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The following theorem of Birkhoff-Frink is a well-known important result for
the lattice of subalgebras of an abstract algebra:

Theorem. A lattice L is isomorphic with a subalgebra-lattice if and only if
L is complete, meet-continuous, and every element of L is a join of join-inaccessible
elements. ([1] and also [2], Thm. 9, p. 188) '

It is intended in this note to give a different version of this theorem so that
some results of abstract geometry can also be subordinated to it.

1. It is known that one can identify every hull-operation in a complete lattice
V with a hull-system which is a complete N-subband (N-Teilbund) of V. (3] and
also [4] Satz 6.5 p. 32)

When V is the complete lattice P(m) of all subsets of a set m, then the hull-
operation is a closure operation and to each such operation is associated a closure
property.

A closure property @ associated with a closure operation X—X on the subsets
X of the set m is said to be finitary if the condition X € @ is equivalent to the
condition that K X and, K finite imply KcX. ([2] p. 186)

The complete N -subbands of P(m) which correspond to closure operation whose
associated closure properties are finitary are characterized by the following :

Theorem 1. Let A be a complete N-subband of P(m). Then the following
two conditions are equivalent: (See [2], Lemma 1 p. 186).

a) There is a closure operation on P(m), for which the associated closure
property is finitary and the subset of m belongs to A if and only if it is closed
under the closure operation. o

b) For each directed set M contained in A, the set union UM is also contained
in A. ‘ ‘ N

The proof of this theorem can be obtained by modifying the proof of the
corresponding theorem in the book of Hermes ([4] Satz 7.2, p. 35 or see the
appendix to this note).
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As a corollary to Theorem 1, one gets the following:

Corollary 1. For a complete N-subband A satisfying a) and a subset Xcm,
X is the union of all ¥ with finite Yc X.

Proof. Consider the family Y for all finite subset ¥ of X. Then YcX and
UYcX. Now this family is obviously directed, so UY is closed and UY>X.
Hence U YD X and one gets X=UY.

2. There are many interesting examples of complete N-subbands of P(m) which
belong to this category. For examples, the lattice of subalgebras of an algebra
[S, F1] p. 132 and p. 185, and Theorem 6, p. 186), the lattice of subgeometries
of an abstract geometry with finitary operation in the sense of Maeda [5], and the
lattice of flats of (merely finitary) geometry as defined by Jonsson [6].

A (merely finitary) geometry (as defined by Jonsson) is an ordered pair <S, CD>
consisting of a set S and a function C which associates with every subset X of S
another subset C(X) (which is also denoted as X in the sequel) of S in such a way
that the following conditions are satisfied:

(i) X<eC(X)=C(C(X)) for every subset X of S,

(ii) C(p)=p for every p€S,

(iii) C(g)=¢, where ¢ is the empty set,

, (iv) For every subset X of S, C(X) is the union of of all sets of the form
C(Y) with Y a finite subset of X.

It is obvious that X—C(X) is a closure operation in P(m) and (iv) implies the
“ finitary ¥ property of the associated closure property. Suppose that Y is finite
and C(Y)cX. Then, since C(X) is the union of C(Y), C(X)c X, hence X=C(X).
Now the abstract geometry with finitary operation in the sense of Maeda is

defined as follows:

Let G be a set of points. If for any finite points p,, ---, », of G, there
exists a subset p,+ :-- +p, (for any ¢ such that 1<i<n, denoting p,+ ... +p,
=p;+P; when n=1) of G containing p, which satisfies ’

(1°) py=p, implies P +De+ + -+ +Pa=Ds+ + -+ + Dy,
(2°) for any permutation py, -+, D¢, Of Dy, <+ ¢, Pn
Pit o+ FPa=Dgy+ -+ +Ds,
8°) qiep+ .- +p5)(t=1, - .-, m) imply
@t - @ SPPF - P PP e e +p{™+ s +050
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Then G is called an abstract geometry with finitary operations. A subset H of G
is called a subgeometry of G if p,, -+, v, € H implies p,+ .- +p,SH. 1t follows
that p,+ ... +p, is a subgeometry. _

In an abstract geometry G with finite operation, one can define a closure
operation as follows: Let B be any subset of G, then define B to be the smallest
subgeometry containing B. Then it is obvious that BB, B=B and that BSC
simplies B&C. Thus B—B is a closure operation. Its associated closure property
is finitary, since B=B means that B is a subgeometry, and B is a subgeometry
if and only if K={p,, - --, p.}<B implies K=p,+ --- +p,ZB.

