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1. This paper is a study of oscillation properties of the differential equation

$y^{(n)}=p(t)y$ , (L)

on $t-\infty,$ $\infty$), where $p(t)$ is positive and continuous for all $t$ and $n$ is an even
integer greater than or equal to 4. We shall distinguish between oscillation in
the positive sense and that in the negative sense. A non trivial solution of (L) is
said to be positively (negatively) oscillatory if its set of zeros is not bounded above
(below). It is called fully oscillatory if it is both positively oscillatory and negati-

vely oscillatory. It is called positively (negatively) (fully) non oscillatory if it is
not positively (negatively) (fully) oscillatory. Six theorems are provided, and the
techniques used are similar to ones used by Lazer [3], Hastings and Lazer [2]

and Ahmad [1]. Throughout this paper, we let $Z_{0},$ $Z_{1},$
$\cdots,$ $Z_{n-1}$ denote solutions of

(L) defined on $(-\infty, \infty)$ and satisfy the initial conditions

$Z_{\ell}^{(j)}(0)=\left\{\begin{array}{l}0, if i\neq j\\1, if i=j ’\end{array}\right.$

for $i,$ $j=0,1,$ $\cdots,$ $n-1$ .

2. In this section, we shall give two theorems which proves the existence of

two nonoscillatory solutions $w$ and $z$ of (L) such that Sgn $w(t)=Sgnw^{(j)}(t),$ $i=$

$1,2,$ $\cdots,$ $n-1$ for all $te(-\infty, \infty)$ and Sgn $z^{(j)}(t)\neq Sgnz^{(j+1)}(t),$ $j=0,1,$ $\cdots,$ $n-2$ ,

for all $te(-\infty, \infty)$ . First, we give the following two lemmas which play important

roles in obtaining the most of the results in this paper.

Lemma 2.1. If $y$ is a non trivial solution of (L) and $a$ is a number such that
$y^{(j)}(a)\geq 0$ , $j=0,1,2,$ $\cdots,$ $n-1$ , (1)

then
$y^{(j)}(t)>0$ , $j=0,1,2,$ $\cdots,$ $n-1$ , (2)

for all $t>a$ .
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Proof. From (1) it is clear that the inequalities (2) hold in an interval $(a, c)$ .
Let $b$ be any number greater than $a$ . If the inequalities (2) failed to hold in the
interval $(a, b$], then, there would be a first point $c^{\prime}$ to the right of $c$ where
$y(t)y^{(1)}(t)\cdots y^{(n-1)}(t)$ has the value zero. On the other hand

$(y(t)y^{(1)}(t)\cdots y^{(n-1)}(t))^{(1)}=(y^{(1)}(t))^{2}y^{(2)}(t)\cdots y^{(n-1)}(t)$

$+\cdots+y(t)y^{(1)}(t)\cdots y^{(n-8)}(t)(y^{(n-1)}(t))^{2}$

$+y(t)y^{(1)}(t)\cdots y^{(n-2)}(t)(p(t)y(t))>0$ ,
for $te(a, c^{\prime})$ .

On integrating the above inequality from $a$ to $c^{\prime}$ , we would have

$0<\int_{a}^{0^{\prime}}(y(t)y^{(1)}(t)\cdots y^{(n-1)}(t))^{(1)}dt=-y(a)y^{(1)}(a)\cdots y^{(n-1)}(a)$ ,

which is a contradiction.

Lemma. 2.2. If $y$ is a non trivial solution of (L) and $a$ is a number such that
$y(a)\geq 0,$ $y^{(1)}(a)\leq 0,$

$\cdots,$ $y^{(n-1)}(a)\leq 0$ ,
then

$y(t)>0,$ $y^{(1)}(t)<0,$
$\cdots,$ $y^{(n-1)}(t)<0$ ,

for all $t<a$ .
Proof. The proof of this lemma is similar to that of lemma 2.1.
We note that if $y$ is a non trivial solution of (L), then so is $-y$ . This

implies from lemma 2.1 that if $y$ is a non trivial solution of (L), and $a$ is a number
such that

$y^{(j)}(a)\leq 0$ , $j=0,1,$ $\ldots,$ $n-1$ ,
then

$y^{(j)}(t)<0$ , $j,=0,1,$ $\cdots,$ $n-1$ ,

for.all $t>a$ . Similarly from lemma 2.2, we have that if $y$ is a non trivial solution
of (L) and $a$ is a number such that

$y(a)\leq 0,$ $y^{(1)}(a)\geq 0,$
$\cdots,$ $y^{(n-1)}(a)\geq 0$ ,

then
$y(t)<0,$ $y^{(1)}(t)>0,$

$\cdots,$ $y^{(n-1)}(t)>0$ .
for all $t<a$ .

