
A VERSION OF BIRKHOFF-FRINK’S THEOREM
IN THE ABSTRACT GEOMETRY

By

C. J. HSU

(Received July 25, 1972)

The following theorem of Birkhoff-Frink is a well-known important result for
the lattice of subalgebras of an abstract algebra:

Theorem. A lattice $L$ is isomorphic with a subalgebra-lattice if and only if
$L$ is complete, meet-continuous, and every element of $L$ is a join of join-inaccessible

element8. ([1] and also [2], Thm. 9, p. 188)

It is intended in this note to give a different version of this theorem so that
some results of abstract geometry can also be subordinated to it.

1. It is known that one can identify every hull-operation in a complete lattice
$V$ with a hull-system which is a complete $\cap$ -subband ( $\cap$ -Teilbund) of V. ([3] and
also [4] Satz 6.5 p. 32)

When $V$ is the complete lattice $P(m)$ of all subsets of a set $m$ , then the hull-
operation is a closure operation and to each such operation is associated a closure
property.

A closure property $\Phi$ associated with a closure operation $X\rightarrow\overline{X}$ on the subsets
$X$ of the set $m$ is said to be finitary if the condition $ Xe\Phi$ is equivalent to the
condition that $K\subset X$ and, $K$ finite imply $\overline{K}\subset X.$ ([2] p. 185)

The complete $\cap$ -subbands of $P(m)$ which correspond to closure operation whose
associated closure properties are finitary are characterized by the following:

Theorem 1. Let $A$ be a complete $\cap$ -subband of $P(m)$ . Then the following

two conditions are equivalent: (See [2], Lemma 1 p. 186).

a) There is a closure operation on $P(m)$ , for which the as8ociated closure
Property is finitary and the subset of $m$ belongs to $A$ if and only if it is closed
under the closure operation.

b) For each directed set $M$ contained in $A$ , the set union $\cup M$ is also contained
in $A$ .

The proof of this theorem can be obtained by modifying the proof of the
corresponding theorem in the book of Hermes ([4] Satz 7.2, p. 35 or see the
appendix to this note).
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As a eorollary to $Th\ovalbox{\tt\small REJECT} rem1$ , one gets the following:

Corollary 1. For a complete $\cap$ -subband $A$ satisfying a) and a subset $X\subset m$ ,
$\overline{X}$ is the union of all $\overline{Y}$ with finite $Y\subset X$.

Proof. Consider the family $\overline{Y}$ for all finite subset $Y$ of $X$. Then YcX and
U $\overline{Y}\subset\overline{X}$. Now this family is obviously directed, so U $\overline{Y}$ is closed and U $\overline{Y}\supset X$.
Hence U $\overline{Y}\supset\overline{X}$ and one gets $\overline{X}=U$ Y.

2. There are many interesting examples of complete $\cap$ -subbands of $P(m)$ which
belong to this category. For examples, the lattice of subalgebras of an algebra
$[S, F]$ ([2] p. 132 and p. 185, and Theorem 6, p. 186), the lattice of subgeometrie8

of an ab8tract geometry with finitary operation in the sense of Maeda [5], and the
lattice of flats of (merely finitary) geometry as defined by Jonsson [6].

A (merely finitary) geometry (as defined by Jonsson) is an ordered pair $\langle S, C\rangle$

consisting of a set $S$ and a function $C$ which associates with every subset $X$ of $S$

another subset $C(X)$ (which is also denoted as $\overline{X}$ in the sequel) of $S$ in such a way
that the following conditions are satisfied:

(i) $X\subseteq C(X)=C(C(X))$ for every subset $X$ of $S$,
(ii) $C(p)=p$ for every $peS$,
(iii) $ C(\phi)=\phi$ , where $\phi$ is the empty set,
(iv) For every subset $X$ of $S,$ $C(X)$ is the union of of all sets of the form

$C(Y)$ with $Y$ a finite 8ubset of $X$.
It is obvious that $X\rightarrow C(X)$ is a closure operation in $P(m)$ and (iv) implies the

“ finitary” property of the a8sociated closure property. Suppose that $Y$ is finite
and $C(Y)\subset X$. Then, since $C(X)$ is the union of $C(Y),$ $C(X)\subset X$, hence $X=C(X)$ .

Now the abstract geometry with finitary operation in the sense of Maeda is
defined a8 follows:

Let $G$ be a set of points. If for any finite points $p_{1},$ $\ldots,$ $P_{\hslash}$ of $G$ , there
exists a subset $p_{\iota}+\cdots+p_{*}$ (for any $i$ 8uch that $1\leq i\leq n$ , denoting $p+\cdots+p_{n}$

$=p_{\ell}+p_{\ell}$ when $n=i$) of $G$ containing $P$ which satisfies

(1) $p_{\iota}=p_{a}$ implies $p_{1}+p_{g}+\cdots+p_{*}=p_{a}+\cdots+p_{n}$ ,

(2) for any permutation $p_{t_{1}},$ $\ldots,$ $P\ell_{*}$ of $p_{1},$ $\ldots,$ $p_{n}$

$p_{\iota}+\cdots+p_{*}=p_{\iota}+\cdots+p_{\ell_{\hslash}}$

(3) $q_{\ell}ep_{1}^{(\ell)}+\cdots+p_{n}^{(\ell)}(i=1, \ldots, m)$ imply

$ q_{1}+\cdots+q_{m}\subseteq p_{1}^{(1)}+\cdots+p_{n_{1}}^{(1)}+p_{1}^{(2)}+\cdots$ . . . $+p_{1}^{(m)}+\cdots+p^{(m)},_{n}$ ,
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Then $G$ is called an abstract geometry with finitary operations. A subset $H$ of $G$

is called a subgeometry of $G$ if $p_{1},$ $\cdots,$ $p_{n}eH$ implies $p_{1}+\cdots+p_{n}\subseteq H$. It follows
that $p_{1}+\cdots+p_{*}$ is a subgeometry.

In an abstract geometry $G$ with finite operation, one can define a closure
operation as follows: Let $B$ be any subset of $G$ , then define $\overline{B}$ to be the smallest
subgeometry containing $B$ . Then it is obvious that $B\subseteq\overline{B},$ $B=\overline{B}=$ and that $B\subseteq C$

implies $\overline{B}\subseteq\overline{C}$. Thus $B\rightarrow\overline{B}$ is a closure operation. Its associated closure property
is finitary, since $B=\overline{B}$ means that $B$ is a subgeometry, and $B$ is a subgeometry
if and only if $K=\{p_{1}, \cdot\cdot, p_{n}\}\subset B$ implies $\overline{K}=p_{1}+\cdots+p_{n}\subseteq B$ .

