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0. Introduction. Let $T$ be a self-mapping on a non-empty complete metric
space (X, $d$). $T$ is a contraction if there exists $k$ in $(0,1)$ such that

$d(T(x), T(y))\leq kd(x, y)$ , $x,$ $yeX$ , (1)

The well-known Banach contraction mapping theorem says that every contraction
on $X$ has a unique fixed point. The idea of the proof is to show that for any $x$

in $X$, the sequence $\{T(x)\}$ of iterates of $x$ under $T$ is Cauchy and its limit is the
unique fixed point of $T$. A lot of generalizations were obtained by using the
above idea with a weaker hypothesis. Among these generalizations, a number of
authors $(e.g. [3], [4], [7])$ assume a condition on $T$ so that, as a consequence, there
exists $ke(0,1)$ such that

$d(T(x), T^{2}(x))\leq kd(x, T(x))$ , $xe$ X. (2)

This condition together with the continuity of $T$ will insure that $T$ has a fixed
point. It is quite obvious that a contraction on $X$ must be continuous and satisfy

(2). Let us think $T$ as a motion on $X$. Let $xeX$. Then in the first step (from

$x$ to $T(x)),$ $x$ travels a distance of $d(x, T(x))$ ; in the second step it travels a
distanoe of $d(T(x), T^{2}(x))$ . (2) requires that the distance that $x$ travels in any
step must be equal or less than the preceding step multiplied by a constant less
than 1. This condition is too restrictive in the sense that practically, we can
observe $x$ walking $(n+1)$ steps (given $n$). Naturally, we would be able to compare

the $(n+1)^{th}$ steP with its preceding $n$ steps.

1. Main results.

Theorem 1. Let (X, d) be a metric space. Let $T$ be a self-mapping on $X$.
SuPpose that there exist non-negative real numbers $a_{1},$ $a_{2},$ $\cdots,$ $a_{n}$ such that

(a) $a_{1}+a_{2}+\cdots+a_{n}<1$ ,

(b) $d(T^{n+1}(x), T^{n}(x))\leq\Sigma_{i=1}^{n}a_{i}d(T^{\ell}(x), T^{\ell-1}(x))$ , $xeX$ .
Then $\{T^{m}(x)\}$ is Cauchy for every $x$ in $X$.
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Proof. Let $xeX$. By (b),

$d(T^{n+2}(x), T^{n+1}(x))\leq\Sigma_{i\underline{-}1}^{n}a_{\ell}d(T^{\ell+1}(x), T^{\ell}(x))$

$=\Sigma_{i\underline{-}1}^{n-1}a_{\ell}d(T^{\ell+1}(x), T^{\ell}(x))+a_{n}d(T^{n+1}(x), T^{n}(x))$ ,
and

$d(T^{n+1}(x), T^{n}(x))\leq\sum_{t=1}^{n}a_{\ell}d(T^{\ell}(x), T^{i-1}(x))$ .
So

$d(T^{n+2}(x), T^{n+1}(x))\leq\Sigma_{\ell=2}^{n}(a_{n}a_{\ell}+a_{i-1})d(T^{\ell}(y), T^{\ell-1}(x))+a_{n}a_{1}d(T(x), x)$ . (3)

Let $ie\{1,2, \cdots, n\}$ ,
$b_{\ell.\ell}=1$ , (4)

$b_{i.j}=0$ , $j\neq i$ , $j<n+1$ ; (5)

$b_{\ell,p+1}=\Sigma_{f=1}^{n}a_{j}b_{\ell.j+p-n}$ , $p\geq n$ . (6)

Then obvIously, for $p=1,2,$ $\cdots,$ $n,$ $n+1$ ,

$d(T^{p}(x), T^{p-1}(x))\leq\sum_{t\underline{-}1}^{n}b_{\ell.p}d(T^{\ell}(x), T^{\ell-1}(x))$ . (7)

From (3) $-(6),$ (7) holds for $p=n+2$ . By induction, suppose that (7) is true for
$p\leq k(k\geq n+2)$ . Then by (b) and the induction hypothesis,

