A NOTE ON MALCEV AND QUASI-LIE ALGEBRAS

By
N. Mahalingeshwara

(Received August 17, 1972)

1. Throughout this paper the algebras considered are non-associative (i. e., not necessarily associative) and $J(x, y, z)$ will denote $(x y) z+(y z) x+(z x) y$ under usual multiplication operation, which expression, for simplicity, may be written as

$$
x y \cdot z+y z \cdot x+z x \cdot y
$$

A. A. Sagle [1] studied Malcev algebras. In this note, firstly we give a characterization of Maclev algebras in terms of Jacobi-Teichmüller identity (Theorem 2.2), and then use the same to give alternative simpler proofs of some of the results proved by Sagle (Propositions 4.1 and 5.1). Kass and Witthoft [3] found the irreducible homogeneous polynomial identities of degree less that or equal to four in anticommutative algebras over a field of characteristic different from two. We use his fifth polynomial

$$
J(x, y, z) w-J(w, x, y) z+J(z, w, x) y-J(y, z, w) x
$$

([3], Theorem 2) to define a concept of quasi-lie algebra, and to show that Malcev algebras and extended lie algebras (see Sagle [2]) are not comparable with quasilie algebras. Sagle introduced the concepts of the 'Lie subsets' and 'Nucleus' and showed that, in Malcev algebra, they form a subalgebra and an ideal respectively. In this note, we construct some examples to show that the lie subset and the nucleus may not be so in quasi-lie algebras.
2. We first state the following lemma of Sagle [1].

Lemma 2.1. An algebra A of characteristic not two is a Malcev algebra if and only if A satisfies $x y=-y x$ and

$$
x y \cdot z w=x(w y \cdot z)+w(y z \cdot x)+y(z x \cdot w)+z(x w \cdot y) \text { for all } x, y, z, w \text { in } A .
$$

It is well known that the Teichmuiller identity

$$
(w x, y, z)-(w, x y, z)+(w, x, y z)-w(x, y, z)-(w, x, y) z=0
$$

holds in all non-associative algebras (see Kleinfield [4]) where (a, b, c) is the associator $(a b) c-a(b c)$.

Now we give a characterization of Malcev algebras:
Theorem 2.2. An anticommutative algebra of characteristic not two, is Malcev if and only if it satisfies the identity

$$
\begin{equation*}
J(w x, y, z)-J(w, x y, z)+J(w, x, y z)-w J(x, y, z)-J(w, x, y) z=0 \tag{1}
\end{equation*}
$$

(We shall call this identity as Jacobi-Teichüller)
Proof. Let A satisfy the Jacobi-Teichmiuller identity. Put $w=x$ in (1). Then the above expression reduces to $-J(x, x y, z)-x J(x, y, z)=0$, since the other two terms reduce to zero.

Hence, we have by interchanging y and $z, J(x, y, x z)=J(x, y, z) x$ for all x, y, z in A, which defines Malcev algebra (Sagle [1]).

Conversely let A be a Malcev algebra, then by lemma 2.1, we have $y x \cdot z w$ $=y(w x \cdot z)+w(x z \cdot y)+x(z y \cdot w)+z(y w \cdot x)$. Adding to it the Teichmüller identity $(w x, y, z)-(w, x y, z)+(w, x, y z)-w(x, y, z)-(w, x, y) z=0$ which holds in every nonassociative algebra and adjusting the corresponding terms, we obtain

$$
J(w x, y, z)-J(w, x y, z)+J(w, x, y z)-w J(x, y, z)-J(w, x, y) z=0
$$

Hence the proof is complete.
3. We shall call a non-associative algebra a quasi-lie algebra if it is anticommutative and satisfies

$$
J(x, y, z) w-J(w, x, y) z+J(z, w, x) y-J(y, z, w) x=0
$$

We see immediately from the definition that any anti-commutative algebra of dimension not exceeding three is a quasi-lie algebra.

