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$Summary:-In$ this paper new curvature tensors have been defined and their
various physical and geometrical properties are studied.

1. Introduction. In the n-dimensional space $V_{n}$ , the tensors.

(1.1) $C(X, Y, Z, T)=R(X, Y, Z, T)-\frac{R}{n(n-1)}[g(X, T)g(Y, Z)-g(Y, T)g(X, Z)|$ ,

(1.2) $L(X, Y, Z, T)=R$ ($X,$ $Y$, Z. $T$) $-\frac{1}{n-2}[g(Y, Z)$ Ric (X, $T$)

$-g(X, Z)$ Ric $(Y, T)+g(X, T)$ Ric $(Y, Z)-g(Y, T)$ Ric (X, $Z$)],

and

(1.3) $V(X, Y, Z, T)=R(X, Y, Z, T)-\frac{1}{n-2}[g(Y, Z)$ Ric (X, $T$)

$-g(X, Z)$ Ric $(Y, T)+g(X, T)$ Ric $(Y, Z)-g(Y, T)$ Ric (X, $Z$)]

$+\frac{R}{(n-1)(n-2)}[g(X, T)g(Y, Z)-g(Y, T)g(X, Z)]$ ,

are called concircular curvature tensor, conharmonic curvature tensor and con-
formal curvature tensor respectively [1]. These satisfy the symmetric and skew
symmetric as well as the cyclic property possessed by the curvature tensor
$R(X, Y, Z, T)$ .

The proiective curvature tensor is given by

(1.4) $W(X, Y, Z, T)=R(X, Y, Z, T)+\frac{1}{n-1}$

$\times$ [$g(X,$ $Z)$ Ric $(Y,$ $T)-g(X,$ $T)$ Ric $(Y,$ $Z)$].

In our recent papers $[11, [2]$ , we have defined some curvature tensors and
explored their various physical and geometrical properties.

Here we shall define two new tensors and obtain their Prooertles.
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2. Definition. We define the tensors

(2.1) $W_{\epsilon}(X, Y, Z, T)=R(X, Y, Z, T)+\frac{1}{n-1}d\epsilon f$

$\times[g(Y, Z)$ Ric (X, $T$ ) $-g(Y, T)$ Ric (X, $Z$ ) $|$ ,

and

(2.2) $W(X, Y, Z, T)=R(X, Y, Z, T)+\frac{1}{n-1}d\epsilon f$

$\times$ [$g(X,$ $Z)$ Ric $(Y,$ $T)-g(X,$ $Y)$ Ric $(Z,$ $T)$].

From $equati\sigma ns(1.1)$ to (2.2), it is clear that for an empty gravitational field
characterized by Ric (X, $Y$ ) $=0$ , the six fourth rank tensors are identical.

We notice from (2.1) that $W_{\epsilon}(X, Y, Z, T)$ is skew-symmetric in $Z,$ $T$ and

(2.3) $W_{\epsilon}(X, Y, Z, T)+W_{8}(Y, Z, X, T)+W_{8}(Z, X, Y, T)\neq 0$ .
Breaking $W_{\epsilon}(X, Y, Z, T)$ into two parts

$\alpha(X, Y, Z, T)=\frac{1}{2}[W_{l}(X, Y, Z, T)-W_{\epsilon}(Y, X, Z, T)]$ ,

and

$\beta(X, Y, Z, T)=\frac{1}{2}[W,(X, Y, Z, T)+W_{l}(Y, X, Z, T)]$ ,

which are respectively skew.symmetric and symmetric in $X$, Y.
From (2.1), it follows that

(2.4) $\alpha(X, Y, Z, T)=R(X, Y, Z, T)+\frac{1}{2(n-1)}[g(Y, Z)$ Ric (X, $T$)

$-g(Y, T)$ Ric (X, $Z$) $-g(X,Z)$ Ric $(Y, T)+g(X, T)$ Ric $(Y, Z)$ ] ,

and

(2.5) $\beta(X, Y, Z, T)=\frac{1}{2(n-1)}[g(Y, Z)$ Ric (X, $T$)$-g(Y, T)$ Ric (X, $\dot{Z}$)

$+g(X, Z)$ Ric $(Y, T)-g(X, T)$ Ric $(Y, Z)$].