Conversely a set m with a closure operation whose associated closure property
is finitary is an abstract geometry with finitary operation in the sense of Maeda
(compare with [2] Theroem 6, p. 186).

For K={p,, - - -, p.}G, define p,+ ---+ p,=K<G. Thensince KK, p,, ---,
DPr€P1+ -+ +Dn.

(1°) If p,=p, and K,={py, s, - - -, Pa}, Ko={Ds, -+, Pu}, then K=K, (as sets)
which implies K,=XK,, that is p,+ps+ - -+ +Pu=0;+ - -+ +Dy.

(2°) Let K={p,, ---, p,} and K.={p,, -+ D}, where w:(1---n)>(3,---14,) is
a permutation, then K=K, (as sets) and K=K, thatis p,+ --- +DPa=Dy,+ ¢ - +Dy,.

(8°) Let g, K,=p{+ --. +p®, (i=1, - --, m), where K,={p{®, - - -, p¥)}. Then
K, K, SK={p®, - -+, p2, -+ -, D™, - -+, p%} and K, .-, K, =K. Hence Q=
{1, - ++, ¢n}c K which implies §c K, that is, ¢;+ - -+ +gnSPP+ -+ o +pB+ -+ +
P - D

A subgeometry is defined by the condition that {p,, - - -, p,} A implies p,+ --- +
p,CA. This means that a subset is closed under the finitary closure property if
and only if it is a subgeometry.

It is understood in the above definition of abstract geometry with finitary
operation that p=p is not assumed.

3. The above Theorem 1 gives the characterizing property of the complete
N-subband of P(m), which corresponds to a closure operation of P(m) whose
associated closure property is finitary. Now one may propose to characterize a
lattice which is isomorphic to such a complete N-subband of a P(m). For the
answer to this question one will come up to the following version of Birkhoff-
Frink’s theorem (See [2], Theorem 9, p. 188).

Theorem 2. The following three conditions for a lattice V are necessary and
sufficient for the existence of a set m and a hull-operation on P(m) whose associated
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closure property is finitary so that V is isomorphic to the lattice A of all subsets
of m which are closed under the hull-operation. »
(1) V is complete,
(2) 2(Xy,)=2xy, for each x € V and every directed set {y,} of elements of V,
(8) every element of V is the join of a set of inaccessible elements.

In the statement, an inaccessible element is defined as follows: An element
a of a poset P is said to be accessible if there is a directed subset A of P such
that a¢ A and YA=a. Otherwise a is said to be inaccessible.

Proof of this theorem can be obtained by modifying that contained in the book
of Hermes ([4], Theorem 7.4, pp. 87-40 or see appendix).

Apply this theorem to a (merely finitary) geometry, by taking p=7p into account,
one gets the following corollary :

Corollary 2. The lattice of flats (A=A) of a (merely finitary) geometry
{m, ¢> is complete upper-continuous (meet-continuous) and atomistic (i.e. A={atom
plp< TAY). '

The last property follows from the fact shown in the proof of Theorem 2 (see
appendix) that every element is the union of p=p. _

»Conversely, if a lattice - is complete, upper-continuous and atomistic, then,
since an atom in such a lattice is easily seen to be (join) inaccessible, it is isomorphie,
by Theorem 2, to the lattice -Z°/ of closed elements under the closure operation
C’ : B>B'={ulu inaccessible and w<XB} with finitary closure property. (i.e.
_ isomorphic to a lattice of subgeometries of an abstract geometry with finitary
operation). But <{m’ ¢’> is not a (merely finitary) geometry, because, for each
inaccessible element %, @=u does not hold generally (d={ulu<d}, so ¢=4¢).