Consider the following examples:
Ex. 1. The algebra A having basis $\left\{e_{1}, e_{2}, e_{3}\right\}$ with the multiplication table:

	e_{1}	e_{2}	e_{3}
e_{1}	0	e_{1}	e_{2}
e_{2}	$-e_{1}$	0	$-e_{3}$
e_{3}	$-e_{2}$	e_{3}	0

is a quasi-lie algebra of dimension three but it can be easily checked that it is neither Malcev nor extended lie, i.e. it does not satisfy the identity $J(x, y, x y)=0$, [2].

Ex. 2. The algebra A having basis $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$ with the multiplication:

	e_{1}	e_{2}	e_{3}	e_{4}
e_{1}	0	e_{3}	e_{4}	0
e_{2}	$-e_{3}$	0	0	e_{1}
e_{3}	$-e_{4}$	0	0	e_{2}
e_{4}	0	$-e_{1}$	$-e_{2}$	0

is a quasi-lie algebra of dimension four, but not a Malcev algebra since $J\left(e_{1}, e_{2}, e_{1} e_{3}\right)$ $=e_{2} \neq J\left(e_{1}, e_{2}, e_{3}\right) e_{1}=0$. It is not even an extended lie algebra since $J\left(e_{1}, e_{2}, e_{1} e_{2}\right)$ $=e_{1} \neq 0$.

Ex. 3. The non-associative algebra with the basis $\left\{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}, e_{7}\right\}$ having the multiplication table:

	e_{1}	e_{2}	e_{3}	e_{4}	e_{5}	e_{8}	e_{7}
e_{1}	0	$2 e_{2}$	$2 e_{3}$	$2 e_{4}$	$-2 e_{5}$	$-2 e_{8}$	$-2 e_{7}$
e_{2}	$-2 e_{2}$	0	$2 e_{7}$	$-2 e_{6}$	e_{1}	0	0
e_{8}	$-2 e_{3}$	$-2 e_{7}$	0	$2 e_{5}$	0	e_{1}	0
e_{4}	$-2 e_{4}$	$2 e_{8}$	$-2 e_{5}$	0	0	0	e_{1}
e_{5}	$2 e_{5}$	$-e_{1}$	0	0	0	$-2 e_{4}$	$2 e_{3}$
e_{8}	$2 e_{6}$	0	$-e_{1}$	0	$2 e_{4}$	0	$-2 e_{2}$
e_{7}	$2 e_{7}$	0	0	$-e_{1}$	$-2 e_{3}$	$2 e_{2}$	0

is a Malcev algebra, but not a quasi-lie algebra, because

$$
J\left(e_{4}, e_{6}, e_{6}\right) e_{7}-J\left(e_{7}, e_{4}, e_{5}\right) e_{6}+J\left(e_{6}, e_{7}, e_{4}\right) e_{5}-J\left(e_{5}, e_{6}, e_{7}\right) e_{4}=36 e_{4} \neq 0
$$

The above examples exhibit that neither the Malcev nor the extended lie algebras are generalization of quasi-lie algebra and conversely.
4. Sagle [1] defines that a subset B of non-associative algebra A is a lie subset of A if $J(B, B, B)=0$. B is a maximal lie subset of A provided B is a maximal subset of A such that $J(B, B, B)=0$.

We now give a simpler proof of a Sagle's theorem 4.1 [1] and show that it is not true in the case of quasi-lie algebras.

Proposition 4.1. Every maximal lie subset B of a Malcev algebra A of characteristic not two is a subalgebra of A.

Proof. Let $w, x, y, z \in B$. Since B is a lie subset of the Malcev algebra A, both $J(x, y, z)$ and $J(w, x, y)$ are equal to zero. Now using Theorem 2.2 above

$$
\begin{equation*}
J(w x, y, z)-J(w, x y, z)+J(w, x, y z)=0 \tag{a}
\end{equation*}
$$

for all w, x, y, z of B. Consider $J(x, y, z) w-J(w, x, y) z+J(z, w, x) y-J(y, z, w) x$
in B which is identically zero since B is a lie subset, but one can see that in a Malcev algebra of characteristic different from 2, this identity reduces to

$$
\begin{equation*}
J(w x, y, z)+J(w, x, y z)=0 \tag{b}
\end{equation*}
$$

by Sagle [1], Prop. 2.23.
From (a) and (b), it follows that $J(w, x y, z)=0$ for all $w, x, y, z \in B$. Thus B is a subalgebra.