Theorem 2.3. There exists a solution $w$ of (L) such that
$w^{(j)}(t)>0$ , $j=0,1,$ $\cdots,$ $n-1$ ,

for all $te(-\infty, \infty)$ .
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Proof. For each positive integer $r$ , let

$y_{r}=C_{0r}Z_{0}+C_{1r}Z_{1}+\cdots+C_{n-1r}Z_{n-1}$ ,
where

$C_{0r}^{2}+C_{1r}^{2}+\cdots+C_{n-1r}^{2}=1$ ,

$y_{r}^{(j)}(-r)=C_{0r}Z_{0}^{(j)}(-r)+C_{1r}Z_{1}^{(j)}(-r)+\cdots+C_{n-1r}Z_{n-1}^{(f)}(-r)=0$ ,
$j=0,1,$ $\ldots,$ $n-2$ .

$y_{r}^{(n-1)}(-r)=C_{0r}Z_{0}^{(n-1)}(-r)+C_{1r}Z_{1}^{(n-1)}(-r)+\cdots+C_{n-1r}Z_{n-1}^{(n-1)}(-r)>0$ .
It is easy to verify the existence of the solution $y_{r}$ , which satisfies the above
conditions. For, let $C_{0r}^{\prime},$ $C_{1r}^{\prime},$

$\cdots,$
$C_{n-1r}^{\prime}$ be numbers which satisfy the above $n$

equations. Let
$y_{r}^{*}=C_{0r}^{\prime}Z_{0}+C_{1r}^{\prime}Z_{1}+\cdots+C_{n-1r}^{\prime}Z_{n-1}$ .

Since $Z_{0},$ $Z_{1},$
$\cdots,$ $Z_{n-1}$ are linearly independent solutions of (L) and $y_{r}^{*}$ is a non-

trivial linear combination of these solutions, it is a nontrivial solution of (L). This
implies by the uniqueness theorem that $y_{r}^{*(n-1)}(-r)\neq 0$ . Now if $y_{r}^{*(n-1)}(-r)>0$ ,
then we can take $y_{r}(t)=y_{r}^{*}(t)$ . If $y_{r}^{*(n-1)}(-r)<0$, then we can take $y_{r}(t)=-y_{r}^{*}(t)$ .

Since the sequences $\langle C_{\ell r}\rangle$ , $i=0,1,$ $\cdots,$ $n-1$ , are bounded, there $exist8$ a
sequenoe $\langle r_{k}\rangle$ of positive integers such that the subsequences $\langle C_{r_{k}}\rangle,$ $i=0,1,$ $\ldots$ ,
$n-1$ , converge to the numbers $C_{\ell},$ $i=0,1,$ $\cdots,$ $n-1$ which satisfy

$C_{0}^{2}+C_{1}^{2}+\cdots+C_{n-1}^{2}=1$ .
We now consider the solution

$w=C_{0}Z_{0}+C_{1}Z_{1}+\cdots+C_{n-1}Z_{n-1}$ .
If $w^{(j)}(t_{0})<0$ for some $j=0,1,$ $\cdots,$ $n-1$ and for some number $t_{0}$ , then since
$\langle y_{r_{k}}^{(j)}(t_{0})\rangle$ converges to $w^{(j)}(t_{0})$ , there exists a positive $N$ such that

$y_{r_{k}}^{(j)}(t_{0})<0$ for all $r_{k}>N$ .
But this leads to a contradiction, since for $-r_{k}<t_{0}$ ,