Conversely a set $m$ with a closure operation whose associated clo8ure property
is finitary is an abstract geometry with finitary operation in the sense of Maeda
(compare with [2] Theroem 6, p. 186).

For $K=\{p_{1}, \ldots, p_{n}\}\subset G$ , define $p_{1}+\cdots+p_{n}=\overline{K}\subseteq G$ . Then since $K\subseteq\overline{K},$
$p_{1},$ $\cdots$ ,

$p_{n}\in p_{1}+\cdots+p_{*}$ .
(1) If $p_{1}=p_{2}$ and $K_{1}=\{p_{1}, p_{2}, \cdots, p_{n}\},$ $K_{2}=\dagger p_{2},$

$\cdots,$ $p_{n}$}, then $K_{1}=K_{l}$ (as sets)

which implies $K_{1}=\overline{K}_{2}$ , that is $p_{1}+p_{2}+\cdots+p_{n}=p_{2}+\cdots+p_{n}$ .
(2) Let $K=\{p_{1}, \ldots, p_{n}\}$ and $K_{ff}=\{p_{\ell_{1}}\cdots p_{\ell_{l}},\}$ , where $\pi;(1\cdots n)\rightarrow(i_{1}\cdots i_{\hslash})$ is

a permutation, then $K=K_{x}$ (as sets) and $\overline{K}=K_{\pi}$ , that is $p_{1}+\cdots+p_{n}=p_{i_{1}}+\cdots+p_{\ell_{n}}$ .
(3’) Let $q_{\ell}e\overline{K}_{\ell}=p_{1}^{(i)}+\cdots+p_{n_{i}}^{(i)},$ $(i=1, \cdots, m)$ , where $K_{i}=\{p_{1}^{(i)}, \cdots, p_{n}^{(\ell)}\}$ . Then

$K_{1},$
$\cdots,$ $K_{m}\subseteq K=\{p_{1}^{(1)}, \ldots, p_{n_{1}}^{(1)}, \ldots, p_{1}^{(m)}, \cdots, p_{n_{m}}^{(m)}\}$ and $\overline{K}_{1},$ $\ldots,\overline{K}_{m}\subseteq\overline{K}$. Hence $Q=$

$\{q_{1}, \cdots, q_{m}\}\subset\overline{K}$ which implies $\overline{Q}\subset\overline{K}$, that is, $q_{1}+\cdots+q_{n}\subseteq p_{1}^{(1)}+\cdots+p_{n_{1}}^{(1)}+\cdots+$

$p_{1}^{(m)}+\cdots+p_{n_{m}}^{(m)}$ .
A subgeometry is defined by the condition that $\{p_{1}, \ldots, p_{n}\}\subset A$ implies $p_{1}+\cdots+$

$p.\subset A$ . This means that a subset is closed under the finitary closure property if
and only if it is a subgeometry.

It is understood in the above definition of abstract geometry with finitary
operation that $\overline{p}=p$ is not assumed.

3. The above Theorem 1 gives the characterizing property of the complete
$\cap$ -subband of $P(m)$ , which corresponds to a closure operation of $P(m)$ whose
associated closure property is finitary. Now one may propose to characterize a
lattice which is isomorphic to such a complete $\cap$ -subband of a $P(m)$ . For the
answer to this question one will come up to the following version of Birkhoff-
Frink’s theorem (See [2], Theorem 9, p. 188).

Theorem 2. The following three conditions for a lattice $V$ are necessary and
sufficient for the existence of a set $m$ and a hull-operation on $P(m)$ whose associated
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closure property is finitary so that $V$ is isomorphic to the lattice $A$ of all subsets
of $m$ which are closed under the hull-operation.

(1) $V$ is complete,
(2) $x(\Sigma y_{\rho})=\Sigma xy_{\rho}$ for each $xeV$ and every directed set $\{y_{\rho}\}$ of elements of $V$,
(3) every element of $V$ is the join of a set of inaccessible elements.

In the statement, an inaccessible element is defined as follows: An element
$a$ of a poset $P$ is said to be accessible if there is a directed subset $A$ of $P$ such
that $a\not\in A$ and $\Sigma A=a$ . Otherwise $a$ is said to be inaccessible.

Proof of this theorem can be obtained by modifying that contained in the book
of Hermes ([4], Theorem 7.4, pp. 37-40 or see appendix).

Apply this theorem to a (merely finitary) geometry, by taking $\overline{p}=p$ into account,

one gets the following corollary:

Corollary 2. The lattice of flats $(A=\overline{A})$ of a (merely finitary) geometry
$\langle m, c\rangle$ is complete upper-continuous (meet-continuous) and atomistic $(i.e.\overline{A}=\{atom$

$p|p\leq\Sigma\overline{A}\})$ .
The last property follows from the fact shown in the proof of Theorem 2 (see

appendix) that every element is the union of $\overline{p}=p$ .
Conversely, if a lattice $\mathcal{L}$ is complete, upper-continuous and atomistic, then,

since an atom in such a lattice is easily seen to be ( $joIn\rangle$ inaccessible, it is isomorphic,
by Theorem 2, to the lattice $\mathcal{L}^{\prime}$ of closed elements under the closure operation
$C^{\prime}$ : $B\rightarrow\overline{B}^{\prime}=$ {$u|u$ inaccessible and $u\leq\Sigma B$} with finitary closure property. $(i.e$ .
isomorphic to a lattice of subgeometries of an abstract geometry with finitary
operation). But $\langle m^{\prime}c^{\prime}\rangle$ is not a (merely finitary) geometry, because, for each
inaccessible element $u,\overline{u}=u$ does not hold generally ( $\overline{\phi}=\{u|u\leq\phi\}$ , so $\overline{\phi}=\phi$).

