-dimensional subspace of $X$, Theorems 3.2 and 4.4
(and hence the majority of results of the last section) can be substantially improved.
For this we need the following:

Lemma 5.1. Let $X$ be a Banach space of finite dimension $n$ and let $LeK_{x*}$ .
Then there exist $m$ functionals $L_{\ell}G\mathscr{G}(K_{x*}),$ $i=1,2,$ $\ldots,$ $m$ and $m$ numbers $\lambda_{1},$ $\ldots$ ,
$\lambda_{m}>0$ with $\sum_{=1}^{n}\lambda_{\ell}=1$ , such that $L=\dot{\sum_{=1}^{m}}\lambda_{\ell}L_{\ell}$ . Here $1\leq m\leq n$ if the scalars are real
and $1\leq m\leq 2n-1$ if the scalars are complex.

The lemma is well known (see for example Singer [18], pp. 166). It follows
from an inductive argument similar to that in Caratheodory theorem.

Lemma 5.2. Let $G$ be a subspaoe of a normed linear space $X$ and let $\Phi$ be
an extreme point of the closed unit ball $K_{G^{\prime}}$ of $G^{*}$ . Then $\Phi$ has an extension
$L\in \mathscr{G}(K_{X^{t}})\subseteq X^{*}$ .

Lemma 4.2 is an extension theorem due to Singer [15]. It follows from the
Krein-Milman theorem and the fact that the set of all norm preserving extensions
of $\Phi,$ {$LGX^{*}/||L||=1$ and $ L|_{G}=\Phi$} is a non-void, $\sigma(X^{*}, X)$ –compact convex extremal
subset of the unit ball $K_{x*}$ .

Lemma 5.3. Let the convex sets $U,$ $V$ be such that $[U\cup V]$ is an n-dimen-
sional subspaoe of $X$. Then the functional $L$ of Theorem 3.2 (henoe also of
Theorem 4.4 and all other results of the last section which depend on this) can
be expressed as

(5.1) $L=\sum_{j=1}^{n}\lambda_{\ell}L_{\ell}$ ,
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where
$L_{\ell}\in g(K_{x*}),$ $i=1,2,$ $\cdots,$ $m,$ $\lambda_{\ell}>0,$ $i=1,$ $\cdots,$ $m$ with $\sum_{i=1}^{m}\lambda_{\ell}=1$ and where $m\leq n$ if
the scalars are real, $m\leq 2n-1$ if they are complex.

This follows at once from Lemmas 5.1 and 5.2.
Using Lemma 5.3, Theorem 4.4 reduces in this ca8e to the following:

Theorem 5.4. Let $U,$ $V$ be convex subsets of $X$ such that $d(U, V)>0$ and
dim $[U\cup V]=n$ . Then $\overline{u}eU,\overline{v}\in V$ are proximal points if and only if there exist
$m$ functionals $L_{\ell}\in g(K_{X}),$ $i=1,$ $\cdots,$ $m$ and $m$ numbers $\lambda_{i},$ $i=1,2,$ $\cdots,$ $m$ such that

(i) $\lambda_{\ell}>0$ , $i=1,$ $\cdots,$ $m$ , $\sum_{1}^{m}\lambda=1$ ,

(5.2)
(ii) $Re\sum_{l=1}^{m}\lambda_{\ell}L_{\ell}(\overline{u}-u)\leq 0$ $(u\in U)$ and

$Re\sum_{i=1}^{m}\lambda L_{i}(\overline{v}-v)\geq 0$ $(v\in V)$ ,

(iii) $L_{\ell}(\overline{u}-\overline{v})=||\overline{u}-\overline{v}||$ , $i=1,$ $\cdots,$ $m$ ,

where $m\leq n$ if the scalars are real, $m\leq 2n-1$ if they are complex.

Remarks. If in Theorem 5.4, we take $V$ as a subspace then the condition
(5.2) (ii) should be replaced by

$Re\sum_{i=1}^{m}\lambda_{\ell}L_{:}(\overline{u}-u)\leq 0$ $(u\in U)$ and

$\dot{\sum_{=1}^{n}}\lambda_{\ell}L_{\ell}(v)=0$ $(v\in V)$ .

This improves a corresponding result of Singer [13]. In the case when $X=C(T)$ ,
the space of continuous functions (real or complex) defined on a compact Hausdorff
space $T$ with the uniform norm: $||x||=\max_{teT}|x(t)|,$

$x\in X$, Theorem 5.4 assumes a
more convenient from. This is due to (the well known) fact that $g(K_{x*})=$

$\{\delta_{t}\Phi_{\ell}/t\in T, |\delta_{t}|=1\}$ , where each $\Phi_{t}$ is a point evaluation functional corresponding to
$t$ , that is,

$\Phi_{t}(x)=x(t)$ , $XGX$ .
We thus have:

Corollary 5.5. Let $U,$ $V$ be convex subsets of $C(T)$ such that $d(U, V)>0$

and dim $[U\cup V]=n$ . Then a G $U,\overline{v}GV$ are proximal points iff there exist $m$ points
$teT_{(\overline{u}.\overline{v})}=\{teT/|\overline{u}(t)-\overline{v}(t)|=||\overline{u}-\overline{v}||\}$ and $m$ numbers $\lambda$ such that
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(i) $\lambda>0$ , $\sum_{i=1}^{n}\lambda=1$ ,