$d(T^{k+1}(x), T^{k}(x))\leq\Sigma_{j=1}^{n}a_{j}d(T^{j+k-n}(x), T^{j+k-n-1}(x))$

$\leq\Sigma_{j\overline{-}1}^{n}a_{j}\Sigma_{i=1}^{n}b_{\ell.j+k-n}d(T^{\ell}(x), T^{\ell-1}(x))$

$=\Sigma_{\ell=1}^{n}(\Sigma_{f=1}^{n}a_{j}b_{\ell,j+k-n})d(T^{i}(x), T^{\ell-1}(x))$

$=\Sigma_{\ell\Leftarrow 1}^{n}b_{\ell.k+1}d(T^{\ell}(x), T^{i-1}(x))$ .
So

$d(T^{j}(x), T^{j-t}(x))\leq\Sigma_{-,-1}^{\dot{n}}b_{\ell.j}d(T^{\ell}(x), T^{\ell-1}(x))$ , $j=1,2,$ $\ldots$ . (8)

From (4) $-(6)$ , we have
$b_{\ell,n+k+1}<a$ , $k=0,1,2,$ $\cdots,$ $n-1$ .

where $a=\sum_{t--1}^{n}a_{\ell}$ . So
$b_{\ell.2n+k+1}=\Sigma_{f-1}^{n}a_{j}b_{\ell.j+n+k}$

$\leq\Sigma_{f\overline{-}1}^{n}a_{j}a$

$=a^{2}$ , $k=0,1,2,$ $\ldots,$ $n-1$ .
By induction,

$b_{\ell.mn+k+1}\leq a^{m}$ ; $m=1,2,$ $\cdots$ ; $k=0,1,2,$ $\ldots,$ $n-1$ .
So for $i=1,2,$ $\cdots,$ $n$ ,

$\Sigma_{f=n+1}^{\infty}b_{\ell.j}=\Sigma_{m=1}^{\infty}(\Sigma_{k=0}^{n-1}b_{\ell.mn+k+1})$

$\leq\Sigma_{m\Leftarrow 1}^{\infty}(na^{m})$

$=n\sum_{m-1}^{\infty}a^{\hslash}$ . (9)
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From (9) and (a), $\sum_{j=1}^{\infty}b_{\ell,j}$ is convergent for each $i=1,2,$ $\cdots,$ $n$ . So

$\sum_{\ell-1}^{n}-(\Sigma_{j=1}^{\infty}b_{\ell.f})d(T^{\ell}(x), T^{i-1}(x))<\infty$ . (10)

Since the convergence of a convergent series of non-negative real numbers does

not depend on the order of its terms, we have from (8) and (10)

$\Sigma_{f=1}^{\infty}d(T^{j}(x), T^{j-1}(x))<\infty$ . (11)

Let $\epsilon>0$ . Then there exists a positive integer $n(\epsilon)$ such that

$\Sigma_{j=n(\cdot)}^{\infty}d(T^{j}(x), T^{j-1}(x))<\epsilon$ .
For $p>q>n(\epsilon)$ ,

$d(T^{p}(x), T^{q}(x))\leq\sum_{j--q+1}^{p}d(T^{j}(x), T^{j-1}(x))$

$\leq\Sigma_{j=n(*)}^{\infty}d(T^{j}(x), T^{j-1}(x))<\epsilon$ .
So $\{T^{n}(x)\}$ is Cauchy.