Let $m$ be the set of all atoms in $\mathcal{L}$. For $A\subset m\subset m^{\prime}$ , let $\overline{A}=\{atom plp\leq\Sigma A\}$ .
Then evidently $A\rightarrow\overline{A}$ is a closure operation $C$, and the associated closure property
can be shown to be finitary: Since $m\subset m^{\prime}$ and $C^{\prime}$ is finitary, so if $pe\overline{A}$ then
$pe\overline{A}^{\prime}$ (since $\overline{A}\subset\overline{A}^{\prime}$ ) and there are inaccessible elements $u_{1},$ $\ldots,$ $u_{n}e$ $A$ such that
$p\leq u_{1}+\cdots+u_{n}$ , where $u_{1},$ $\cdots,$ $u_{n}$ are atoms, since they belong to $A$ . Since $\overline{p}=p$

and $\overline{\phi}=\phi$ are obvious from the definition of $\overline{A},$ $\langle m, c\rangle$ is a (merely finitary)

geometry.
Now the correspondence $\overline{A}=\dagger atomp|p\leq\Sigma\overline{A}$} $\rightarrow\overline{A}^{\prime}=\{inaccessibleu|u\leq\Sigma\overline{A}\}$ is

one-one, since $\overline{A}^{\prime}=\overline{B}^{\prime}$ implies $\Sigma\overline{A}=\Sigma B$ (since $\Sigma\overline{A}^{\prime}=\Sigma\overline{A}$) which in turn implies
$\overline{A}=\overline{B}$. It is also onto, because for a given $\overline{A}^{\prime},\overline{A}=\{p:atom|p\leq\Sigma\overline{A}^{\prime}\}\rightarrow\overline{A}^{\prime}$ (since
$\Sigma\overline{A}=\Sigma\overline{A}^{\prime})$ and obviously AcB if and only if $\overline{A}^{\prime}\subset\overline{B}^{\prime}$ . Thus the lattioe of flat8
of the (merely finitary) geometry $\langle m, c\rangle$ is isomorphic to the lattice of closed
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elements of $p(m^{\prime})$ under the closure operation $C^{\prime}$ .
By this Isomorphism and the Theorem 2, one can derive the following theorem

proved directly for an abstract geometry with finitary operation by Maeda ([5],

Theorems 2.1 and 2.2, p. 93).

Theorem 3. A lattioe is geometric if and only if it is complete, upper con-
tinuous and atomistic.

In the statement of this theorem, a geometric lattice means the one which is
isomorphic to the lattice of all flats of some (merely finitary) geometry.

4. As an application of the Theorem 3, consider the so-called geometry of
grade $n[7]$ (or Wille’s geometry of grade $n[8]$ ) which is defined as follows:

Suppose that in the set $S$ of points, a family of subsets of $S$, each of which
is called a curve, and another family of subsets of $S$, each of which is called a
surface, are specified such that the following postulates are satisfied:

$P(1)$ $n+1$ distinct points are contained in exactly one curve, and each curve
contains at least $n+1$ distinct points.

$P(2)$ $n+2$ distinct points, which are not contained in a curve are contained
in exactly one surface, and in each surface there are at least $n+2$ distinct points
which are not contained in a curve.

$P(3)$ Along with the $(n+1)$ distinct points contained in a surface, the curve
determined by these points is also contained in the surface.

A point set is called a subspace (or a flat) if it contains all the curves and
surfaces which are determined $ac\ovalbox{\tt\small REJECT} rding$ to $P(1)$ and $P(2)$ by $n+1$ distinct or $n+2$

distinct points contained in the set.
Thus a curve and a surface are subspaces and so is aIso any point set which

consi8ts of not greater than $n$ distinct points.
The intersection of all subspaces, which contain a set $A$ is called the closure

of $A$ and is denoted by $\overline{A}$ (or $C(A)$).
$P(4)$ The intersection of two surfaces which are contained in the closure of

$n+3$ points, will never consist of exactly $n$ distinct points.
The set $S$ of points together with the families of curves and surfaces which

satisfy the Postulates $P(1)-P(4)$ will be called a Wille (incidence) geometry of grade
$n$ of the set $S$.

Wille [7] has proved the following theorem which characterize lattiee theore-
tically the Wille’s geometry of grade $n$ .

Theorem 4. A lattice $L$ is isomorphic to the lattice of flats of a Wille’s
geometry of grade $n$ if and only if the lattice is geometric, semi-modular and for
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each flat $x$ of rank $n$ in $L$ the interval $[x1]$ is modular, and the interval $[0x]$ is
distributive.

Part of this theorem follows from Theorem 3 and Theorem 1. In Wille’s
geometry of grade $n,$

$A\rightarrow\overline{A}$ , the least flat containing $A$ , is obviou81y a closure
operation and the associated closure property is finitary, since for a directed family

of flats, the set union of these flats is again a flat, so finitary property follows

from Theorem 1. Thus by Theorem 3, the lattice of flats of this geometry is
complete, upper-continuous and atomistic, so for the proof of the “ necessity” part

of the theorem, it needs only to show $(\alpha)$ the semi-modularity and further properties

of this lattice.
Assume conversely that $\mathcal{L}$ satisfies all the properties given in Theorem 4. It

follows, by Theorem 3, that $\mathcal{L}$ is isomorphic to the lattice of flats $(A=\overline{A})$ of the
(merely finitary) geometry $\langle m, c\rangle$ where $m$ is the set of all atoms in $\mathcal{L}$ and for
any subset $A\subset m,$ $ C(A)\equiv\overline{A}\equiv$ {$p$ ; atomlp $\leq\Sigma A$}.

Since $\mathcal{L}$ is geometric and semi-modular, for any finitely generated elements $a$ ,

one defines “ rank” in the interval $[0a]$ . If one calls a flat of the (merely finitary)

geometry $\langle m, c\rangle$ which corresponds to an element of rank $n+1$ , a curve and that
corresponding to an element of rank $n+1$ , a curve and that corresponding to an
element of rank $n+2$ , a surface, then it can be easily shown that the geometry
$\langle m, c\rangle$ satisfies $P(1),$ $P(2)$ and $P(3)$ .

Now call a subset $A$ of $m$ a subspace if the surface $\langle p_{1}, \cdots, p_{n+2}\rangle\subset A$ ,

whenever $n+2$ distinct points $p_{1},$ $\ldots,$ $p_{n+2}$ which belong to $A$ . Then, by Theorem
3, for the proof of the “ sufficiency” part of the Theorem 4, it needs only to 8how
that $(\beta_{1})P(4)$ holds and that $(\beta_{2})$ every subspace is a closed set of the geometry
$\langle m, c\rangle$ .