(5.3) (ii) $Re\sum_{i=1}^{m}\lambda_{i}$ sgn $[\overline{u}(t_{\ell})-\overline{v}(t_{\ell})][\overline{u}(t_{\ell})-u(t_{\ell})]\leq 0$ $(u\in U)$ and

$Re\sum_{\ell=\iota}^{m}\lambda_{l}$ sgn $[\overline{u}(t)-\overline{v}(t_{\ell})][\overline{v}(t)-v(t)]\geq 0$ $(vGV)$ .

(If $V$ is a subspace, then the second part of this condition is to be replaced by:

$\sum_{:=1}^{m}\lambda$ sgn $[\overline{u}(t_{1})-\overline{v}(t)]v(t)=0$ $(vGV)$ ,

where $m\leq n$ if the scalars are real and $m\leq 2n-1$ if they are complex. In the
case, when $U=\{\overline{u}\}$ and $V$ is a k-dimensional subspace of $C(T)$ we get from the
above corollary the following:

$\overline{v}\in V$ is a projection point (best approximation) to $\overline{u}$ if and only if the origin
$(0, \cdots, 0)$ of the k-spaoe $C^{k}$ is in the convex hull of the set of k-tuples

$\{\overline{r(t)}, (v_{1}(t), \ldots, v_{k}(t))/t\in T, |\overline{u}(t)-\overline{v}(t)|=||\overline{u}-\overline{v}||\}$ ,

where $\{v_{1}, \cdots, v_{k}\}$ is any basis of $V$ and $r(t)=\overline{u}(t)-\overline{v}(t)$ . This i8 a well known
corollary of Cheney and Goldstein [3] and it now turns out to be a 8pecial case
of Corollary 5.5.

In what follows, we now propose to generalize the Garkavi-type Theorem 4.3.
For this we need the following:

Definition. Let $U,$ $V$ be arbitrary convex subsets of $X$ and $(\overline{u},\overline{v})$ where $\overline{u}GU$,
$\overline{v}\in V$ be a fixed pair of points. We call the sets $U,$ $V(\overline{u},\overline{v})$ –symmetric if

(5.4)
{Le $\mathscr{M}_{(\overline{u},\overline{v})}/Re(\overline{u}-u)^{A}L=\inf Re(\overline{u}-u)^{\wedge}\mathscr{M}_{(\overline{u},\overline{v})}$ }

$\cap$

$\{LG\rightarrow\ovalbox{\tt\small REJECT}_{(\overline{u},\overline{v})}/Re(\overline{v}-v)^{\wedge}L=\sup Re(\overline{v}-v)^{A}\rightarrow\ovalbox{\tt\small REJECT}_{(\overline{u},\overline{v})}\}$

$\neq\Phi$, for each $u\in U$ and $v\in V$.
$r_{If}^{-}$ the set $U$ consists of a single point $\overline{u}$ and $V\subseteq X$ is an arbitrary convex set,
then trivially $U,$ $V$ are $(\overline{u},\overline{v})$ –symmetric. The following are some nontrivial
examples of $(\overline{u},\overline{v})$ –symmetric convex sets.

Example 1. Let $X=R^{2}$ with the norm $||(x_{1}, x_{2})||=|x_{1}|+|x_{2}|$ ,

$U=\{(x_{1},0)/0\leq x_{1}\leq 1\}$ and $V=\{(x_{1}, x_{2})/1\leq x_{1}\leq 2,1\leq x_{2}\leq 2\}$ .
Take $\overline{u}=(1,0)$ and $\overline{v}=(1,1)$ . $X^{*}=R^{2}$ with the norm

$||(x_{1}, x_{2})||=\max(|x_{1}|, |x_{2}|)$ . $-\ovalbox{\tt\small REJECT}_{(\overline{u},\overline{v})}=\{(\alpha, -1)/\downarrow a|\leq 1\}$ .
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It is readily verified that the functional $Le\mathscr{M}_{(\overline{u},\overline{v})}$ given by $L=(-1, -1)$ belongs
to the set given by (5.4) for each $uGU$ and $vGV$.

Example 2. Again take $X=R^{2}$ with the norm $||(x_{1}, x_{2})||=\max(|x_{1}|, |x_{2}|)$ . Let
the sets $U,$ $V$ and the points $\overline{u},\overline{v}$ be as in Example 1. Then $X^{*}=R^{2}$ with the
norm $||(x_{1}, x_{2})||=|x_{1}|+|x_{2}|$ and in this case $\mathscr{M}_{(\overline{u},\overline{v})}=\{(0, -1)\}$ . Henoe, trivially, the
set in (5.4) contains $(0, -1)$ for each $u\in U$ and $vGV$.