$y_{r_{k}}^{(j)}(-r_{k})\geq 0$ for all $j=0,1,$ $\ldots,$ $n-1$ ,

and by lemma 2.1 $y_{r_{k}}^{(f)}(t_{0})>0$ . Consequently

$w^{(j)}(t)\geq 0$ , for all $j=0,1,$ $\cdots,$ $n-1$ and for all $t$ .
Now, since $w$ is a nontrivial solution of (L), there is no number $t$ such that
$w^{(j)}(\tau)=0$ for all $j=0,1,$ $\ldots,$ $n-1$ . Hence again lemma 2.1 implies that

$w^{(j)}(t)>0$ , for all $j=0,1,$ $\ldots,$ $n-1$ and for all $t$ .
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Theorem 2.4. There exists a solution $z$ of (L) 8uch that

$z(t)>0,$ $z^{(1)}(t)<0,$ $\cdots,$ $z^{(n-1)}(t)<0$ ,

for all $te(-\infty, \infty)$ .
Proof. The proof of this theorem is similar to that of theorem 2.3. We

modify each $y$, to satisfy the conditions

$y_{r}^{(j)}(r)=0$ , $j=0,1,$ $\cdots,$ $n-2$ ,

$y_{r}^{(n-1)}(r)<0$ ,

and use lemma 2.2.

3. Positive and negative oscillations.

Here we shall consider positively oscillatory and negatively oscillatory solutions
of (L). We observe that $y(t)$ is a negatively oscillatory solution of (L) if and only

if $Y(t)$ is a positively oscillatory solution of

$Y^{(n)}=P(t)Y$ ,

where $Y(t)=y(-t)$ and $P(t)=p(-t)$ . Further,

Sgn $y(t)=Sgny^{\omega}(t)$ , $j=1,2,$ $\ldots,$ $n-1$ ,

for all $te(-\infty, t_{0}$] (and hence for all $t$ , by lemma 2.1) if and only if

Sgn $Y^{(j)}(t)\neq SgnY^{(j+1)}(t)$ , $j=0,1,$ $\ldots,$ $n-2$ ,

for all $ te[-t_{0}, \infty$ ) (and hence for all $t$ , by lemma 2.2). Similary,

Sgn $y^{(j)}(t)\neq Sgny^{(j+1)}(t)$ , $j=0,1,2,$ $\ldots,$ $n-2$ ,

for all $t\in(-\infty, t_{0}$] if and only if

Sgn $Y(t)=SgnY^{(j)}(t)$ , $j=1,2,$ $\cdots,$ $n-1$ ,

for all $ te[-t_{0}, \infty$).

Thus the study of negatively oscillatory solutions of (L), can be reduced to
that of positively oscillatory solutions. We shall state the results about negatively
oscillatory solutions as corollaries whose proofs follow from the above ob8ervations
and the corresponding results of positively oscillatory solutions.

Our first theorem of this section proves the existenoe of $n-1$ positively oscil-
latory solutions of (L).

Theorem 3.1. If for every positively non oscillatory solution $y$ of (L) either
there exists a number $t_{0}$ such that
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Sgn $y(t)=Sgny^{(j)}(t)$ , $j=1,2,$ $\cdots,$ $n-1$ ,

for all $t\geq t_{0}$ , or

Sgn $y^{(j)}(t)\neq Sgny^{(j+1)}(t)$ , $j=0,1,2,$ $\ldots,$ $n-2$ .
for all $t\in t-\infty,$ $\infty$), then there exists $n-1$ linearly independent positively oscil-
latory solutions of (L).

Proof. For each positive integer $r$ , let $\mu_{r},$ $i=0,1,$ $\cdots,$ $n-2$ be the solutions
of (L) given by

$\mu_{ir}=a_{r}Z+b_{f}Z_{n-1}$ ,
where

$a_{\ell r}^{2}+b_{\ell r}^{2}=1$ ,
and

$a_{\ell r}Z(r)+b_{r}Z_{n-1}(r)=0$ .
Now there exists a sequence $\langle r>$ of positive integers such that the sub-

sequences \langle a ${}^{t}k\rangle$ and $\langle b_{\ell r}k\rangle$ converge to numbers $a$ and $b_{\ell}$ respectively, which
satisfy

$a^{2}+b_{i}^{2}=1$ .
We now consider the solutions $\mu_{\ell},$ $i=0,1,$ $\ldots,$ $n-2$ given by