Theorem 2. Let (X, d) be a non-empty metric space. Let $T$ be a self-mapping

on $X$. Suppose that there exist non-negative real numbers $s,$ $t,$ $p_{\ell},$ $q_{\ell},$ $r_{\ell},$ $i=1,2,$ $\cdots,$ $n$ ,

such that

(a) $a\equiv\epsilon+t+\Sigma_{i=1}^{n}(p_{i}+q_{i}+r_{i})<1$ ,

(b) for any $x,$ $y$ in $X$,

$d(T^{n}(x), T^{n}(y))\leq\Sigma_{i=1}^{n}p_{\ell}d(T(x), T^{\ell-1}(x))+\Sigma_{i--1}^{n}q_{\ell}d(T^{\ell}(y), T^{-1}(y))$

$+\sum_{\ell=1}^{n}r_{\ell}d(T^{\ell-1}(x), T^{\ell-1}(y))+sd(T^{n-1}(x), T^{n}(y))$

$+td(T^{n}(x), T^{n-1}(y))$ .
Then for any $z$ in $X,$ $\{T^{m}(z)\}$ is Cauchy.

Proof. Let $zeX,$ $x=z,$ $y=T(z)$ . From (b),

$d(T^{n}(z), T^{n+1}(z))\leq\Sigma_{i=1}^{n}p_{\ell}d(T^{\ell}(z), T^{\ell-1}(z))$

$+\sum_{i--1}^{n}qd(T^{\ell+1}(z), T^{\ell}(z))$

$+\Sigma_{i--1}^{n}r_{\ell}d(T^{\ell-1}(z), T^{\ell}(z))$

$+sd(T^{n-1}(z), T^{n+1}(z))$ . (12)

Since
$d(T^{n-1}(z), T^{n+1}(z))\leq d(T^{n-1}(z), T^{n}(z))+d(T^{n}(z), T^{n+1}(z))$ ,

from (12),
$(1-s-q_{n})d(T^{n}(z), T^{n+1}(z))\leq(p_{1}+r_{1})d(T(z), z))$

$+\Sigma_{i=2}^{n-1}(p_{\ell}+q_{\ell-1}+r_{\ell})d(T^{\ell}(z), T^{\ell-1}(z))$

$+(p_{n}+q_{n-1}+r_{n}+s)d(T^{n}(z), T^{n-1}(z))$ . (13)

Let $x=T(z),$ $y=z$ . Then from (b),
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$(1-t-p_{n})d(T^{n+1}(z), T^{n}(z))\leq(q_{1}+r_{1})d(T(z), z)$

$+\sum_{t=2}^{n-1}(q_{\ell}+p_{\ell-1}+r_{\ell})d(T^{\ell}(z), T^{\ell-1}(z))$

$+(q_{n}+p_{n-1}+r_{n}+t)d(T^{n}(z), T^{n-1}(z))$ . (14)

Simplifying (13) $+(14)$ , we have

$(2-s-t-p_{n}-q_{n})d(T^{n+1}(z), T^{n}(z))\leq(p_{1}+q_{1}+2r_{1})d(T(z), z)$

$+\Sigma_{\ell\Leftarrow 2}^{n-1}(p_{\ell}+q_{\ell}+p_{\ell-1}+q_{-1}+2r_{\ell})d(T^{i}(z), T^{\ell-1}(z))$

$+(p_{n}+q_{n}+p_{n-1}q_{n-1}+2r_{n}+s+t)d(T^{n}(z), T^{n-1}(z))$ .
Let

$\alpha_{1}=\frac{p_{1}+q_{1}+2r}{2-s-t-p_{f*}-q_{n}}$ , (15)

$\alpha_{i}=\frac{p+q_{\ell}+p_{-1}+q_{\ell-1}+2r}{2-s-t-p_{n}-q_{n}}$ , $i=2,3,$ $\ldots,$ $n-1$ , (16)

$\alpha_{n}=\frac{p_{n}+q_{n}+p_{n-1}+q_{n-1}+s+t+2r_{n}}{2-s-t+p_{n}-q_{n}}$ . (17)

Then $\alpha_{1},$ $\alpha_{2},$ $\ldots,$
$\alpha_{n}e[0, \infty$) and

$d(T^{n+1}(z), T^{n}(z))\leq\Sigma_{i=1}^{n}\alpha_{\ell}d(T^{\ell}(z), T^{\ell-1}(z))$ .
Now

$\sum_{i=1}^{n}\alpha_{\ell}=\frac{2a-s-t-p_{n}-q_{n}}{2-s-t-p_{n}-q_{*}}<1$ .
So by Theorem 1, $\{T^{m}(z)\}$ is Cauchy.