Example 3. Let $X=C[-1, +1]$ (real functions),

$U=\{2\alpha|t|+(1-\alpha)t^{2}l0\leq a\leq 1\}$ and $V=\{-\beta t^{4}/0\leq\beta\leq 1\}$ .
Take $\overline{u}=t^{2},\overline{v}=0$ . It is easily verified that the set in (5.4) contains the point
evaluation functionals $\Phi_{-1}$ and $\Phi_{+1}$ (see also the remark following $Threm5.11$),

for each $ueU$ and $vGV$.
To prove the next theorem, we shall employ Krein-Milman type reasoning.

For this we require the following lemmas which are easy consequences of the
definitions of extreme points and extremal sets.

Lemma 5.7. Let $Y$ be an extremal subset of $Z$ and $Z$ be an extremal subset
of $W$. Then $Y$ is an extremal subset of $W$.

Lemma 5.8. Let $M$ be an extremal subset of a set $A\subseteq X$. Then
$g(M)=M\cap g(A)$ .

Lemma 5.9. Let $L\in X^{*}$ and $A$ be a subset of $X$, such that the sets

$Y=\{xeA/ReL(x)=\inf ReL(A)\}$ ,

$Z=\{x\in A/ReL(x)=\sup ReL(A)\}$ are non-empty.

Then the sets $Y$ and $Z$ are extremal subsets of $A$ .
Theorem 5.10. (Characterization theorem of Garkavi-type) Let $U,$ $V$ be

convex subsets of $X$ such that $d(U, V)>0$ . Suppose $\overline{u}\in U,\overline{v}\in V$ are points such
that the sets $U,$ $V$ are $(\overline{u},\overline{v})$ –symmetric. Then $\overline{u},\overline{v}$ are proximal points of $U,$ $V$

if and only if for each $u\in U$ and $v\in V$, there exists an $L=L_{(u.v)}\in x*$ such that:

(i) L $Gg(S_{x*})$ ,
(ii) $ReL(\overline{u}-u)\leq 0$ and(5.5)

$ReL(\overline{v}-v)\geq 0$ ,
(iii) $L(\overline{u}-\overline{v})=||\overline{u}-\overline{v}||$ .

Proof. The sufficiency part is proved exactly as in Theorem 4.4. (In fact
note that for this part the assumption of the $(\overline{u},\overline{v})$ –symmetry of the sets $U,$ $V$
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is not essential). For the neoessity, let a $GU,\overline{v}GV$ be proximal points and
assume that the sets $U,$ $V$ are $(\overline{u},\overline{v})$ –symmetric. Now let $ueU,$ $v\in V$ and define
the set

$\ovalbox{\tt\small REJECT}_{(u.v)}=\{Le\mathscr{M}_{(\overline{u},\overline{v})}/Re(\overline{u}-u)^{\wedge}L=\inf Re(\overline{u}-u)^{\wedge}\mathscr{M}_{(\overline{u},\overline{v})}\}$

$\{Le\mathscr{M}_{(5.\overline{v})}/Re\bigcap_{(\overline{v}-v)^{\wedge}L=\sup Re}(\overline{v}-v)^{\wedge}\mathscr{M}_{(\overline{u},\overline{v})}\}$ .
$\ovalbox{\tt\small REJECT}_{(u.v)}$ is non-void by the assumption of $(\overline{u},\overline{v})$ –symmetry of $U,$ $V$. Also $s\swarrow_{(u.v)}$

is a $\sigma(X^{*}, X)$ –closed (and henoe compact), convex, extremal subset of $\mathscr{M}_{(\overline{u},\overline{v})}$ .
Therefore, by Krein-Milman theorem $\ovalbox{\tt\small REJECT}_{(u.v)}$ has an extreme point $L_{*}$ . Sinoe $\ovalbox{\tt\small REJECT}_{(u.v)}$

i8 an extremal subset of $-\ovalbox{\tt\small REJECT}_{(\overline{u},\overline{v})}$ and $\mathscr{M}_{(\overline{u},\overline{v})}$ is an extremal subset of $s_{x*},$ $\ovalbox{\tt\small REJECT}_{(u,v)}$ is
an extremal subset of $S_{x*}$ . Henoe $g(X_{(u.v)})=\ovalbox{\tt\small REJECT}_{(u.v)}\cap \mathscr{G}(S_{X}\cdot)$ and $L_{*}G\mathscr{G}(S_{X}\cdot)$ .
By Theorem 4.4, there exists an LG $\mathscr{M}_{(\overline{u},\partial)}$ such that $ReL(\overline{u}-u)\leq 0(uGU)$ and
$ReL(\overline{v}-v)\geq 0$ $(vGV)$ . Henoe $ReL_{e}(\overline{u}-u)\leq ReL(\overline{u}-u)\leq 0$ and $ ReL_{*}(\overline{v}-v)\geq$

$ReL(\overline{v}-v)\geq 0$ . $L_{e}$ thus satisfies (i), (ii), (iii) and the proof is complete.