$\mu=aZ+b_{i}Z_{-1},$ ,

Suppose $\mu$ is positively non oscillatory. Since for a positive integer $k<n-1$ and
$k\neq i,$ $\mu^{(k)}(0)=0$, we cannot have $\mu_{:}^{(j)}(t)\neq\mu^{(j+1)}(t),$ $j=0,1,$ $\cdots,$ $n-2$ , for all $t\in(-\infty, \infty)$ .
Consequently, there exists a number $t_{0}$ , such that

Sgn $\mu_{\ell}(t)=Sgn\mu_{i}^{(j)}(t)$ , $j=1,2,$ $\ldots,$ $n-1$ , for all $t>t_{0}$ ,

Now let $\tau$ be any number greater than $t_{0}$ . Since $\langle\mu_{\ell r_{k}}^{(j)}(\tau)\rangle$ converges to $\mu_{i}^{(j)}(\tau)$ ,
$j=0,1,2,$ $\ldots,$ $n-1$ , there exists a $p_{08}itive$ integer $N$ such that

Sgn $\mu_{\ell r}k(\tau)=Sgn\mu_{r}^{(j)}k(\tau)$ , $j=1,2,$ $\ldots,$ $n-1$ ,

for all $r_{k}>N$. But this is a contradiction, since $\mu_{ir_{k}}(r_{k})=0$ for positive integer
$r_{k}$ . Therefore, the solutions $\mu_{\ell}=aZ_{\ell}+bZ_{n-1}$ , $i=0,1,$ $\cdots,$ $n-2$ , are positively
oscillatory.

Now to prove that the $n-1$ positively oscillatory solutions $\mu_{0},$ $\mu_{1},$ $\ldots,$ $\mu_{n-1}$ are
linearly independent, it is sufficient to show that $a_{i}\neq 0,$ $i=0,1,$ $\ldots,$ $n-2$ . For if
some $a=0$ , then

$\mu=bZ_{n-1}$ .
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Consequently
$\mu_{i}^{(j)}(0)=0$ , $j=0,1,$ $\cdots,$ $n-2$ ,

$\mu^{(n-1)}(0)=b_{\ell}$ .
This implies by lemma 2.1 that there exists $t_{0}$ such that for all $t>t_{0},$ $\mu_{i}^{(j)}(t)>0$

or $\mu_{i}^{(j)}(t)<0,$ $j=0,1,$ $\cdots,$ $n-1$ . Thus $\mu$ is not positively oscilIatory, which is a
contradiction. Hence

$a_{\ell}\neq 0$ , $i=0,1,$ $\ldots,$ $n-2$ .
Corollary 3.2. If for every negatively non oscillatory solution $y$ of (L) either

there exists a number $t_{0}$ such that

Sgn $y^{(j)}(t)\neq Sgny^{(j+1)}(t)$ , $j=0,1,$ $\cdots,$ $n-2$ ,

for all $t\in(-\infty, t_{0}$] or
Sgn $y(t)=Sgny^{(j)}(t)$ , $j=1,2,$ $\cdots,$ $n-1$ ,

for all $t\in(-\infty, \infty)$ , then there exists $n-1$ linearly independent negatively oscil-
latory solutions of (L).

The following theorem gives a necessary condition for the uniqueness of the
solution $z$ given in theorem 2.4.

Theorem 3.3. Let (L) has no positively oscillatory solution. If $y$ is any
solution of (L) such that

Sgn $y^{(j)}(t)\neq Sgny^{(j+1)}(t)$ , $j=0,1,2,$ $\cdots,$ $n-2$ ,

for all $t$ , then $y=cz$ where $z$ is the solution of (L) given in Theorem 2.4 and $c$ is
a number.

Proof. If $y$ and $z$ are linearly dependent, then the theorem is trivial. Suppose
that $y$ and $z$ are linearly independent. Let $u=z+cy$ , where $c$ is a number such
that $u(O)=z(0)+cy(0)=0$ . Since $U$ is positively non-oscillatory, there exists a number
$t_{0}$ such that none of $u,$ $u^{(1)},$

$\cdots,$
$0^{(n-1)}$ change sign on $[t_{0}, \infty$). Assume, without loss

of generality that $U$ and hence $0^{(n)}$ are positive on $[t_{0}, \infty$). Since $y$ and $z$ are both
bounded, $U$ is bounded and thus we must have $v^{(n-1)}(t)<0,$ $u^{(n-2)}(t)>0,$ $\cdots,$

$\iota)^{(1)}(t)<0$ ,
for all $t\geq t_{0}$ . Consequently by lemma 2.2, $u(t)>0,$ $\iota)^{(1)}(t)<0,$

$\ldots,$ $v^{(n-1)}(t)<0$ for all
$t\in(-\infty, \infty)$ . But this is a contradiction, since $\iota$)(0) $=0$ . This proves the theorem.