We have seen that the algebra with basis $\left\{e_{1}, e_{2}, e_{3}\right\}$ considered in Ex. 1 is a quasi lie algebra and can easily be seen that it has a subspace B generated by $\left\{e_{1}, e_{3}\right\}$ as a maximal lie subset. This B is not a subalgebra as in the Malcev case of A since $e_{1} e_{3}=e_{2} \notin B$.

The following example further shows that a maximal lie subset of a Malcev algebra need not be an ideal.

Ex. 4. The algebra A with basis $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$ having the multiplication table :

	e_{1}	e_{2}	e_{3}	e_{4}
e_{1}	0	$-e_{2}$	$-e_{3}$	e_{4}
e_{2}	e_{2}	0	$2 e_{4}$	0
e_{3}	e_{3}	$-2 e_{4}$	0	0
e_{4}	$-e_{4}$	0	0	0

is a Malcev algebra. The subspace generated by $\left\{e_{1}, e_{2}, e_{\Delta}\right\}$ is a maximal lie subset, but not an ideal.
5. The nucleus N of a Malcev algebra A is defined as

$$
N=\{x \in A \mid J(x, y, z)=0 \quad y, z \in A\}
$$

This implies that N is the maximal subset of A such that $J(N, A, A)=0$. It can further be noted by definition of quasi-lie algebra that if N is the nucleus of the quasi-lie algebra then N satisfies $N J(A, A, A)=0$ and is also a subalgebra.

It may be remarked that a simpler proof of Sagle's lemma 5.13 can be obtained by using our theorem 2.2 and the Jacobi-Teichmuiller identity which we have introduced.

Proposition 5.1. The nucleus of a Malcev algebra A is an ideal of A.
Proof. Let $w \in N$ and $x, y, z \in A$ where A is a Malcev algebra, N be its nucleus. From the Jacobi-Teichmuller identity it follows that

$$
\begin{equation*}
J(w x, y, z)-w J(x, y, z)=0 \tag{c}
\end{equation*}
$$

Again in the same identity, assuming that $x \in N$ and $x, y, z \in A$, we obtain

$$
J(w x, y, z)-J(w, x y, z)=0 .
$$

Because of the anticommutativity, the above expression implies that

$$
-J(x w, y, z)-J(x y, z, w)=0 .
$$

Using the result (c), this gives us

$$
\begin{aligned}
& -x J(w, y, z)-x J(y, z, w)=0 \text {, } \\
& \text { i. e. } \quad 2 x J(w, y, z)=0 .
\end{aligned}
$$

Since the characteristic is different from 2, we have $x J(w, y, z)=0$ whenever $x \in N$. Therefore, if $w \in N$, and $x, y, z \in A$, we have $J(w x, y, z)=0$ implying that N is an ideal of A.

Acknowledgements

The author wishes to express his gratitude to Prof. M.A. Kazim and Dr. Surjeet Singh for their help in the preparation of this paper. The author is also thankful to Dr. Orihara for his helpful comments.

REFERENCES

[1] A. A. Sagle: Malcev algebras, Trans. Amer. Math. Soc., Vol. 101 (1961), 426-458.
[2] A.A. Sagle: On simple extended lie algebras over a field of characteristic zero, Pac. Jour. Math. Vol. 15 (1965), 621-648.
[3] S. Kass and W. G. Witthoft: Irreducible polynomial identities in anticommutative algebras, Proc. Amer. Math. Soc., Vol. 26 (1970) 1-9.
[4] E. Kleinfield: Generalization of alternative rings I, J. Algebra, Vol. 18 (1971), 304325.

Pepartment of Mathematics and Statistics, Aligarh Muslim University, Aligarh, U.P., INDIA.