Remark. We note that for each $uGU$ and $veV$, there exists an $L\in X^{*}$

satisfying (5.5) if and only if for each $u\in U$ and $vGV$, there exists an $LeX^{*}$

satisfying

(i) L $Gg(S_{x*})$ ,
(ii) $Re[\overline{L(\overline{u}-\overline{v})}\cdot L(\overline{u}-u)]\leq 0$ and

(5.6)
$Re[\overline{L(\overline{u}-\overline{v})}\cdot L(\overline{v}-v)]\geq 0$ ,

(iii) $|L(\overline{u}-\overline{v})|=||\overline{u}-\overline{v}||$ .
Furthermore, if $V$ is a $sub_{8}paoe$ , this is equivalent to: for each $ueU$ and $veV$,

there exists an $LGX^{*}$ satisfying (5.6) (i), (iii) and

$Re[\overline{L(\overline{u}-\overline{v}})\cdot L(\overline{u}-u)]\leq 0$ ,
(5.7)

$Re\overline{[L(\overline{u}-\overline{v}})\cdot L(v)]\geq 0$ .
The implication $(5.5)\supset(5.6)$ is obvious. $(5.6)=(5.5)$ follows by putting
$f=sgnL(\overline{u}-\overline{v})\cdot L$ . $(5.6)=((5.7)$ follows by taking $\Phi_{(u,v)}=L_{(u,V-v)}$ . The implication
$(5.7)=(5.6)$ is similar (the equivalences are established by arguments analogous

to those in Singer [18], pp. 63 Corollary 1.9).

If in $Threm5.10$ , one takes $U=\{\overline{u}\}$ and $V$ as an arbitrary convex 8ubset of
$X$, then one recovers as a special case the Garkavi theorem for best aPproximatIon

from the elements of a convex set. In [8], Garkavi in fact proved this result for
a Banach spaoe and again in [41 Deutsch and Maserick reproved the same for an
arbitrary normed linear space.
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We next consider the case when $X=C(T)$ ( $T$ compact Hausdorff) and obtain
as an easy consequences of Theorem 5.10, the following Kolmogorov-type charac-
terization of proximal points.

Theorem 5.11. (Kolmogorov-type characterization) Let $U,$ $V$ be convex subsets
of $C(T)$ such that $d(U, V)>0$ . Suppose $\overline{u}GU,\overline{v}\in V$ are points such that $U,$ $V$

are $(\overline{u},\overline{v})-symmetric$ . Then $\overline{u},\overline{v}$ are proximal points of $U,$ $V$ if and only if for
each $ueU,$ $vGV$, there exists a $t=t_{(u.v)}eT$ such that

(i) $Re\{[\overline{u}(t)-\overline{v}(t)][\overline{u}(t)-u(t)]\}\leq 0$ ,

(5.8) (ii) $Re\{[\overline{u}(t)-\overline{v}(t)][\overline{v}(t)-v(t)]\}\geq 0$ and
(iii)

$|\overline{u}(t)-\overline{v}(t)|=||\overline{u}-\overline{v}||=\max_{teT}|\overline{u}(t)-\overline{v}(t)|$ .
(As in the remark preceeding this theorem, it $V$ is a subspaoe (ii) can be replaced
by $Re\{[\overline{u}(t)-\overline{v}(t)]v(t)\}\geq 0)$ .

Proof. By Theorem 5.10 and the general form of the extreme points of $ S_{X}\cdot$,
we have $\overline{u}eU,\overline{v}eV$ are proximal points if and only if for each $uGU,$ $veV$,
there exists a $t=t_{(u,v)}GT$ and a scalar $\delta=\delta_{(u,v)}$ with $|\delta|=1$ , such that

$Re\{\delta[\overline{u}(t)-u(t)]\}\leq 0$ ,
(5.9) $Re\{\delta[\overline{v}(t)-v(t)]\}\geq 0$ and

$\delta[\overline{u}(t)-\overline{v}(t)]=||\overline{u}-\overline{v}||$ .
The last equation gives $\delta=sgn[\overline{u}(t)-\overline{v}(t)]$ and henoe (5.9) is equivalent to (5.8).

This completes the proof.

Remark. We note that in this case the convex sets $U,$ $V$ are $(\overline{u}, \overline{v})$ –symmetric
iff they satisfy

{$\overline{t}\in TlRe([(\overline{u}-\overline{v})(\overline{t})][(\overline{u}-u)(\overline{t})])=$ min $Re([(\overline{u}-\overline{v})(\overline{t})][(\overline{u}-u)(t)])$ }

(5.10) $\ell\in\tau_{(,v)}\cap^{\overline{u}^{\sim}}$

$\{\overline{t}\in TlRe ([(\overline{u}-\overline{v})(\overline{t})][(\overline{v}-v)(\overline{t})])=\max_{\sim}Re([\overline{u}-\overline{v})(\tilde{t})][(\overline{v}-v)(t)])\}\ell e\tau_{(\overline{u},v)}$

$\neq\Phi$ , for each $u\in U$ and $v\in V$. Here $T_{(\overline{u},v)}\sim=\{t\in Tl|\overline{u}(t)-\overline{v}(t)|=||\overline{u}-\overline{v}||\}$ . This
follows at onoe from the general form of the extreme points of $S_{x*}$ and the well
known fact that a real continuous linear functional $L$ attains its infimum (resp.
supremum) on a compact convex set $K$ at an extreme point of $K$. We need only
observe here that $(\overline{u}-u)^{\wedge}$ , $(\overline{v}-v)^{\wedge}$ are $\sigma(X^{*}, X)$ –continuous and $-\ovalbox{\tt\small REJECT}_{(\overline{u},\overline{v})}$ is a
$\sigma(X^{*}, X)$ –compact convex set. Again in Theorem 5.11, if one takes $U=\{\overline{u}\}$ and
$V$ as an arbitrary linear subspaoe of $X_{1}$ then (5.10) is trivially satisfied and one
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$L^{-}\dagger_{obtains}$ as a special case the well known Kolmogorov theorem (see [10]) for the
characterization of best approximation from elements of linear subspaces of $C(T)$ .