Let m be the set of all atoms in %%, For Acmcm’, let A={atom p|p<ZA}.
Then evidently A—A is a closure operation C, and the associated closure property
can be shown to be finitary: Since mcm’ and C’ is finitary, so if p€ A then
pe A’ (since AcA’) and there are inaccessible elements u,, ---, u,€ A such that
p<u;+ --- +u,, where u,, ---, U, are atoms, since they belong to A. Since p=p
and ¢=¢ are obvious from the definition of A, <m,c> is a (merely finitary)
geometry. 7

Now the correspondence A={atom p|p<IA}—>A’={inaccessible wlu<IA} is
one-one, since A’=RB’ implies SA=IB (since SA’=34) which in turn implies
A=B. It is also onto, because for a given A’, A={p: atom|p<3IA’}—>A’ (since
JA=3A’) and obviously Ac B if and only if A’cB’. Thus the lattice of flats
of the (merely finitary) geometry <{m,c)> is isomorphic to the lattice of closed
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elements of p(m’) under the closure operation C’.

By this isomorphism and the one can derive the following theorem
proved directly for an abstract geometry with finitary operation by Maeda (5],
Theorems 2.1 and 2.2, p. 93).

Theorem 3. A lattice is geometric if and only if it is complete, upper con-
tinuous and atomistic.

In the statement of this theorem, a geometric lattice means the one which is
isomorphic to the lattice of all flats of some (merely finitary) geometry.

4. As an application of the Theorem 3, consider the so-called geometry of
grade n [7] (or Wille’s geometry of grade =» [8]) which is defined as follows:

Suppose that in the set S of points, a family of subsets of S, each of which
is called a curve, and another family of subsets of S, each of which is called a
surface, are specified such that the following postulates are satisfied: |,

P(1) n+1 distinet points are contained in exactly one curve, and each curve
contains at least »+1 distinet points.

P(@2) mn+2 distinet points, which are not contained in a curve are contained
in exactly one surface, and in each surface there are at least n+2 distinet points
which are not contained in a curve.

P(3) Along with the (n+1) distinct points contained in a surface, the curve
determined by these points is also contained in the surface.

A point set is called a subspace (or a flat) if it contains all the curves and
surfaces which are determined according to P(1) and P(2) by »-+1 distinct or n+2
distinet points contained in the set.

Thus a curve and a surface are subspaces and so is also any point set which
consists of not greater than n distincet points.

vThe intersection of all subspaces, which contain a set A is called the closure
of A and is denoted by A (or C(4)).

P(4) The intersection of two surfaces which are contained in the closure of
n+3 points, will never consist of exactly n distinet points.

The set S of points together with the families of curves and surfaces which

satisfy the postulates P(1)-P(4) will be called a Wille (incidence) geometry of grade
n of the set S. '

Wille has proved the following theorem which characterize lattice theore-
tically the Wille’s geometry of grade .

Theorem 4. A lattice L is isomorphic to the lattice of flats of a Wille’s
geometry of grade n if and only if the lattice is geometrie, semi-modular and for
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each flat = of rank 7 in L the interval [x 1] is modular, and the interval [0 z] is
distributive. »

Part of this theorem follows from and [Theorem 1. In Wille’s
geometry of grade n, A—A, the least flat containing A, is obviously a closure
operation and the associated closure property is finitary, since for a directed family
of flats, the set union of these flats is again a flat, so finitary property follows
from [Theorem 1. Thus by Theorem 3, the lattice of flats of this geometry is
complete, upper-continuous and atomistic, so for the proof of the “necessity” part
of the theorem, it needs only to show (a) the semi-modularity and further properties
of this lattice.

Assume conversely that -2 satisfies all the properties given in [Theorem 4. It
follows, by Mheorem 3, that - is isomorphic to the lattice of flats (A=A) of the
(merely finitary) geometry <m, ¢> where m is the set of all atoms in -2 and for
any subset Acm, C(A)=A={p: atom|p<ZA}.