2. Fixed point theorems.

Theorem 3. Let (X, d) be a non-empty complete metric space. Let $z$ be a
family of commuting self-mappings on $X$. Suppose that there exists $T$ in $\pi$ such
that $T$ is continuous and satisfies the conditions of Theorem 2. Then $T$ has a
unique fixed point $x_{0}$ . Henoe $x_{0}$ is the common fixed poInt of $\ovalbox{\tt\small REJECT}^{-}$.

Proof. Let $zeX$. By Theorem 2, $\{T^{n}(z)\}$ is Cauchy. By completeness of
(X, $d$), $\{T^{n}(z)\}$ converges to some $x$ in $X$. By continuity of $T,$ $x$ is a fixed point
of $T$. Let $x,$ $y$ be fixed points of $T$. Then by (b) in Theorem 2,

$d(x, y)=d(T^{n}(x), T^{n}(y))\leq(\sum_{i=1}^{n}r+s+t)d(x, y)$ .
Since $\sum_{\ell\Leftarrow 1}^{n}r_{\ell}+s+t<1,$ $x=y$ . So $T$ has a unique fixed point $x$ . Let $Se\ovalbox{\tt\small REJECT}^{-}$. Then

$S(x)=S(T(x))=T(S(x))$ .
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So $S(x)$ is a fixed point of $T$. By uniqueness $S(x)=x$ . So $x$ is the common fixed
point to $\mathscr{G}^{-}$.

If (X, d) in Theorem 3 is replaced by a generalized complete metric space [2],
[5], [8], then, to obtain the same conclusion, we need to assume further that for
some $x,$ $ d(T^{i}(x), T^{-1}(x))<\infty$ for $n$ consecutive $i’ s$ . Also, in practice, the conditions
of Theorem 3 can be weakened: if we know $\{T^{m}(z)\}$ converges to $x$ , then we need
only to assume that $T$ is continuous at $x$ . For example, let $X$ be the real line
with the usual distance, let $T$ be the self-mapping on $X$ defined by

$T(x)=\frac{1}{2}x$ if $x$ is irrational,

$T(x)=-\frac{1}{2}x$ if $x$ is rational.

Then $T$ is not contractive since $T$ is continuous only at $x=0$ . But $T^{2}$ is con-
tractive. So by Theorem 2, $\{T^{m}(z)\}$ is Cauchy at everv $z$ in $X$. Now $\{T^{M}(z)\}$

converges to zero and $T$ is continuous at zero. So $T$ has a fixed point at zero.
Note that if we aPply the Banach contraction mapping to $T^{2}$ . We will know
that $\{T^{2m}(z)\}$ but not $\{T^{m}(z)\}$ is Cauchy. Sherwood C. Chu and J. B. Diaz [1]

noted that ” It is of interest to notice that an example of a discontinuous trans-
formation $A$ , with $A^{2}$ contracting, can be given even when the metric space $R$ is
the set of real numbers”. They constructed an example by using Zorn’s lemma.
We note here that there are quite a few such examples whose construction do
not depend on the axiom of choice. The above $T$ is one! In fact, there also
exist a lot of continuous self-mapping $T$ on the real line $R$ such that $T^{2}$ but not
$T$ is a contraction, $e.g.$ , if

$T(x)=-\frac{1}{2}x$ if $x>0$ ,

$T(x)=-x$ if $x\leq 0$ ,

then $T$ is such a mapping.