Now suppose that $\mathcal{L}=\mathscr{M}_{(\overline{u},\overline{v})}\cap\Gamma$ , where $\Gamma$ is a fundamental system (following

Nikolskii [12]), that is, a $\sigma(X^{*}, X)$ –closed subset of $K_{X}*$ such that for each $x\neq 0$

in $X$ there exists an L $ G\Gamma$ with $L(x)=||x||$ . Examples of fundamental systems

are the unit sphere $S_{x*}$ and $\mathscr{G}(K_{x*})$ . Assume further that $U,$ $V$ satisfy

$\{LG\mathcal{L}/Re([(\overline{\overline{u}-\overline{v})^{\wedge}L]}\cdot[(\overline{u}-u)^{\wedge}L])=\min_{L\in\ovalbox{\tt\small REJECT}}Re([(\overline{\overline{u}-\overline{v})^{\wedge}L]}[(\overline{u}-u)^{\wedge}L])\}$

(5.11)
$\{LG\mathscr{L}/Re([(\overline{\overline{u}-\overline{v})^{\wedge}L]}\cdot[(\overline{v}-v)^{\wedge}L])=\max_{L\in\ovalbox{\tt\small REJECT}}Re([(\overline{\overline{u}-\overline{v})^{\wedge}L]}[(\overline{v}-v)^{\wedge}L])\}$ ,

$\neq\Phi$ , for each $u\in U$ and $veV$. Then since the cannonical mapping $x\rightarrow l$ of $X$ into
$C(\Gamma)$ , defined by

$\theta(L)=L(x)$ $(LG\Gamma, xeX)$

is an isometric isomorphism, we readily obtain from Theorem 5.10.

Corollary 5.12. Let $\Gamma\subseteq K_{X}*$ be a fundamental system and suppose that the
convex sets $U,$ $V$ and the points $\overline{u}GU,\overline{v}GV$ satisfy (5.11). Then $\overline{u},\overline{v}$ are proximal

points of $U,$ $V$ if and only if for each $uGU,$ $vGV$ there exists an $ L=L_{(u.v)}e\Gamma$

satisfying (5.6) (ii) and (iii) (and satisfying (5.7) (ii) ann (iii) if $V$ is assumed to be
a subspace).

Corollary 5.11 generalizes $a$ . theorem of Nikolskii [12]. In fact, if we take
$U=\{\overline{u}\}$ and $V$ as an arbitrary convex set we recover the theorem of Nikolskii [12].

Finally, we shall obtain a result corresponding to Theorem 5.11 for the case
when $X$ is a linear subspaoe of $C(T)$ ( $T$ compact Hausdorff). Recall that (for

this case) the Choquet boundary of $X$ is the set

$\gamma(X)=\{\overline{t}eT/\mu[A_{\ell}^{\sim}(X)]=1 (\mu Gp_{\iota}(X))\}$ , with

$A_{\overline{\ell}}(X)=\{t\in T/x(\overline{t})=x(t) (xeX)\}$ and

$p_{t}(X)=\{\mu/\int_{T}x(t)d\mu(t)=x(\overline{t})$ $(xGX),$ $\mu(T)=1\}$ ,

($\mu$ being a positive Radon measure on $T$). The general form of extreme points

of the unit ball $K_{X}*$ in this case is given by the following;

(5.12) $\mathscr{G}(K_{x*})\subseteq\{\delta_{\ell}\Phi_{t}/t\in\gamma(X), |\delta|=1\}$ ,

where $\gamma(X)$ is the Choquet boundary of $X$ and $\Phi_{t}$ as before is the point evaluation
functional corresponding to point $t$ . Furthermore, equality occur8 in the above
inclusion if le $X$ (where 1 denotes the $function\equiv 1$ on $T$). The above representa-
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tion of extreme points of $K_{x*}$ is due to Singer (cf. [17], Theorem 1). Using this

representation, we now obtain the following:

Theorem 5.13. Let $X$ be a linear subspace of $C(T)$ ( $T$ compact Hausdorff)

and $\gamma(X)$ be the Choquet boundary of $X$. Suppose the convex subsets $U,$ $V$ of $X$

and the points $\overline{u}GU,\overline{v}GV$ satisfy (5.10), with $T_{(\overline{u},\overline{v})}$ replaced by $T_{(\overline{u},\overline{v})}\cap\gamma(X)$ .
Then $\overline{u}eU,\overline{v}eV$ are proximal points if and only if for each $uGU,$ $veV$ there

exists a $t=t_{(u.v)}G\gamma(X)$ such that we have (5.8).