Since - is geometric and semi-modular, for any finitely generated elements a,
one defines “rank” in the interval [0 @]. If one calls a flat of the (merely finitary)
geometry {m, ¢> which corresponds to an element of rank n+1, a curve and that
corresponding to an element of rank n-+1, a curve and that corresponding to an
element of rank n-+2, a surface, then it can be easily shown that the geometry
{m, ¢> satisfies P(1), P(2) and P(3).

Now call a subset A of m a subspace if the surface <pj, ---, Pas:>CA,
whenever n-+2 distinet points Py, -+, Pn+: Which belong to A. Then, by Theorem|
8, for the proof of the “sufficiency ” part of the it needs only to show
‘that (8,) P(4) holds and that (8,) every subspace is a closed set of the geometry

{m, .

5. If one assumes the results on the lattice-theoretic characterization of pro-
jective geometry of infinite dimension ([9] or [4] §§14-16, pp. 75-91), that is, the
special case #=0 of [Theorem 4, the proofs of parts (a) and (8) can be easily
obtained as follows: '

Let py, - -+, Do be any 7 distinet given points. Call each curve and surface
containing {p,, ---, P.} respetively a p-point and a p-line. A p-line and p-point
are said to be incident if the correspoinding surface contains the corresponding
curve set-theoretically. Then one can prove that

(P’1) Two distinct p-points lie on one and only one p-line.

(P2) Let a, a’, B, B/, v be p-points. If a’ B8 r are collinear, and a, B/, r are
also collinear, then there exists a p-point 7/ such that a 8¢’ are collinear, and «’
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B 7', are also collinear. This corresponds to the case n=0 of P(4)). Thus the set
of p-points and p-lines forms a projective geometry.

For the proof of (P’1), let the two distinet p-points be given by <p,, - -, P., >,
(1=1,2). Since these two p-points are distinet, gs <Dy, * - -, Dy 41>, 80 <Dy, -+ +, Pu,
g1, 92> is a surface which contains both given curves. Thus there is a p-line which
contains the given two p-points. Any surface which contains both these two curves
contains {p,, - -+, Pa, ¢4, ¢z}, s0 by P(2), it coincides with <Dy, -+, Da, 1, @s>-

For the proof of (P’2), suppose that a, a’, 8, #’, r are represented by <pyy -+,
Dy @Dy D1y ¢+, Dny @', +++y <Py, +++, Do, € respectively. From the collinearity, it
follows that <p,, - --, P4, @’, b, ¢> and <p,, - -, Da, @, b/, ¢> are surfaces, thus {Pyy -y
Dny @/, 8,63, <Py - -+, Py @, B SCLPy, -+, Dy @, b, ). Hence, <py, -+, pn, a’, b,
Dy +++y Py @, )LDy, -+, Puy @, b, ¢). Now if both <py, -+, Ps, a, 0> and <p,, ---,
Da, @', b’)> are sarfaces, then, by P(4), there exists a point ¢’ such that ¢’ e<p,, - - -,
Pny @, >Ny, + -+, Pay @7, B>, 80 boOth <Py, - -+, Py, @, b, ¢’> and <py, -+ -, Pa, @, V’, />
are surfaces.

If <py, -+, Da, @, b> is a curve, but <p,, -+, P, a’, ¥’> is a surface, then there
is a point ¢’ in <p,, .-+, p,, @/, b’> such that ¢’ &<p,, -+ +, Pn, @, b>. Then <{py, ---,
Pny @, b, ¢’> and <py, ---, 0, a’, ¥, ¢’> are both surfaces.

If both <py, --+,P. a,b> and <p,,---, p,, a’, ¥’> are curves, then there is a
surface containing these two curves (by (P1)). Let ¢’ be any point other than
p; (t=1,-.-,n) in this surface, then <p,, -+, P, @, b, ¢’> and <{p,, - -, Pa, @', ¥/, ¢">
are at most surfaces.