Corollary 3.4. Let (L) has no negatively oscillatory solution. If $y$ is any
solution of (L) such that

Sgn $y(t)=Sgny^{(j)}(t)$ , $j=0,1,$ $\cdots,$ $n-2$ ,
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for all $t\in 1-\infty,$ $\infty$), then $y=cw$ , where $w$ is the solution of (L) given in Theorem
2.3 and $c$ is number.

Theorem 3.5. Let $y_{1},$ $y_{2},$ $\ldots,$ $y_{n-1}$ be any $(n-1)$ linearly independent solutions
(L). If every positively non oscillatory solution $y$ of (L) is such that either there
exists a number $t_{0}$ such that

Sgn $y(t)=Sgny^{(j)}(t)$ , $j=1,2,$ $\ldots,$ $n-1$ ,
for all $t\geq t_{0}$ , or

Sgn $y^{(j)}(t)\neq Sgny^{(j+1)}(t)$ , $j=0,1,2,$ $\ldots\prime n-2$ ,

for all $t\in(-\infty, \infty)$ , then some linear combination of $y_{1},$ $y_{2},$ . .
$,,$ $y_{*-1}$ is positively

non oscillatory.

Proof. We assert that $w,$ $z,$ $\mu_{0},$ $\mu_{1},$ $\ldots,$ $\mu_{n-\theta}$ from a basis for the solutions of
(L), where $\mu_{0},$ $\mu_{1},$ $\ldots,$ $\mu_{n-\epsilon}$ are the positively oscillatory solutions of theorem 3.1
and $w$ and $z$ are solutions of theorem 2.3 and theorem 2.4 respectively. For, $z$ is
bounded on $[0, \infty$) and $\lim_{t\rightarrow\infty}w(t)=\infty$ , while $w(t)$ is bounded on $(-\infty, 0$] and $\lim_{\ell\rightarrow-\infty}z(t)=\infty$ .
Thus we can write $y_{1},$ $y_{2},$ $\cdots,$ $y_{n-1}$ as

$y=a_{i0}\mu_{0}+a_{1}\mu_{1}+\cdots+a_{n-8}\mu_{n-\epsilon}+a_{\ell n-2}w+a_{\ell n-1}z$ , $i=1,2,$ $\ldots,$ $n-1$ .
Let $d_{1},$ $d_{2},$

$\ldots,$
$d_{n-1}$ be numbers (not all zeros) such that

$d_{1}a_{10}+d_{2}a_{20}+\cdots+d_{n-1}a_{n-10}=0$

$d_{1}a_{11}+d_{2}a_{21}+\cdots+d_{n-1}a_{n-11}=0$

$d_{1}a_{1n-8}+d_{2}a_{2n-\epsilon}+\cdots d_{-1},a_{n-1.n-8}=0$ .
Then $y=d_{1}y_{1}+d_{2}y_{l}+\cdots d_{n-1}y_{n-1}$ is a linear combination of $w$ and $z$ and hence
positively non oscillatory.

Corollary 3.6. Let $y_{1},$ $y_{f},$ $\ldots,$ $y_{n-1}$ be any $(n-1)$ linearly independent solutions
of (L). If every negatively non oscillatory solution $y$ of (L) is such that

Sgn $y^{(j)}(t)\neq Sgny^{(j+1)}(t)$ , $j=0,1,2,$ $\ldots,$ $n-2$ ,
for all $t\in(-\infty, t_{0})$ , or

Syn $y(t)=Sgny^{(j)}(t)$ , $j=1,2,$ $\ldots,$ $n-1$ ,

for all $t\in(-\infty, \infty)$ , then some linear combination of $y_{1},$ $y_{2},$ $\ldots,$ $y_{*-1}$ is negatively
non oscillatory.
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4. Full Oscillation.