Theorem 4. Let (X, d) be a non-empty compact metric space. Let $T$ be a
continuous self-mapping on $X$. Suppose that there exist non-negative real numbers
$s,$ $t,$ $p_{\ell},$ $q_{\ell},$ $r_{\ell},$ $i=1,2,$ $\ldots,$ $n$ such that

(a) $s+t+\Sigma_{\ell\overline{-}1}^{n}(p_{\ell}+q_{\ell}+r_{\ell})=1$ ;

(b) for any distinct $x,$ $y$ in $X$,
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$d(T^{n}(x), T^{n}(y))<\Sigma_{i=1}^{n}p_{\ell}d(T^{\ell}(x), T^{\ell-1}(x))$

$+\Sigma_{\ell=1}^{n}q_{\ell}d(T^{i}(y), T^{\ell-1}(y))$

$+\Sigma_{i=1}^{n}r_{\ell}d(T^{\ell-1}(x), T^{\ell-1}(y))$

$+sd(T^{n-1}(x), T^{n}(y))+td(T^{n}(y), T^{n-1}(x))$ .
Then $T$ has a unique fixed point.

Proof. We shall first prove that $T$ has a fixed point. Let $z\in X$. Suppose

that $T^{n-1}(z)$ is not a fixed point of $T$. By (b) and a similar argument as in the
proof of Theorem $2_{\ell}$ we obtain

$(2-s-t-p_{n}-q_{n})d(T^{n+1}(z), T^{n}(z))<(p_{1}+q_{1}+2r_{1})d(T(z), z)$

$+\Sigma_{i\overline{-}2}^{n-1}(p_{\ell}+q_{\ell}+p_{\ell-1}+q_{\ell-1}+2r_{i})d(T^{\ell}(z), T^{\ell-1}(z))$

$+(p_{n}+q_{n}+p_{n-1}+q_{n-1}+2r_{n}+s+t)d(T^{n}(z), T^{n-1}(z))$ .
So $2-s-t-p_{n}-q_{n}>0$ (otherwise, from (a), the coefficients of $d(T^{j-1}(z), T^{j-1}(z))$ in
the above inequality is equal to $0$ for each $j=1,2,$ $\cdots,$ $n$ whenoe $0<0$ , a contradic-
tion). Therefore $\alpha_{1},$ $\alpha_{2},$ $\cdots,$ $\alpha_{n}$ defined by (15) $-(17)$ are real numbers. Now we
have

$\alpha_{1}+\alpha_{2}+\cdots+\alpha_{n}=1$ ,

and
$d(T^{n+1}(z), T^{n}(z))<\Sigma_{\ell=1}^{n}\alpha_{\ell}d(T^{\ell}(z), T^{\ell-1}(z))$

$\leq\max\{d(T^{\ell}(z), T^{\ell-1}(z)): i=1,2, \cdots, n\}$ , (18)

where $zeX,$ $T^{n}(z)\neq T^{n-1}(z)$ . Consider the function $\phi$ on $X$ defined by

$\phi(x)=\max\{d(T^{i}(x), T^{\ell-1}(x)): i=1,2, \cdots, n\}$ , $x\in X$ .
Sinoe $T$ is continuous, $\phi$ is continuous. So $\phi$ takes its minimum value at some
point $w$ in $X$. We claim that $T^{m-1}(w)$ is a fixed point of $T$ for some $m\geq n$ . For
if not, then apPlying (18) to $T^{n+j-1}(w),$ $j=0,1,2,$ $\ldots,$ $n-1$ , we obtain

$\phi(T^{n}(w))<\phi(w)$ ,

a contradiction to the choice of $w$ . Now let $x,$ $y$ be fixed points of $T$. If $x\neq y$ ,
then by (b),

$d(x, y)=d(T^{n}(x), T^{n}(y))<(\Sigma_{i=1}^{n}\gamma_{\ell}+s+t)d(x, y)\leq d(x, y)$ ,

a contradiction. So $T$ has a unique fixed point.