Let A be any subspace (in the Wille geometry) which contains the given n
distinet points p, -+, P,. It is easily seen that the set of p-points which corres-
pond to curves contained in A and contain the given » points is a p-flat in the
projective geometry.

Let ¢ be any p-flat of the corresponding projective geometry, and let A be
the set union of all the curves which correspond to p-points contained in ¢. It
can be shown that A is a subspace of the Wille geometry as follows: It is
obvious that A has the property <p,, - -+, D,, ¢1, > A for any two distinet points
d:, ¢ in A. Thns, the above claim from the following proved by Wille :

Lemma 1. Let A be a subset of m, which contains at least » distinet points
Dy, <y Pue If A contains the surface <{p,, - -, Pa, ¢, ¢z> along with any two points
g1, ¢; of A, then A is a subspace.

For the proof of the Lemma 1, one proves first that <py, « * *, DPny Tn+1> ns2> CA
for fixed »n distinet points p,, ---, p, of A and arbitrary @..+i, Q.+ in A implies
{P1s ** *) Pa-1 Uny An+1y Qas2> S A for fixed n distinet points py, - -+, Pa-1, @u (FPp,) of A
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and arbitrary q,.,, q,,+; in A. If this is shown, then one replaces P,-; by qu-1, Pa-s

by Qa-z, -+, one by one, and finally reaches to <qy, :++, Qn) Qn+1» Qnsos> CA.
Let g e€<py, -, Dn-1) Qny Qn+1, @n+2> be any point. One can assume that
D1y ++ ) Pn-1s Gn) An+1, Q+2> 18 a surface, since otherwise <, -+, a1, Qs Qus1s Tnsz)

=Py, ***y a1y Uns Ans D> <Dy, * * *5 Pnt1s Py Tny» Gns>C A, One can also assume that
q&€<D1y * * *y Pn-1) Qn+1) Ins+2), Since otherwise g €<p,, « + -, Pn_y, Ony Cns1, ¢+2>CA. Thus,
P1s ***y Paty @5 Ant1y Qn+e) = <P1y * * *y Pn=1y Gy Ant1y Gn2)y BN @n €Dy, + o, Ppoyy Doy
q, Qus1y q,+2>. If either g,+; Or ¢,+. coincides with p,, then it is obvious that g€ A,
so one can assume that <py, «++, Py, Pn, Qn+1, In+2> i8 a surface. On the other hand,
one can also assume that <p;, .-+, Pn-1, ¢, Pn, @0 i8 a surface, since otherwise
QELD1, + 5 Prm1s Py > CTEDy1y * * 5 Pty Ty Py I+ >CA. Then, by P(4) there is a
point 7 €<Py, * **, Pa-1) Pay nst1s Qns2> N <Py, * * +, Pn-1, Pns ¢, ¢»> Which is distinet from
Dy, -+, Py Thus reA. If relpy, -, Doy, Pn, ¢n> then ¢, €<py, -+, Pucy, Doy 7>
C<P1s “**s Pny Qns1y Qnve> BDA G ELDy, +*,y Pueyy Qny Tntts Tnss)>=LD1, * * * Dny Q1 A2
CA. If ré<lps, -+, Pn qs> then <py, +++, Dp_y, Dn, @a, 7> is a surface, so {py, ---,
Day s T7=LD1s ***5 P Iny 9 ¢.

Remark. The proof of this lemma is motivated by the case n=1 in three
dimensional space with the following configuration :

Fig. 1.

Thus the correspondence between [p;+ - -+ +p,,1] and the lattice of the p-fiats
of the corresponding projective geometry is one-one onto. This correspondence is
actually an isomorphism, because ACB if and only if the corresponding p-flats,
¢, ¢ satisfy ¢<o.

If A, B are two subspaces containing {p, - - -, p,} then the flat A+ B corresponds
to the p-flat ¢+¢. Since ¢+¢ is the set union of the p-points on p-lines connect-
ing a p-point in ¢ and another p-point in ¢, one gets the following result which
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was also proved by Wille:

Lemma 2. Let A and B be two subspaces such that AN B contains at least
n distinet points p,, -, P, Then the lattice union A+ B is the set union of all
surfaces <p,, +++, Pn, @, > with a€ A and be B.