Again if in Theorem 5.13, we take $U=\{\overline{u}\}$ and $V$ as a linear subspace of $X$,

then we obtain as a particular case a theorem of Singer (cf. [17], Theorem 3).

6. Uniqueness of Proximal Points

Here we are mainly concerned with conditions under which for a given pair

$U,$ $V$ of convex sets, there exists at most one (resp. unique) pair $\overline{u},\overline{v}$ of proximal

points. We shall call a pair $U,$ $V$ of convex sets, a proximinal pair if there

exists a pair $\overline{u},\overline{v}$ of proximal points. If there exists at most one pair of proximal

points for $U,$ $V$, then the pair $U,$ $V$ is called a semi-Chebyshev pair (following

Efimov and $Ste6kin[6]$ , who actually introduced the term ‘ Chebyshev subspace ‘).

If the pair $U,$ $V$ is proximinal as well as semi-Chebyshev, then it is called a
Chebyshev pair. Each non-proximinal pair is obviously semi-Chebyshev. Also if
$X$ is strictly convex and $U,$ $V$ satisfy $(U-U)\cap(V-V)=\{0\}$ , then as in $Threm$

3.1 it is easily established that the pair $U,$ $V$ is semi-Chebyshev. Moreover, if $X$

is a uniformly convex Banach space and $U,$ $V$ are closed $\omega nvex$ sets, one of them

being compact, then by Theorem 8.1 the pair $U,$ $V$ is Chebyshev. However, one
can have a Chebyshev pair of convex sets even for non-uniformly convex spaces.

It is well known for example (classical Chebyshev-theory) that if we take $X=C(T)$ ,

$U=\{\overline{u}\}$ and $V$ as an n-dimensional Haar subspace of $C(T)$ then the pair $U,$ $V$ is
Chebyshev. On the other hand, it is easy to construct examples of convex sets

in $C(T)$ for which there are infinitely many pairs of proximal points, $e.g.$ , let

$X=C[0,1]$ (real functions) $U=\{(1-a)+at^{2}/0\leq\alpha\leq 1\},$ $V=\{-\beta t/0\leq\beta\leq 1\}$ . Then the
points $(1-\alpha)+\alpha t^{2}GU,$ $0GV$ are proximal points $(0\leq\alpha\leq 1)$ .

The following theorem give8 necessary and sufficient conditions in order that
the pair $\overline{u},\overline{v}$ of points of $U,$ $V$ be the unique pair of proximal points.

Theorem 6.1. Let $U,$ $V$ be a proximinal pair of convex sets and let $\overline{u},\overline{v}$ be

a pair of proximal points. Then $U,$ $V$ is a Chebyshev pair if and only if there

do not exist $ueU\backslash \{\overline{u}\},$ $veV\backslash \{\overline{v}\}$ and an $LGX^{*}$ 8uch that
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(i) $L\in S_{x*}$ ,
(ii) $L(u)=L(\overline{u})$ and(6.1)

$L(v)=L(\overline{v})$ ,
(iii) $L(u-v)=||u-v||$ .

Theorem 6.1 follows immediately from Theorem 4.4.

Remark. We readily observe that 6.1 (iii) may be replaced by $|L(u-v)|$

$=||u-v||$ . If we take $U=\{\overline{u}\}$ and $V$ as a subspace, we get a result of Singer
[13]. In [14], Singer has used this to good effect in characterizing all the Chebyshev
subspaces of $L_{1}[a, b]$ . The next theorem which also follows readily from Theorem
4.4 would seem to be useful in characterizing semi.Chebyshev pairs of convex $8et8$ .

Theorem 6.2. A pair $U,$ $V$ of convex subsets of $X$ is semi-Chebyshev if and
only if there does not exist an $LeX^{*}$ such that

(i) $LGS_{x*}$ ,
(ii) $ReL(u_{t})=\inf ReL(U)$ for two distinct $uGU,$ $i=1,2$ and $ReL(v_{\ell})=$

$supReL(V)$ for two distinct $v_{\ell}GV,$ $i=1,2$ ,
(iii) $L(u_{\ell}-v_{\ell})=||u_{\ell}-v_{\ell}||,$ $i=1,2$ .

7. Duality Results for Distance Between Convex Sets

In this section, we propose to study the problem of determining the distance
between two convex sets. To this end we first reformulate Theorem 3.2 as a
duality theorem which expresses this problem as an equivalent maximization
problem in the dual space. Geometrically speaking, it states that the distance
between two convex sets can be expressed as the maximum of the distances
between pairs of parallel hyperplanes each of which separates the two convex sets.

Theorem 7.1. (Duality Theorem) Let $U,$ $V$ be convex subsets of $X$ such that
$d(U, V)>0$ . Then

(7.1) $d(U, V)=\max_{LeS_{X}}\{\inf ReL(U)-\sup ReL(V)\}$ .