Let (X, d) be a non-empty complete metric space. Let $T$ be a continuous
self-mapping on $X$ which satisfies the conditions of Theorem 2. One wonders if
there is an equivalent complete metric for $X$ under which $T$ becomes a contraction.
The following result gives an affirmative answer.
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Theorem 5. Let (X, d) be a non-empty complete metric space. Let $T$ be a
continuous self-mapping on $X$ which satisfies the conditions of Theorem 2. Then

for some $k$ in $(0,1)$ , there exists a complete metric $d_{k}$ for $X$ such that $d_{k}$ is topologi-

cally equivalent to $d$ and

$d_{k}(T(x), T(y))\leq kd_{k}(x, y)$ , $x,$ $y\in X$ .
Proof. By Theorem 3, $T$ has a unique fixed point $x_{0}$ . Since $T$ is continuous,

by a result of P. R. Meyer [6, Theorem 1], we need only to prove that $\{T^{p}(V)\}$

converges to $x_{0}$ for some neighborhood $V$ of $x_{0}$ . Let

$V=\{xeX:d(T^{\ell-1}(x), x_{0})<1 , i=1,2, \cdots, n\}$ .
Then $x_{0}eV$. By continuity of $T,$ $V$ is a neighborhood of $x_{0}$ . Let $\epsilon>0$ . It suffices
to prove that $T^{p}(V)\subset\{xeX:d(x, x_{0})<\epsilon\}$ for large $p’ s$ . Let $zeX$. By (b) in
Theorem 2 (with $x=z,$ $y=x_{0}$),

$d(T^{n}(z), x_{0})=d(T^{n}(z), T^{n}(x_{0}))$

$\leq\Sigma_{i\leftarrow 1}^{n}pd(T^{\ell}(z), T^{\ell-1}(z))+\Sigma_{i=1}^{n}r_{\ell}d(T^{\ell-1}(z), x_{0})$

$+sd(T^{n-1}(z), x_{0})+td(T^{n}(z), x_{0})$ . (19)

Since
$d(T^{\ell}(z), T^{\ell-1}(z))\leq d(T(z), x_{0})+d(T^{\ell-1}(z), x_{0})$ , $i=1,2,$ $\ldots,$ $n$ ,

from (19), we obtain

$(1-t-p_{n})d(T^{\prime}(z), x_{0})\leq\Sigma_{-2}^{\dot{n}-1}(p_{-1}+r+p_{\ell})d(T^{i-1}(z), x_{0})$

$+(r_{1}+p_{\iota})d(z, x_{0})+(p_{n-1}+r_{n}+p_{n}+s)d(T^{n-1}(z), x_{0})$ . (20)

Similarly, be letting $x=x_{0},$ $y=z$ , we have

$(1-s-q_{n})d(T^{n}(z), x_{0})\leq\sum^{n-1}\Leftrightarrow 2(q_{\ell-1}+r_{\ell}+q)d(T^{\ell-1}(z), x_{0})$

$+(r_{1}+q_{\iota})d(z, x_{0})+(q_{n-1}+r_{n}+q_{n}+t)d(T^{n-1}(z), x_{0})$ . (21)

From (20) and (21), we have

$d(T^{n}(z), x_{0})\leq\sum_{\ell-1}^{n}\alpha d(T^{\ell-1}(z), x_{0})$ , $zeX$ ,

where $\alpha_{\ell}s$ were defined by (15), (16) and (17). By repeating a similar argument

as in the proof of Theorem 1, we obtain

$d(T^{p}(z), x_{0})\leq\sum^{n}b.d(T^{\ell-1}(z), x_{0})$ , $zeX$ , (22)

where $b.s$, were defined by (4), (5) and (6). Since $\{b.p\}$ converges to zero for
each $i=1,2,$ $\ldots,$ $n$ , there exists a positive integer $n(\epsilon)$ such that

$ b.p<\epsilon$ for all $i=1,2,$ $\cdots,$
$n;p\geq n(\epsilon)$ .
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So from (22),
$ d(T^{p}(z), x_{0})<\epsilon$ for all $zeV$ , $p\geq n(\epsilon)$ ,

$i.e$ . $T^{p}(V)\subset\{xeX:d(x, x_{0})<\epsilon\}$ for all $p\geq n(\epsilon)$ .
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