5. If one assumes the results on the lattice-theoretic characterization of pro-
jective geometry of infinite dimension ([91 or [41 \S \S 14-16, pp. 75-91), that is, the
special case $n=0$ of Theorem 4, the proofs of parts $(\alpha)$ and $(\beta)$ can be easily

obtained as follows;

Let $p_{1},$ $\cdots,$ $p_{n}$ be any $n$ distinct given points. Call each curve and surface
containing $\{p_{1}, \cdots, p_{\hslash}\}$ respctively a $P$-point and a p-line. A $P$-line and $P$-point

are said to be incident if the correspoinding surface contains the corresponding

curve set-theoretically. Then one can prove that
$(P^{\prime}1)$ Two distinct p-points lie on one and only one p-line.
$(P^{\prime}2)$ Let $\alpha,$

$\alpha^{\prime},$ $\beta,$ $\beta^{\prime},$
$\gamma$ be $p- point_{8}$ . If $\alpha^{\prime}\beta\gamma$ are collinear, and $\alpha,$

$\beta^{\prime},$
$\gamma$ are

also collinear, then there exists a $P$-point $\gamma^{\prime}$ such that $\alpha\beta\gamma^{\prime}$ are collinear, and $\alpha^{\prime}$
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$\beta^{\prime}\gamma^{\prime}$ , are also collinear. This corresponds to the case $n=0$ of $P(4))$ . Thus the set
of p-points and $P$-lines forms a projective geometry.

For the proof of $(P^{\prime}1)$ , let the two distinct $p$-points be given by $\langle p_{1}, \ldots, p_{n}, q\rangle$,
$(i=1,2)$ . Since these two $p$-points are distinct, $q,$ $\not\in\langle p_{1}, \ldots, p_{n}, q_{\iota}\rangle$, so $\langle p_{1},$

$\ldots,$ $p_{*}$ ,
$q_{1},$ $ q_{2}\rangle$ is a surface which contains both given curves. Thus there is a $P$-line which
contains the given two $p$-points. Any surface which contain8 both these two curves
contains $\{p_{1}, \ldots, p_{*}, q_{1}, q_{2}\}$ , so by $P(2)$ , it coincides with $\langle p_{1},$

$\ldots,$ $p_{n},$ $q_{1},$ $q>$ .
For the proof of $(P^{\prime}2)$ , suppose that $\alpha,$

$\alpha^{\prime},$ $\beta,$ $\beta^{\prime},$
$\gamma$ are represented by $\langle p_{1},$ $\cdots$ ,

$p_{n},$ $ a\rangle$

$,$

$\langle p_{1}, \ldots, p,, a^{\prime}\rangle$, . . ., $\langle p_{1}, \ldots, p_{n}, c\rangle$ respectively. From the collinearity, it
follows that $\langle p_{\iota}, \ldots, p_{n}, a^{\prime}, t, c\rangle$ and $\langle p_{1}, \ldots, p_{n}, a, b^{\prime}, c\rangle$ are surfaces, thus $\langle p_{1},$ $\ldots$ ,
$p_{n},$ $a^{\prime},$ $b,$ $ c\rangle$ , $\langle p_{1}, \ldots, p_{n}, a, b^{\prime}c\rangle\subset\langle p_{1}, \ldots, p_{n}, a, b, c\rangle$ . Hence, $\langle p_{1}, \ldots, p_{n}, a^{\prime}, V\rangle$ ,
$\langle p_{1}, \ldots, p_{n}, a, b\rangle\subset\langle p_{1}, \ldots, p_{n}, a, b, c\rangle$ . Now if both $\langle p_{1}, \cdots, p_{n}, a, b\rangle$ and $\langle p_{1},$ $\ldots$ ,
$p_{n},$ $a^{j},$ $ b^{j}\rangle$ are sarfaces, then, by $P(4)$ , there exists a point $c^{\prime}$ such that $c^{\prime}e\langle p_{1},$ $\cdots$ ,
$p_{n},$ $a,$ $ b\rangle$ $\cap\langle p_{1}, \ldots, p_{n}, a^{\prime}, b^{\prime}\rangle$ , so both $\langle p_{1}, \ldots, p_{n}, a, b, c^{\prime}\rangle$ and $\langle p_{1}, \ldots, p_{n}, a^{\prime}, b^{\prime}, c^{\prime}\rangle$

are $8urfaces$ .
If $\langle p_{1}, \ldots, p_{n}, a, b\rangle$ is a curve, but $\langle p_{1}, \cdots, p_{n}, a^{\prime}, b^{\prime}\rangle$ is a surface, then there

is a point $c^{\prime}$ in $\langle p_{1}, \cdots, p_{n}, a^{\prime}, b^{\prime}\rangle$ such that $ c^{\prime}\not\in\langle p_{1}, \cdots, p_{n}, a, b\rangle$ . Then $\langle p_{1},$ $\ldots$ ,
$p_{n},$ $a,$ $b,$ $ c^{\prime}\rangle$ and $\langle p_{1}, \ldots, p_{n}, a^{\prime}, b^{\prime}, c^{\prime}\rangle$ are both surfaces.

If both $\langle p_{1}, \ldots, p_{n}, a, b\rangle$ and $\langle p_{1}, \ldots, p_{n}, a^{\prime}, b^{\prime}\rangle$ are curve8, then there is a
surface containing these two curves (by $(P1)$). Let $c^{\prime}$ be any point other than
$p_{\ell}(i=1, \ldots, n)$ in this surface, then $\langle p_{1}, \ldots, p_{n}, a, b, c^{\prime}\rangle$ and $\langle p_{1}, \ldots, p_{n}, a^{\prime}, b^{\prime}, c^{\prime}\rangle$

are at most surfaces.
Let $A$ be any subspace (in the Wille geometry) which contains the given $n$

distinct points $p_{1},$ $\ldots,$ $p_{n}$ . It is easily seen that the set of p-points which corres-
pond to curves contained in $A$ and contain the given $n$ points is a P-flat in the
projective geometry.

Let $\phi$ be any p-flat of the corresponding proiective geometry, and let $A$ be
the set union of all the curves which correspond to $P$-points contained in $\phi$ . It
can be shown that $A$ is a subspace of the Wille geometry as follows: It is
obvious that $A$ has the property $\langle p_{I}, \ldots, p_{n}, q_{1}, q_{2}\rangle\subset A$ for any two distinct points
$q_{1},$ $q_{2}$ in $A$ . Thns, the above claim from the following Lemma 1 proved by Wille:

Lemma 1. Let $A$ be a subset of $m$ , which contains at least $n$ distinct points
$p_{1},$ $\ldots,$ $p_{n}$ . If $A$ contains the surface $\langle p_{1}, \ldots, p_{n}, q_{1}, q_{2}\rangle$ along with any two points
$q_{1},$ $q_{2}$ of $A$ , then $A$ is a subspace.