This follows at once from Lemma 3.4 (i) and Theorem 3.2. Theorem 7.1 generalizes
a corresponding duality theorem of Garkavi [71 for $d(x, K)$ where $K$ is a convex
set and $x\not\in d(K)$ . It is useful in determining lower bounds on $d(U, V)$ .

Remark. It is obvious that one could restrict the maximum in (7.1) over the
smaller set $\{LGS_{X}*/\sup ReL(V)\leq InfReL(U)\}$ .
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Colollary 7.2. If $0GV$, then

$d(U, V)=\max\{\inf_{eL\ovalbox{\tt\small REJECT}}ReL(U)-\sup ReL(V)\}$ where
(7.2)

$\mathcal{L}=\{(\inf_{L\in U}||u||\cdot V^{o})\cap S_{X^{l}}\}$ .
Heren $V^{0}$ denotes the polar of $V,$ $i.e$ . $V^{0}=\{LeX^{*}/\sup ReL(V)\leq 1\}$ .

Proof. If $\inf_{ueU}||u||=0$ , the result is obvious. Otherwise, by the remark prece-
eding this corollary, the maximum may be taken over all $LeS_{x*}$ satisfying
$supReL(V)\leq InfReL(U)$ . For each such $L$ , $supReL(V)\leq\inf_{ueU}||u||i.e.,$ $LG\inf_{u\in U}||u||$

.
$V^{0}$ and the proof is complete.

In the above corollary $0\in V$ is no restriction at all, since upon translating $V$

by a vector $veV$, the translate $\nabla-v$ is convex, contains $0$ and $d(U-v, V-v)$

$=d(U, V)$ .
Corollary 7.3. If $V$ is a convex cone (resp. a subspace) and $U$ is a convex

set such that $d(U, V)>0$ . Then $d(U, V)=\max\{\inf ReL(U)\}$ , where the maximum
is taken over L $GS_{X}$. satisfying $supReL(V)=0$ (resp. L $GV^{\perp}$).

Next we consider the case when $U,$ $V$ are convex subsets of the dual spaoe
$E^{*}=X$. Theorem 7.1 of course applies here also, but it is often more convenient
to know if one could restrict the search for the maximum over oertain L $GE^{**}$

to $\sigma(E^{*}, E)$ –continuous linear functionals in $E^{**}$ (for a possibly non-reflexive $E$ ).

The following theorem gives sufficient conditions for this to be valid.

Theorem 7.4. Let $U^{*},$ $V^{*}$ be two $\sigma(X^{*}, X)$ –closed convex subsets of $X^{*}$

such that $U^{*}$ is norm bounded and $d(U^{*}, V^{*})>0$ . Then,

(7.3) $d(U^{*}, V^{*})=\sup[\inf Re\theta(U^{*})-\sup Rel(V^{*})]$ ,

The supremum being taken over all $XGX,$ $||x||=1$ .
Proof. For each integer $n\geq 2$ , let

$A_{n}^{*}=\{L\in X^{*}/d(L, U^{*})\leq(1-n^{-1})d(U^{*}, V^{*})\}$ .
Then $A_{n}^{*}$ is convex, $\sigma(X^{*}, X)$ –closed and norm-bounded, henoe $\sigma(X^{*}, X)-compact$ .
Also $U^{*}\subseteq A_{n}^{*}$ and $ A_{n}^{*}\cap V^{*}=\Phi$ . Thus (cf. [5], p. 417) there exists a $\sigma(X^{*}, X)-$

continuous linear functional $i.e$ . an $l_{n}\in X$, such that $||l_{n}||=1$ and

$supRet_{n}(V^{*})<\inf Re\theta_{n}(A_{n}^{*})\leq\inf Re\theta_{n}(U^{*})$ .
Let

$H_{n}^{*}=\{LeX^{*}/Bel_{*}(L)=\sup Ret_{*}(V^{*})\}$ .
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Then $H_{n}^{*}$ is disjoint from $A_{n}^{*}$ and therefore $d(L, U^{*})>(1-n^{-1})d(U^{*}, V^{*})$ for each
$LeH_{n}^{*}$ . Hence $d(H_{n}^{*}, U^{*})\geq(1-n^{-1})d(U^{*}, V^{*})$ . Thus using Lemma 3.3,

$\sup_{\sim}[\inf Ret_{n}(U^{*})-\sup Re\theta_{n}(V^{*})]=\sup d(H_{n}^{*}, U^{*})=d(U^{*}, V^{*})$ ,

and the proof is complete.

Corollary 7.5. Let $U^{*},$ $V^{*}$ be as in Theorem 7.4 and suppose $0GV^{*}$ . Then

$d(U^{*}, V^{*})=\sup\{\inf Re\theta(U^{*})-\sup Re\ell(V^{*})\}$ ,

The supremum being taken over all

$xe\inf_{LeU^{*}}||L||^{0}(V^{*})$ with $||x||=1$ .
(Here we define $0(V^{*})=\{xeXlsupRe\ell(V^{*})\leq 1\}$).

The $prf$ is analogous to the proof of Corollary 7.2.