The following theorem proves the existence of $n-2$ linearly independent fully

oscillatory solutions of (L).

Theorem 4.1. If for every positively non oscillatory solution of (L) either
there exists a number $t_{0}$ such that

Sgn $y(t)=Sgny^{(j)}(t)$ , $j=1,2,$ $\ldots,$ $n-1$ ,

for all $t\geq t_{0}$ , or
Sgn $y^{(j)}(t)\neq Sgny^{(j+1)}(t)$ , $j=0,1,$ $\ldots,$ $n-2$ ,

for all $t\in(-\infty, \infty)$ , and if for every negatively non oscillatory solution $y$ of (L)

either there exists a number $t_{0}$ such that

Sgn $y^{(j)}(t)\neq Sgny^{(j+1)}(t)$ , $j=0,1,$ $\ldots,$ $n-2$ ,
for all $t\in(-\infty, t_{0})$ or

Sgn $y(t)=Sgny^{(j)}(t)$ , $j=1,2,$ $\ldots,$ $n-1$ ,

for all $t\in t-\infty,$ $\infty$), then it has $n-2$ linearly independent fully oscillatory solutions.

Proof. For each positive integer, $r$ , let $U_{r},$ $i=0,1,$ $\ldots,$ $n-3$ be the solutions
of (L) defined by

$U,=a_{\ell r}Z+b,Z_{n-2}+c_{\ell r}Z_{n-1}$ ,

where the numbers $a_{f},$
$b_{\ell f}$ , and $c$ , satisfy the following equations.

$a_{i}^{2}f+b_{f}^{2}+c_{\ell r}^{f}=1$ ,

$a_{r}Z(r)+b,Z_{*-},(r)+c_{r}Z_{*-1}(r)=0$ ,

$a_{\ell f}Z_{\ell}(-r)+b_{\ell f}Z_{n-1}(-r)+c_{\ell r}Z_{n-1}(-r)=0$ .
Since the sequences $\langle a_{r}\rangle,$ $\langle b,\rangle$ and $\langle c_{r}\rangle$ are bounded, there exists a sequence

$\langle r>of$ positive integers such that the subsequence8 $\langle a_{rk}\rangle,$ \langle $b_{f}>$ and $\langle c_{\ell rk}\rangle$ converge

to numbers $a,$ $b$ and $c$ respectively, which satisfy

$a_{\ell}^{2}+b_{\ell}^{2}+c_{\ell}^{2}=1$ , $i=0,1,2,$ $\ldots,$ $n-3$ .
We now consider the solution $U_{i},$ $i=0,1,2,$ $\cdots,$ $n-3$ defined by

$U=aZ+bZ_{n-},+c_{\ell}Z_{n-1}$ .
One can verify, using an argument 8imilar to ones used in proofs of theorem

8.1 and corollary 3.2 that $U,$ $i=0,1,$ $\cdots,$ $n-3$ are fully oscillatory.

Now to prove that the $n-2$ fully oscillatory solutions $U_{0},$ $U_{1},$
$\ldots,$

$U_{n-8}$ are
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linearly independent, it is sufficient to show that $a_{\ell}\neq 0,$ $i=0,1,$ $\cdots,$ $n-8$ . For if
some $a=0$ , then $U_{i}(t)=b_{\ell}Z_{-2}(t)+cZ_{n-1}(t)$ .

This implies

$U_{i}^{(j)}(0)=0$ , $j=0,1,2,$ $\cdots,$ $n-3$ ,

$U_{i}^{(*-2)}(0)=b_{\ell}$ ,

$U^{(n-1)}(0)=c_{1}$ .
If Sgn $b_{i}=Sgnc_{\ell}$ , then by lemma 2.1, there exists $t_{0}$ such that for all $t>t_{0}$ .

Sgn $U_{\ell}(t)=SgnU_{\ell}^{(j)}(t)$ , $j=1,2,$ $\cdots,$ $n-1$ .
Again, if Sgn $b\neq Sgnc$ , then lemma 2.2, for all $t<0$ ,

Sgn $U_{:}^{(j)}(t)\neq SgnU^{(j+1)}(t)$ .
Thus $U$ is not fully oscillatory solution of (L), which is a contradiction.
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