From (2.4), we see that $\alpha(X, Y, Z, T)$ possesses all the symmetric and skew
symmetric Properties of $R(X, Y, Z, T)$ as well as the cyclic property

(2.6) $\alpha(X, Y, Z, T)+\alpha_{r}(Y, Z, X, T)+\alpha(Z, X_{1}Y, T)=0$ .
From equations (1.3) and (2.5), we get
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(2.7) $\alpha(X, Y, Z, T)=R(X, Y, Z, T)+\frac{1}{2(n-1)}$

$\times[(n-2)\{R(X, Y, Z, T)-V(X, Y, Z, T)\}$

$+\frac{R}{(n-1)(n-2)}\{g(X, T)g(Y, Z)-g(X, Z)g(Y, T)\}]$ ,

which for electromagnetic field (or more generally in the case of space with
vanishing scalar curvature) in $V_{4}$ becomes

(2.8) $3\alpha(X, Y, Z, T)=4R(X, Y, Z, T)-V(X, Y,Z, T)$ ,

also from equations (1.2) and (2.5), for $V_{4}$ , we have

(2.9) $3\alpha(X, Y, Z, T)=4R(X, Y, Z, T)-L(X, Y, Z, T)$ .
Thus equation (2.8) is the consequence of (2.9) for an electromagnetic field.
We notice that the symmetric part $\beta(X, Y, Z, T)$ is identically equal to the

symmetric part of Weyl proiective curvature tensor [31 where as its skew-
symmetric part is different from $\alpha(X, Y, Z, T)$ .

From equations (1.2), (1.4) and (2.1) we get

(2.9) $b$ $W_{\epsilon}(X, Y, Z, T)=W(X, Y, Z, T)+\frac{n-2}{n-1}[R(X, Y, Z, T)-L(X, Y, Z, T)]$ ,

which for $V$ becomes

(2.9) $c$ $W,(X, Y, Z, T)=W(X, Y, Z, T)+\frac{2}{3}[R(X, Y, Z, T)-L(X, Y, Z, T)]$ .

On contracting $W_{\epsilon kijk}$ defined by (2.1) we get

(2.10) $W_{ij}=(\frac{n-2}{n-1})(R_{1j}+\frac{R}{n-2}g_{ij})$ ,

and the scalear invariant

(2.11) $W_{\epsilon}\equiv g^{:j}W_{ij}=2R$ .
The scaIar invariant of second degree in $W_{\epsilon ij}$ is given by

(2.12) $(W_{\epsilon})_{II}=W_{\epsilon ij}W_{\epsilon}^{:j}=(\frac{n-2}{n-1})^{2}(R_{2}+\frac{2R^{f}}{n-2}+\frac{nR^{2}}{(n-2)^{2}})$ ,

where
$R_{g}=R_{i\dot{g}}R^{ij}$ .

From (2.4), on contracting, we get
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(2.13) $a_{tj}=\frac{3n-4}{2(n-1)}(R_{ij}+\frac{R}{3n-4}g_{ij})$ ,

and

(2.14) $\alpha=g^{:j}\alpha_{ij}=2R$ .
From (2.13) we notice that aij does not vanish in an Einstein space. Thus

it is not possible to extend the Pirani formalism of gravitational wave to the
Einstein space with the help of $\alpha h:jk$ .

Similar from (2.5), on contraction, we get

(2.15) $\beta_{hk}=\frac{n}{2(n-1)}(R_{hk}-\frac{R}{n}g_{hk})$ ,

and the scalar invariant $\beta$ defined by
$\beta=g^{hk}\beta_{hk}$ ,

vanishes identically in view of (2.15).