Corollary 7.6. Let $U^{*}$ be as in Theorem 7.4 and suppose

$V^{*}=\{LeX^{*}/\sup ReL(V)=0\}$ (resp. $V^{*}=V^{\perp}$ )

where $V$ is a convex cone (resp. a subspace) in $X$. Then

(7.4) $d(U^{*}, V^{*})=\sup\{\inf_{LeU}L(x)\}$ ,

The supremum being taken over all $XGV$ with $||x||=1$ .
Proof. The proof follows readily by noting that if $V$ is a convex cone, then

$V=^{0}(V^{*})$ ; while if $V$ is a subspace, then $V^{*}=V^{\perp}$ .
In general, the ‘ sup ‘ in Theorem 7.4 (and hence also in Corollaries 7.5 and

7.6) cannot be always replaced by the maximum. This is evident from the fol-
lowing example. Let $X=l_{1}$ . Then $X^{*}=l_{\infty}$ and take $U^{*}=\dagger(1,1, \cdots)$}, $V^{*}=$

$\{(1l2,1/3, \cdots, 1/n+1, \ldots)\}$ . Here $d(U^{*}, V^{*})=1$ , but for each $x=(x_{1}, x_{2}, \ldots)Gl_{1}$

with $||x||=\Sigma|x_{n}|=1$ , we have

$infRe\theta(U^{*})-\sup Re\theta(V^{*})=Re\Sigma(n/n+1)x_{n}<1$ .
In the next theorem, we embed the problem of finding the distanoe between

two convex sets into the second dual spaoe and obtain in particular, a sufficient
condition under which ‘ sup ‘ in Theorem 7.4 can be replaced by ‘

$\max$ .
Theorem 7.7. Let $U,$ $V$ be convex subsets of $X$ such that $d(U, V)>0$ . Then,

(7.5) $d(U, V)=d(\theta,\tilde{V})=\max[\inf ReL(\theta)-\sup ReL(\tilde{V})]$

$=d(\tilde{U}, \varphi)=\max[\inf ReL_{(}\psi)-\sup Re\mathcal{L}(\tilde{U})]$ ,
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The maximum being taken over $LGS_{x*}$ . Here $\tilde{U},\tilde{V}$ denote the $\sigma(X^{**}, X^{*})-$

closures (or $X^{**}-closures$) of $\theta,$ $\psi$ in $X^{**}$ .
Proof. Sinoe the natural embedding is an isometry, $d(U, V)=d(\theta, \ell)$ and

by Theorem 3.2, there exists an $LGX^{*}$ such that $||L||=1$ and

$d(U, V)=\inf ReL(U)-\sup ReL(V)$ . Hence

$d(\theta, p)=\inf Re\mathcal{L}(\theta)-8UpRe\mathcal{L}_{(}\psi)$ ,

$=InfRe\mathcal{L}_{(}\theta)-\sup ReL(\tilde{V})$ .
This gives that the hyperplane

$H=\{L^{**}\in x**/Re\mathcal{L}(L^{**})=\sup ReL(\tilde{V})\}$ ,

separates $\theta,\tilde{V}$ and henoe by Lemmas 3.3 and 3.4 (1),

$d(\theta, \ell)=d(\theta, H)\leq d(\theta,\tilde{V})$ .
On the other hand, sinoe $t\subseteq\tilde{V},$ $d(\theta,\tilde{V})\leq d(\theta, \psi)$ . This gives $d(\theta, \nu)=d(\theta,\tilde{V})$

and the proof is complete.
We conclude this section by simply stating, for the sake of completeness,

two more duality theorems for $d(U, V)$ , for the case when the promimal points
$\overline{u}GU,\overline{v}GV$ exist. For the first of these theorems, we assume that $U,$ $V$ are
contained in a finite dimensional subspaoe of $X$. The proof of this $threm$

essentially follows from Theorem 5.4 and arguments similar to those in Singer
[18] (Corollary 1.1, page 173). The proof of the second theorem employs the first
theorem. We omit the details.

Theorem 7.8. Let $U,$ $V$ be convex subsets of $X$ such that $d(U, V)>0$ and
dim $[U\cup V]=n$ . If the proximal points a $eU,\overline{v}GV$ exist, then there exist $m$

functionals $LG\mathscr{G}(\mathscr{M}_{(\overline{u},\overline{v})}),$ $i=1,2,$ $\cdots,$ $m$ , where $m\leq n$ if the scalars are real,
$m\leq 2n-1$ if the scalars are complex, such that

$d(U, V)=||\overline{u}-\overline{v}||=\min_{u\in U\in V1}\max_{\leq i\leq m}|L_{\ell}(u-v)|$ .
Theorem 7.9. Let $U,$ $V$ be convex subsets of $X$ such that $d(U_{1}V)>0$ . If

the proximal points $\overline{u}eU,\overline{v}GV$ exist, then

$d(U, V)=\max_{\langle\vee\overline{u},\overline{v})}|L(\overline{u}-\overline{v})|Leg\cdot(’)$

$=\min_{ueU,v\in V}\max_{Leg(\vee)}|L(u-v)|$ .
(Here $g(\mathscr{M}_{(\overline{u},\overline{v})})$ denotes the same set as in Section 5).
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