For the proof of the Lemma 1, one proves first that $\langle p_{1}, \cdots, p_{n}, q_{n+1}, q_{*+l}\rangle\subset A$

for fixed $n$ distinct points $p_{1},$ $\ldots,$ $p_{n}$ of $A$ and arbitrary $q_{n+1},$ $q_{n+2}$ in $A$ implies
$\langle p_{1}, \ldots, p_{n-1}, q_{n}, q_{n+1}, q_{n+2}\rangle\subset A$ for fixed $n$ distinct points $p_{1},$ $\ldots,$ $p_{n-1},$ $q_{n}(\neq p_{n})$ of $A$
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and arbitrary $q_{n+1},$ $q_{n+2}$ in $A$ . If this is shown, then one replaces $p_{n-1}$ by $q_{n-1},$ $p_{n-}$,
by $q_{n-2}$ , $\cdot$ . ., one by one, and finally reaches to $\langle q_{1}, \cdots, q_{n}, q_{n+1}, q_{n+2}\rangle\subset A$ .

Let $ qe\langle p_{1}, \ldots, p_{n-1}, q_{n}, q_{n+1}, q_{n+2}\rangle$ be any point. One can assume that
$\langle p_{1}, \ldots, p_{n-1}, q_{n}, q_{n+1}, q_{+2}\rangle$ is a surface, since otherwise $\langle p_{1},$

$\ldots,$ $p_{n-1},$ $q_{n},$ $q_{n+1},$ $q_{n+}>$

$=\langle p_{1}, \ldots, p_{n-1}, q_{n}, q_{n+1}\rangle\subset\langle p_{1}, \cdots, p_{n-1}, p_{n}, q_{n}, q_{n+1}\rangle\subset A$ . One can also assume that
$ q\not\in\langle p_{1}, \ldots, p_{n-1}, q_{n+1}, q_{n+2}\rangle$ , since otherwise $qe\langle p_{1}, \ldots, p_{n-1}, p_{n}, q_{n+1}, q_{+2}\rangle\subset A$ . Thus,
$\langle p_{1}, \ldots, p_{n-1}, q, q_{n+1}, q_{n+2}\rangle=\langle p_{1}, \cdots, p_{n-1}, q_{n}, q_{n+1}, q_{n+2}\rangle$ , and $q_{n}e\langle p_{1},$

$\ldots,$ $p_{n-1},$ $p_{n}$ ,
$q,$ $q_{n+1},$ $ q_{n+2}\rangle$ . If either $q_{n+1}$ or $q_{n+2}$ coincides with $p_{n}$ , then it is obvious that $qeA$ ,
so one can assume that $\langle p_{1}, \cdots, p_{n-1}, p_{n}, q_{n+1}, q_{n+2}\rangle$ is a surface. On the other hand,
one can also assume that $\langle p_{1}, \cdots, p_{n-1}, q_{n}, p_{n}, q\rangle$ is a surface, since otherwise
$qe\langle p_{1}, \ldots, p_{n-1}, p_{n}, q_{n}\rangle\subset\langle p_{1}, \cdots, p_{n-1}, q_{n}, p_{n}, q_{1+1}\rangle\subset A$ . Then, by $P(4)$ there is a
point $re\langle p_{1}, \ldots, p_{n-1}, p_{n}, q_{n+1}, q_{n+2}\rangle\cap\langle p_{1},$

$\cdots,$ $p_{n-1},$ $p_{n},$ $q,$ $q>$ which is distinct from
$p_{1},$ $\cdots,$ $p_{n}$ . Thus $reA$ . If $ r\in\langle p_{1}, \ldots, p_{n-1}, p_{n}, q_{n}\rangle$ then $ q_{n}e\langle p_{\iota}, \ldots, p_{n-1}, p_{n}, r\rangle$

$\subset\langle p_{1}, \ldots, p_{\hslash}, q_{n+1}, q_{n+2}\rangle$ and $ q\in\langle p_{1}, \cdots, p_{n-1}, q_{n}, q_{n+1}, q_{n+2}\rangle=\langle p_{1}, \ldots, p_{\hslash}, q_{n+1}, q_{n+2}\rangle$

$\subset A$ . If $ r\not\in\langle p_{1}, \cdots, p_{n}, q_{n}\rangle$ then $\langle p_{1}, \cdots, p_{n-1}, p_{n}, q_{n}, r\rangle$ is a surface, so $\langle p_{1},$ $\ldots$ ,
$p_{n},$ $q_{n},$ $ r\rangle$ $=\langle p_{1}, \ldots, p_{n}, q_{n}, q\rangle\ni q$ .

Remark. The proof of this lemma is motivated by the case $n=1$ in three
dimensional space with the following configuration:

Fig. 1.

Thus the correspondence between $[p_{1}+\cdots+p_{n}, 1]$ and the lattice of the p-fiats
of the corresponding projective geometry is one-one onto. This correspondence is
actually an isomorphism, because $A\subset B$ if and only if the corresponding p-flats,
$\phi,$

$\varphi$ satisfy $\phi\leq\varphi$ .
If $A,$ $B$ are two subspaces containing $\{p, \ldots, p.\}$ then the flat $A+B$ corresponds

to the P-flat $\phi+\varphi$ . Since $\phi+\varphi$ is the set union of the $P$-points on $p$-lines connect-
ing a $P$-point in $\phi$ and another $P$-point in $\varphi$ , one gets the following result which
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was also proved by Wille:

Lemma 2. Let $A$ and $B$ be two subspaces such that $A\cap B$ contains at least
$n$ distinct points $p_{1},$ $\cdots,$ $p_{n}$ . Then the lattice union $A+B$ is the set union of all
surfaces $\langle p_{1}, \cdots, p_{n}, a, b\rangle$ with $a\in A$ and $beB$ .

By the correspondence (established above) between the set of subspaces con-
taining $p_{1},$ $\ldots,$ $p_{n}$ and the p-flats of the corresponding projective geometry, one
can prove these properties of the lattice of subspaces of a Wille geometry as stated
in $(\alpha)$ .

Let $p$ be a point not in $A$ , then $\langle p_{1}, \cdots, p_{n}, p\rangle$ defines a $p$-point $P$ not in the
p-flat $\alpha$ corresponding to $A$ . Sinoe $\phi+P$ covers $\phi$ , it follows that $A+\{p\}$ covers
$A$ . For the subspace $A$ which contains less than $n$ points, obviously $A+\{p\}$ covers
$A$ if $p\not\in A$ . Thus, the semi-modularity is proved.

The distributivity property of $[0a]$ for any subspace $a$ of rank $n$ is obvious,
since each element of this lattice consists of at most $n$ distinct points.

The modularity property of $[a, 1]$ , where $a=p_{1}+\cdots+p_{n}$ , follows from the
fact proved above that this interval is isomorphic to the lattice of p-flats of the
corresponding projective geometry.