By the correspondence (established above) between the set of subspaces con-
taining p,, :-+, », and the p-flats of the corresponding projective geometry, one
can prove these properties of the lattice of subspaces of a Wille geometry as stated
in (a).

Let P be a point not in A, then <p,, -, P., p> defines a jo-point P not in the
p-flat a corresponding to A. Since ¢+ P covers ¢, it follows that A+{p} covers
A. For the subspace A which contains less than % points, obviously A+ {p} covers
A if pg A. Thus, the semi-modularity is proved.

The distributivity property of [0 a] for any subspace a of rank = is obvious,
since each element of this lattice consists of at most n distinet points.

The modularity property of [a,1], where a=p,+ --- +p,, follows from the
fact proved above that this interval is isomorphic to the lattice of p-flats of the
corresponding projective geometry.

6. Proof of (8,) and (B;). Call an element of rank 1 or rank 2 in the lattice
[+ --- D,, 1], a point or a line. Since % is atomistic, upper-continuous and semi-
modular, so is also the lattice [p,+ - -+ +p,.,1]. That [p,+ - + 2., 1] is atomistic
can be shown as follows: Let a be any element in [p,+ -+ +2,,1]. Since & is
atomistic, a=2S is a suitable set of atoms in -=°. If p€ S, then p,+ -+ + 0.+
p<a, thus a=p§s(p1+ -+ +p,+p), where (p,+ -+ +p,+p) is a point in [p,+ ---
+9.,1].

Since [p,+ - -+ +p,, 1] is modular, the set of points and lines forms a projective
geometry. Now as above, if A is a subspace, the set of points p,+ -+ +0.+2
of the projective geometry which correspond to <p,, - -, P., »> and contained in A
is a flat of the projective geometry. This flat in turn corresponds to an element
ain[p,+ --- +p,, 1] such that the flat consists of all points p,+ -+ +p,+p with
P+ o +9,+p<a. Thus A is the set union of all curves <{p,, :--, Pn, »>. This
in turn implies that each subspace A is the set of all atoms contained in a
suitable element a of .

Now P(4) can be proved by using this fact: The subspace generated by n-+3
points Py, « -+, Py Pr+1y Pa+ey Prss 18 the set {atom pIp<pi+ -+ +DatPotit Dase
+2.+s}. Let A, B be two surfaces contained in the subspace <D, - -+, Pn) Pn+1s Pus2s
Pn+s), then A={atom p|p<¢}, B={atom p|p<¢} with «, B elements of rank 2 in
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[py+ - -+ +Da, 1]. Since [py+ -+« +Dny D1+ +++ +Dnis] is modular, rank (¢¢)+rank
(¢+¢)=rank ¢+rank o. Since rank (¢+¢)<38, so rank (¢p)>1. That is ANB is
at least a curve, and P(4) is proved.

Thus the set m of atoms of -Z° together with curves and surfaces defined
above is a Wille geometry. Since a subset A of m is a subspace if and only if A
is the set of all atoms contained (<) in an element a of %, by [Theorem 3|, the

lattice - is isomorphic to the lattice of all subspaces of the Wille geometry
obtained above.

7. It is preferable to prove the properties (@) and (8) without using the results
on projective geometry (that is the special case n=0). For the property (a), one
uses the special case of to show the semi-modularity and the modularity
in projective geometry. This suggests to prove the directly. Actually,
such a proof was given by Wille by replacing point p and line connecting p, ¢ in
the proof of projective case by curve <{p,, - -+, ., »> and surface {p,, - - -, Pn, D, ¢
with n distinet fixed point »,, -+ -, Ps-

For the direct proof of (B;) and (B8), it suffices to show directly that a subset
A of m is a subspace if and only if A is the set of all atoms contained (<) in an
element a of . As in the case of projective geometry, it suffices to show that
if A is a subspace, then A={atom p|p<YA}. For this it needs only to show that
if p<p,+ -+ +Pn, (M>n+2), then p is contained in the subspace generated by
{p,, -++, Pn}. As in the special case of projective geometry, this can be shown by
induction on m, counting the ranks of elements in [p,+ -+ +Dn4s, 1] (see [T]).