If we substitute for $R_{hk}$ from (2.15) into (2.5), we get

(2.16) $\beta_{hijk}=\frac{1}{n}(g_{hj}\beta_{ik}-g_{hk}\beta_{ij}+g_{\ell j}\beta_{hk}-g:k\beta_{hj})$ .

Thus the vanishing of $\beta_{hijk}$ is the necessary and sufficient condition for a space
to be an Einstein space.

From (2.2), we notice that $W_{4}(X, Y, Z, T)$ has no symmetry, but it satisfies
cyclic property

(2.17) $W_{4}(X, Y, Z, T)+W(Y, Z, X, T)+W_{4}(Z, X, Y, T)=0$ .
On contraction, it reduces to Ricci tensor i.e.
(2.18) $W_{4\ell j}=R_{ij}$ .
The vector

(2.19) $\theta:=\frac{g_{i\dot{g}}\epsilon^{jk\iota_{m}}R_{k^{p}}R_{p\ell\cdot m}}{\sqrt{-g}R_{\alpha b}R^{ab}}$ ,

is called the complexion vector of a non $\cdot$null electromagnetic field with no matter
by Misner and Wheeler [4] and its vanishing implies that field is purely electrical.
A semicolon stands for convariant differentiation.

Interchanging the dummy indices $l,$ $m(2.19)$ can be written as

(2.20)
$\theta_{i}=\frac{g_{ij}\epsilon^{jkn\ell}R_{k^{p}}R_{pm_{j}}\ell}{-\frac{\sqrt g_{ij}\epsilon^{jk\ell’*}R_{k^{p}}R_{pm;\ell}-gR_{ab}R_{r^{b}}}{\sqrt{-g}R_{ab}R^{ab}’}}=$

.
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By setting $W_{4pn\ell h}^{h}:=0$ , we get

(2.21) $R_{pm,\ell}=R_{p\ell.m}$ ,

which on substitution in (2.20) implies that $\theta_{i}=0$ . Thus the vanishing of the
divergence of $W_{4ijk}^{h}$ in an electromagnetic field implies a purely electric field.

It is seen that we cannot get a purely electric field with the help of $W_{\epsilon h\ell jk}$ .
Rainich [51 has shown that the necessary and sufficient condition for the

existence of the non-null electrovariance are
(2.22) $R=0$ ,

(2.23) $R_{j}^{:}R_{k^{j}}=\frac{1}{4}\delta\iota^{:}R_{ab}R^{ab}$ ,

(2.24) $\theta_{i;j}=\theta_{j;i}$ .
From (2.18) we notice that $W_{4ij}$ can very well be substituted in place of $R:j$ in
the above conditions.

For an electromagnetic field, from (2.10), we get

(2.25) $W_{S\ell j}=\frac{2}{3}R:j$ .

Thus $W_{8if}$ can also replace Rij in the Rainich conditions.
Thus from the above discussion, we conclude that the new defined tensors

can very well be used in place of Weyl proiective tensor in various physical
and geometrical spheres.
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U.G.C. for its financial assistance.

REFERENCES

[1] G. P. Pokhariyal and R. S. Mishra: Curvature tensors and their relatwistic significame,
Yokohama Math. Jour. Vol. 18, No. 2, pp. 105-108, 1970.

[2] G. P. Pokhariyal and R. S. Mishra: Curvature $ tensor\epsilon$ and their rdativistic significance
(II), Yokohama Math. Jour. Vol. 19, pp. 97-103, 1971.

[3] K. P. Singh, L. Radhakrishna and R. Sharan: Electromagnetic FieMs and cylindrUl
Symmetry, Ann. Phys. Vol. 32, No. 1, pp. 46-68, 1965.

[4] C. W. Misner and J. A. Wheeler: Ann. Phys (N.Y.), 2, 525, 1957.
[5] G. Y. Rainich: Trans. Ann. Math. Soc. 27, 106 (1952).

Department of Mathematics
Banaras Hindu University

Varanasi, India


	1. Introduction. In the ...
	2. Definition. We define ...
	REFERENCES