6. Proof of $(\beta_{1})$ and $(\beta_{2})$ . Call an element of rank 1 or rank 2 in the lattice
$[p_{1}+\cdots p_{n}, 1]$ , a point or a line. Since $\mathcal{L}$ is atomistic, upper-continuous and semi-
modular, so is also the lattice $[p_{1}+\cdots+p_{n}, 1]$ . That $[p_{1}+\cdots+p_{n}, 1]$ is atomistic
can be shown as follows: Let $a$ be any element in $[p_{1}+\cdots+p_{n}, 1]$ . Since $\mathcal{L}$ is
atomistic, $a=\Sigma S$ is a suitable set of atoms in $\mathcal{L}$. If $p\in S$, then $p_{1}+\cdots+p_{n}+$

$p\leq a$ , thus $a=\sum_{peS}(p_{1}+\cdots+p_{n}+p)$ , where $(p_{1}+\cdots+p_{n}+p)$ is a point in $[p_{1}+\cdots$

$+p_{n},$ $1$].

Since $[p_{1}+\cdots+p_{n}, 1]$ is modular, the set of points and lines forms a projective
geometry. Now as above, if $A$ is a subspace, the set of points $p_{1}+\cdots+p_{n}+p$

of the projective geometry which correspond to $\langle p_{1}, \cdots, p_{n}, p\rangle$ and contained in $A$

is a flat of the projective geometry. This flat in turn corresponds to an element
$a$ in $[p_{1}+\cdots+p_{n}, 1]$ such that the flat consists of all points $p_{1}+\cdots+p_{n}+p$ with
$p_{1}+\cdots+p_{n}+p\leq a$ . Thus $A$ is the set union of all curves $\langle p_{1}, \ldots, p_{n}, p\rangle$ . This
in turn implies that each subspace $A$ is the set of all atoms contained in a
suitable element $a$ of $\mathcal{L}$.

Now $P(4)$ can be proved by using this fact: The subspace generated by $n+3$

points $p_{1},$ $\cdots,$ $p_{n},$ $p_{n+1},$ $p_{n+2},$ $p_{n+3}$ is the set {atom $p|p\leq p_{1}+\cdots+p_{n}+p_{n+1}+p_{n+2}$

$+p_{n+8}\}$ . Let $A,$ $B$ be two surfaces contained in the subspace $\langle p_{1},$
$\cdots,$ $p_{n},$ $p_{n+1},$ $p_{n+f}$ ,

$ p_{n+3}\rangle$ , then $A=\{atomp|p\leq\phi\},$ $B=\{atomp|p\leq\varphi\}$ with $\alpha,$
$\beta$ elements of rank 2 in
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$[p_{1}+\cdots+p_{n}, 1]$ . Since $[p_{1}+\cdots+p_{n}, p_{1}+\cdots+p_{n+8}]$ is modular, rank $(\phi\varphi)+rank$

$(\psi+\varphi)=rank\phi+rank\varphi$ . Sinoe rank $(\phi+\varphi)\leq 3$ , so rank $(\phi\varphi)\geq 1$ . That is $A\cap B$ is
at least a curve, and $P(4)$ is proved.

Thus the set $m$ of atoms of $\mathcal{L}$ together with curves and surfaces defined
above is a Wille geometry. Since a subset $A$ of $m$ is a subspaoe if and only if $A$

is the set of all atoms contained $(\leq)$ in an element $a$ of $\mathcal{L}$, by Theorem 3, the
lattice $\mathcal{L}$ is isomorphic to the lattice of all subspaces of the Wille geometry
obtained above.

7. It is preferable to prove the properties $(\alpha)$ and $(\beta)$ without using the results
on projective geometry (that is the special case $n=0$). For the property $(\alpha)$ , one
uses the special case of Lemma 2 to show the semi-modularity and the modularity

in projective geometry. This suggests to prove the Lemma 2 directly. Actually,

8uch a proof was given by Wille by replacing point $P$ and line connecting $p,$ $q$ in
the proof of projective case by curve $\langle p_{1}, \cdots, p_{n}, p\rangle$ and surface $\langle p_{1}, \cdots, p_{n}, p, q\rangle$

with $n$ distinct fixed point $p_{1},$ $\ldots,$ $p_{n}$ .
For the direct proof of $(\beta_{1})$ and $(\beta_{2})$ , it suffices to show directly that a subset

$A$ of $m$ is a subspace if and only if $A$ is the set of all atoms contained $(\leq)$ in an
element $a$ of $\mathcal{L}$. Av in the case of projective geometry, it suffices to show that
if $A$ is a subspace, then $A=\{atomp|p\leq\Sigma A\}$ . For this it needs only to show that
if $p\leq p_{1}+\cdots+p_{m},$ $(m\geq n+2)$ , then $p$ is contained in the subspace generated by
$\{p_{1}, \cdots, p_{m}\}$ . As in the special case of projective geometry, this can be shown by

induction on $m$ , counting the ranks of elements in $[p_{1}+\cdots+p_{n+2},1]$ (see [7]).

Appendix

Proof of Theorem 1. Suppose that a) is fulfilled and $X\rightarrow\overline{X}$ is the closure
operation and $S$ is closed if $\overline{K}_{\gamma}\subset S$ for all finite $K_{\gamma}\subset S$. Let $M$ be a directed set
contained in $A$ , then every element of $M$ is closed. One needs to show that $\cup M$

is also contained in $A$ , that is, $\cup M$ is also closed. Let $K_{\gamma}\subset\cup M$ be a finite subset,

so $K_{\gamma}=\{a_{1}, \cdots, a_{n}\}$ . Sinoe $\cup M$ is the set union there exist $m_{1},$ $\ldots,$ $m_{n}$ in $M$ such
that $a_{i}em_{\ell}(r\dot{b}=1, \ldots, n)$ . Since $M$ is directed there is an $m_{0}\in M$ such that $K_{\gamma}\subset m_{0}$ .
Since $m_{0}$ is closed, $\overline{K}_{\gamma}\subset m_{0}\subset\cup M$, henoe $\cup M$ is closed.

Now assume b).