Appendix

Proof of_. Suppose that a) is fulfilled and X—X is the closure
operation and S is closed if K;cS for all finite K;cS. Let M be a directed set
contained in A, then every element of M is closed. One needs to show that UM
is also contained in A4, that is, UM is also closed. Let Krc UM be a finite subset,
so Ki={a,, ---,a,}. Since UM is the set union there exist m,, -+, m, in M such
that a; € m; (1=1, ..., n). Since M is directed there is an m, € M such that K;cm,.
Since m, is closed, Krcm,c UM, hence UM is closed.

Now assume b).

(i) A is a complete N-subband, so A is a hull-system: Since A is a complete
N-subband, for any subset BSA, inf B formed in P(m) is equal to the inf B
formed in A, so it is contained in A, and A is a hull-system.

(ii) To the hull-system A, one can define a hull-operation z as follows:
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7: X—X, where X be any element in P(m) and X is the intersection of all elements
of A which contain X. Then r is easily seen to be a hull-operator.

a) If X<Y then for each Ze A such that Y<Z, it follows that X<Z, so
X<7.

b) Since X=rZ (intersection) for all Z>X, so X>X.

¢) Since X is the intersection of all elements in A which contain X, and A
is a hull-system by (i), Xe A. X is in the set of elements of 4 which contain X,
so X=2X.

(iii) From the definition os X, it follows that Xe A implies X=X. Thus,
for any KySX we have K;SX=X. Let X be any element such that K, X for
all finite KySX. One can show that Xe A, that is #=%: Since KcX, so0
UK;SX. Since every point of X is contained in a K, hence in a Ky, thus
UKy2X and hence X=UK;. To show that UK, is closed, let M be the set of
all K: with Ky any finite subset of X. Then M is a subset of A (since K ,=£)),
and M is a directed set, since K;,, K;,CK;, UK;, and K;, UK;, is a finite subset
of X. Thus UK, is contained in A by b). Hence Xe A.

It is also shown at the same time that Xe A if and only if K;c X and K,
finite imply K,< X.

Thus there is a hull-operation X—X on P(m) for which Xe A if and only if
K;c X and K, finite imply K,cC X.

Proof of Necessity (1) The lattice of subsets which are closed
under a hull-operation is obviously complete,

(2) In every complete lattice, y,<JIy,, hence 2Ype<®(2y,) and Zry,<Lx(Sy,).
Thus it remains to show that 2xy,>2(2Y,).

By [Theorem 1, for a complete N-subband V of P(m), if there exists a hull-
operation in P(m) whose associated closure property is finitary such that V is the
set of all subsets of m which are closed under the hull-operation, then for each
directed set McV, UMe V and hence SM=UM.

Since {y,} is a directed set of V, we have Jy,= U¥Ye. For aem, let

a€2(2y,)—a<z and a<Iy,=Uy,
—acx and a€y, for a ¥,
SAEXNY,=2Y,
—a € Ux(x?/p):-zx(xyp) ’

since {(zy,)} is also a directed set contained in A, so U u(y,)=2 y(xy,), by Theorem|
1. Thus #(2y,)<2(xy,).
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(8) Vis assumed to be isomorphic to the lattice A of all subsets of m which
are closed under a hull-operation whose associated closure property is finitary. For
the proof of (3), let us consider the lattice A and the set, {a} for a€m, where fa}
is the image of {a} under the hull-operation, so it is the smallest element of A
which contains {a}. For x€ A, x=23{a}, where a€z (or a<%) runs over #: For
each a<z, [aj<z==, so Z{af<x. Conversely aca}, so a<{a} and Ta<3{a}.
Since Ja<x and Fa contains every point of #, a2 the is Ta>x. Hence r=2Ja
and 2=23{a}. Thus (3) will be shown if one can show that each {a} is inaccessible :
Assume that [a}=2J3y, for a directed set {y,}cA. By [Theorem 1, Uy,€ A and
2Yp=U¥y,. Now a € {a}= Uy, implies that there is a y, such that a€y,, i.e.,
a<¥,, hence {@}<7,=y,. Hence {aj=y, (since {a}=Uy,2y,). That is {a} is con-
tained in the directed set, thus {a} is inaccessible.