(i) A is a complete $\cap$ -subband, so $A$ is a hull-system: Since $A$ is a complete
$\cap$ -subband, for any subset $B\subseteq A$ , $infB$ formed in $P(m)$ is equal to the $infB$

formed in $A$ , so it is contained in $A$ , and $A$ is a hull-system.
(ii) To the hull-system $A$ , one can define a hull-operation $z$ as follow8:
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$\tau;X\rightarrow\overline{X}$, where $X$ be any element in $P(m)$ and $\overline{X}$ is the intersection of all elements
of $A$ which contain $X$. Then $\tau$ is ea8i1y seen to be a hull-operator.

a) If $X\leq Y$ then for each $Ze$ $A$ such that $Y\leq Z$, it follows that $X\leq Z$, so
$\overline{X}\leq\overline{Y}$.

b) Since $\overline{X}=\pi Z$ (intersection) for all $Z\geq X_{1}$ so $\overline{X}\geq X$.
c) Since $\overline{X}$ is the intersection of all eIements in $A$ which contain $X$, and $A$

is a hull-system by (i), $\overline{X}e$ A. $\overline{X}$ is in the set of elements of $A$ which contain $\overline{X}$,
so $X=\overline{X}=$.

(iii) From the definition os $X$, it follows that $Xe$ $A$ implies $X=\overline{X}$. Thus,
for any $K_{T}\subseteq X$ we have $\overline{K}_{\gamma}\subseteq\overline{X}=X$. Let $X$ be any element such that $\overline{K}_{\gamma}\subseteq X$ for
all finite $K_{\gamma}\subseteq X$. One can show that $XeA$ , that is $x=\overline{x}$ : Sinoe $\overline{K}_{\gamma}\subseteq X$, so

$\cup\overline{K}_{\gamma}\subseteq X$. Sinoe every point of $X$ is contained in a $K_{\gamma}$ , henoe in a $\overline{K}_{\gamma}$ , thus
$\cup\overline{K}_{\gamma}\supseteq X$ and henoe $X=\cup\overline{K}_{\gamma}$ . To show that $\cup\overline{K}_{\gamma}$ is closed, let $M$ be the set of
all $\overline{K}_{\gamma}$ with $K_{\gamma}$ any finite subset of $X$. Then $M$ is a subset of $A$ (sinoe $K_{\gamma}=\overline{K}_{\gamma}$)

$=$

,
and $M$ is a directed set, sinoe $\overline{K}_{\gamma_{1}},\overline{K}_{\gamma_{2}}\subseteq\overline{K_{\gamma_{1}}\cup K_{\gamma_{2}}}$ and $K_{r_{1}}\cup K_{\gamma_{2}}$ is a finite subeet
of $X$. Thus $\cup\overline{K}_{f}$ is contained in $A$ by b). Henoe $XeA$ .

It is also shown at the same time that $X\in A$ if and only if $K_{f}cX$ and $K_{f}$

finite imply $\overline{K}_{\gamma}\subseteq X$.
Thus there is a hull-operation $X\rightarrow\overline{X}$ on $P(m)$ for which $Xe$ $A$ if and only if

$K_{\gamma}\subset X$ and $K_{\gamma}$ finite imply $\overline{K}_{\gamma}\subset X$.
Proof of Theorem 2. Necessity (1) The lattice of subsets which are closed

under a hull-operation is obviously complete,
(2) In every complete lattice, $y_{\rho}\leq\Sigma y_{\rho}$ , hence $xy_{\rho}\leq x(\Sigma y_{\rho})$ and $\Sigma xy_{\rho}\leq x(\Sigma y_{\rho})$ .

Thus it remains to show that $\Sigma xy_{\rho}\geq x(\Sigma y_{\rho})$ .
By Theorem 1, for a complete $\cap$ -subband $V$ of $P(m)$ , if there exists a hull-

operation in $P(m)$ whose associated closure Property is finitary such that $V$ is the
set of all subsets of $m$ which are closed under the hull-operation, then for each
directed set $M\subset V,$ $\cup MeV$ and henoe $\Sigma M=\cup M$.

Sinoe $\{y_{\rho}\}$ is a directed set of $V$, we have $\Sigma y_{\rho}=\cup y_{\rho}$ . For $\alpha\in m$ , let
$\alpha ex(\Sigma y_{\rho})\rightarrow\alpha\leq x$ and $\alpha\leq\Sigma y_{\rho}=Uy_{\rho}$

$\rightarrow\alpha ex$ and $\alpha ey_{\rho}$ for a $y_{\rho}$

$\rightarrow\alpha\in x\cap y_{\rho}=xy_{\rho}$

$\rightarrow\alpha\in\bigcup_{r}(xy_{\rho})=\Sigma_{r}(xy_{\rho})$ ,

$8inoe\{(xy_{\rho})\}$ i8 also a directed set contained in $A$ , so $\bigcup_{r}(xy_{\rho})=\Sigma_{r}(xy_{\rho})$ , by Theorem
1. Thus $x(\Sigma y_{\rho})\leq\Sigma(xy_{\rho})$ .
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(3) $V$ is assumed to be isomorphic to the lattice $A$ of all subsets of $m$ which

are closed under a hull-operation whose associated closure property is finitary. For
the proof of (3), let us consider the lattice $A$ and the set, $\overline{\{\alpha\}}$ for $\alpha em$ , where $\overline{\{\alpha\}}$

is the image of $\{\alpha\}$ under the hull-operation, so it is the smallest element of $A$

which contains $\{\alpha\}$ . For $xeA,$ $x=\Sigma\overline{\{\alpha\}}$, where $\alpha ex$ (or $\alpha\leq x$) runs over $x$ : For

each $\alpha\leq x,$ $\{Z\}\leq\overline{x}=x$ , so $\Sigma\overline{\{\alpha\}}\leq x$ . Conversely $\alpha e\overline{\{\alpha\}}$ , so $\alpha\leq\overline{\{\alpha\}}$ and $\Sigma\alpha\leq\Sigma\overline{\{\alpha\}}$ .
Since $\Sigma\alpha\leq x$ and $\Sigma\alpha$ contains every point of $x,$

$\Sigma\alpha\supseteq x$ the is $\Sigma\alpha\geq x$ . Hence $ x=\Sigma\alpha$

and $x=\Sigma\overline{\{\alpha\}}$ . Thus (3) will be shown if one can show that each $\overline{\{\alpha\}}$ is inaccessible:
Assume that $\overline{\{\alpha\}}=\Sigma y_{\rho}$ for a directed set $\{y_{\rho}\}\subset A$ . By Theorem 1, $Uy_{\rho}\in A$ and
$\Sigma y_{\rho}=\cup y_{\rho}$ . Now $\alpha e\overline{\{\alpha\}}=\cup y_{\rho}$ implies that there is a $y_{\rho}$ such that $aey_{p},$ $i.e.$ ,
$\alpha\leq y_{\rho}$ , henoe $\overline{\{\alpha\}}\leq\overline{y}_{\rho}=y_{\rho}$ . Hence $\ulcorner\alpha$} $=y_{\rho}$ (since $\ulcorner\alpha\}=\cup y_{\rho}\supseteq y_{\rho}$). That is $\overline{\{\alpha\}}$ is con-
tained in the directed set, thus $\overline{\{\alpha\}}$ is inaccessible.

Sufficiency. Conversely, suppose that a lattice $V$ satisfies the conditions (1),

(2), (3). One must show the existence of a set $m$ and a hull-operation on $P(m)$

whose associated closure property is finitary such that $V$ is isomorphic to the
lattice $A$ of all subsets of $m$ which are closed under the hull-operation.

As the set $m$ , one takes the set of all inaccessible elements $u$ . For any subset
$S$ of $m$ , define $\overline{S}=\{inaccesslbleu|u\leq\Sigma S\}$ . Then

$(i^{o})$ if $ueS$ then $u\leq\Sigma S$ which implies $ue\overline{S}$, hence $S\subset\overline{S}$.
$(ii^{o})$ if $S_{1}\subset S_{2}$ , then $\Sigma S_{1}\leq\Sigma S_{2}$ , hence $\overline{S}_{1}\subset\overline{S}_{2}$ .

$(iii^{o})$
$S=\overline{S}:=$ Since $ue\overline{S}$ implies $u\leq\Sigma S$ , so $\Sigma\overline{S}\leq\Sigma S$ .

On the other hand $\overline{S}\supset S$ , so $\Sigma\overline{S}\geq\Sigma S$ . Henoe $\Sigma\overline{S}=\Sigma S$ . Since $S=\{inaccessible= ulu\leq\Sigma\overline{S}\}$

and $\Sigma\overline{S}=\Sigma S$ , so $S=\overline{S}=$. Thus $S\rightarrow\overline{S}$ is a hull-operation.

It is remained to be shown that $S\rightarrow\overline{S}$ iu the hull-operation whose associated
closure property is finitary; that is, to show that if $K=\{u_{1}, \cdots, u_{n}\}$ is any finite
subset of inaccessible elements of $S$ then KcS implies that $S$ is closed: Let $y_{\rho}$

be the lattice union of finite elements of $S$ , then the set $\{y_{\rho}\}$ is the directed set,

and $\Sigma S=\Sigma y_{\rho}$ , since $y_{\rho}\leq\Sigma S$ henoe $\Sigma y_{\rho}\leq\Sigma S$ , but on the other hand, each element

of $S$ is contained in some $y_{\rho}$ , so $\Sigma S\leq\Sigma y_{\rho}$ . Suppo8e that $ue\overline{S}$, that is $u\leq\Sigma S$ .
Then by (2) $u=u\cdot(\Sigma S)=u\cdot(\Sigma y_{\rho})=\Sigma uy_{\rho}$ . Since $\{uy_{\rho}\}$ is a directed set and $u$ is
inaccessible, there is a $\rho$ such that $u\cdot y_{\rho}=u$ , that is, $u\leq y_{\rho}$ , and this means that

there exist $u_{1},$ $\cdots,$ $u_{n}$ in $S$ satisfying $u\leq u_{1}+\cdots+u,,=y_{\rho}$ . Thus the assumption

that $y_{\rho}\subset S$ implies that $\overline{S}\subseteq S$ , henoe $S=\overline{S}$.
Let $A$ be the set of all subsets of $m$ which are closed under the hull-operation

defined above, then $A$ is a lattice with the three properties 1), 2), 3). Now, to
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each element a $eV$, we assign the set of inaccessible elements by $\varphi(a)=\{inaccessible$

$u|u\leq a\}$ . To claim that this correspondence is an isomorphism between the two
lattices $V$ and $A$ , it suffices to show that

a) $\varphi$ is one-to-one,
b) $\varphi(ab)=\varphi(a)\cap\varphi(b)$ ,
c) for each $a,$ $\varphi(a)$ is a closed subset of $m$ with respect to the operation $S\rightarrow\overline{S}_{1}$

d) to each closed subset $m^{\prime}$ of $m$ there is an element $a$ $eV$ such that $\varphi(a)=m^{\prime}$ ,
e) if $m_{1}^{\prime}\subseteq m_{2}^{\prime}$ are closed, then $\varphi^{-1}(m_{1}^{\prime})\leq\varphi^{-1}(m_{2}^{\prime})$ .

These are shown one by one in the following:

a) Sinoe $a$ is a lattice join of inaccessible elements contained in $a,$ $a$ is a
lattioe join of some elements of $\varphi(a)$ , henoe $a\leq\Sigma\varphi(a)$ . It is shown in c) that
$\Sigma\varphi(a)\leq a$ . Thus $a=\Sigma\varphi(a)$ . Now if $\varphi(a)=\varphi(b)$ , then $a=\Sigma\varphi(a)=\Sigma\varphi(b)=b$,

b) In any lattice, $u\leq ab$ if and only if $u\leq a$ and $u\leq b$, that is if and only if
$u\in\varphi(a)$ and $ue\varphi(b),$ $i.e$ . if and only if $ue\varphi(a)\cap\varphi(b)$ .

c) Sinoe $\varphi(a)=\{u|u\leq a\},$ $\Sigma\varphi(a)\leq a$ . This implies that $\overline{\varphi(a)}=\{u|u\leq\Sigma\varphi(a)\}\subseteq\varphi(a)$

and henoe $\varphi(a)=\overline{\varphi(a)}$,
d) Let $m^{\prime}$ be any closed subset of $m$ , and let $a=\Sigma m^{\prime}$ , then $m^{\prime}=\overline{m}^{\prime}=$

$\{u|u\leq\Sigma m^{\prime}=a\}=\varphi(a)$ by definition,
e) Let $m_{1}^{\prime},$ $m_{2}^{\prime}$ be closed subsets of $m$ with $m_{1}^{\prime}\subseteq m_{2}^{\prime}$ . Let $a_{1}=\Sigma m_{1}^{\prime}$ and

$a_{2}=\Sigma m_{2}^{\prime}$ , then $m_{1}^{\prime}=\varphi(a_{1})$ and $m_{2}^{\prime}=\varphi(a_{2})$ by d). Then $\varphi^{-1}(m_{1}^{\prime})=a_{\iota}=\Sigma m_{1}^{\prime}\leq\Sigma m_{2}^{\prime}=a_{z}$

$=\varphi^{-1}(m_{2}^{\prime})$ , that is $\varphi^{-1}(m_{1}^{\prime})\leq\varphi^{-1}(m_{2}^{\prime})$ .
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