Sufficiency. Conversely, suppose that a lattice V satisfies the conditions (1),
(2), (3). One must show the existence of a set m and a hull-operation on P(m)
whose associated closure property is finitary such that V is isomorphic to the
lattice A of all subsets of m which are closed under the hull-operation.

As the set m, one takes the set of all inaccessible elements u. For any subset
S of m, define S={inaccessible u|u<3S}. Then

(i°) if weS then ¥<ZXS which implies u €S, hence ScS.
(ii°®) if S,cS,, then £S,<38,, hence S,cS;.
(iii®) S=S§: Since weS implies u<ZS, so I§<3S.

On the other hand §28, so £5>3S. Hence £5=3S. Since S={inaccessible u|u<3S}
and I5=238, so S=S. Thus S-S is a hull-operation. -

It is remained to be shown that S—S is the hull-operation whose associated
closure property is finitary; that is, to show that if K={u,, .-, u,} is any finite
subset of inaccessible elements of S then KcS implies that S is closed: Let y,
be the lattice union of finite elements of S, then the set {y,} is the directed set,
and ¥S=2y,, since ¥,<2S hence Xy,<2S, but on the other hand, each element
of 8 is contained in some ¥,, so 2S<J3y,. Suppose that ue S, that is u<JIS.
Then by (2) u=u-(ES)=u-(Zy,)=2uy,. Since {uy,} is a directed set and % is
inaccessible, there is a p such that %-y,=wu, that is, «<y,, and this means that
there exist u,, -+, 4, in S satisfying w<u,+ --- +u,=y,. Thus the assumption
that ¥,CS implies that SSS, hence S=S.

Let A be the set of all subsets of m which are closed under the hull-operation
defined above, then A is a lattice with the three properties 1), 2), 8). Now, to
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each element a € V, we assign the set of inaccessible elements by ¢(a)={inaccessible
ulu<a}. To claim that this correspondence is an isomorphism between the two
lattices V and A, it suffices to show that

a) ¢ is one-to-one,

b) p(ab)=gp(a) N ¢(d), _
c) for each a, ¢(a) is a closed subset of m with respect to the operation S—S,
d) to each closed subset m’ of m there is an element a € V such that ¢(a)=m’,
e) if m{Sm/ are closed, then o~ (m) <o~ (m}).

These are shown one by one in the following :

a) Since a is a lattice join of inaccessible elements contained in @, a is a
lattice join of some elements of ¢(a), hence a<tp(a). It is shown in c) that
Jp(@)<a. Thus a=JI¢p(a). Now if p(a)=¢(b), then a=2Zp(a)=2I¢(b)=b,

b) In any lattice, u<ab if and only if u<a and 4<b, that is if and only if
u€gp(a) and u € p(b), i.e. if and only if u € p(a) N ¢(b). '

¢) Since p(a)={ulu<a}, Jp(@)<a. This implies thatW:{ulusZgo(a)}ggo(a)
and hence ¢(a)=g¢(a),

d) Let m’ be any closed subset of m, and let a=3Im’, then m'=m'=
{ulu<Zm’=a}=¢(a) by definition,

e) Let m!, m) be closed subsets of m with miSm;. Let a,=3Im/ and
a;=2mj, then m!=¢(a,) and mi=¢(a,) by d). Then ¢~'mi))=a,=3Im!i<Iml=a,
=¢7(m3), that is o~1(m))<p 1 (m}).
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