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1. Introduction. If $f(z)$ is an entire function of order $\rho$ with an m-fold
zero at the origin, then by Hadamard’s Factorization Theorem we have

(1.1) $f(z)=z^{n}\cdot e^{Q(z)}\cdot P(z)$ ,

where $P(z)$ is the canonical product (of genus p) formed with the zeros (other

than $z=0$) of $f(z)$ ; $Q(z)$ is a polynomial of degree $ q\leq\rho$ . The order of $P(z)$ is
$\rho_{1}\leq\rho,$ $\rho_{1}$ being the $\ovalbox{\tt\small REJECT} nvergence$ exponent of the zeros of $f(z)$ . The genus of
$f(z)$ is the max $(p, q)$ , (see [11, Ch. II). In particular, if $l=0$ , then $q=0,$ $P=0$ ,
$\rho_{1}=0$ and the genus of $f(z)$ is also zero.

Throughout this paper we shall $assum_{9}f(z)$ to be a nonconstant entire
function of order zero. For an entire function $f(z)$ of this nature, the logarith-
mic order $\rho^{*}$ and the lower logarithmic order $\lambda^{*}$ are given as (see [21):

$\lim_{r\rightarrow\infty}\inf\lambda^{*}\sup_{\frac{\log\log M(r,f)}{\log\log r}=^{\rho^{*}}}(1\leq\lambda^{*}\leq\rho^{*}\leq\infty)$ ,

where $M(r,f)=\max_{|z|=r}|f(z)|$ . It is worth noting that for all entire functions $\lambda^{*}\geq 1$ .
Further, if $\{r_{n}\}_{n=1}^{\infty}$ denotes the sequence of the moduli of $th\epsilon$ zeros of $f(z)$ ,

then

$\rho_{1}=g.1.b.$ {$\alpha;\alpha>0\ovalbox{\tt\small REJECT}$ and $\sum_{\sim=1}^{\infty}r_{n}^{-\alpha}<\infty$ } $=0$ .

To have a more precise description of the distribution of the zeros of such
functions, let us consider

$\rho_{1}^{*}=g.1.b$ . {$\alpha;\alpha>0$ and $\sum_{\sim=1}^{\infty}(!ogr_{\hslash})^{-\alpha}<\infty$ }.

In analogy with the convergence exponent, $\rho_{1}$ , of the zeros of $f(z),$ $\rho_{1}^{*}$ will be
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called the logarithmic convergence exponent of the zeros of $f(z)$ .
Our aim in this paper is to study the growth relations of entire functions

of logarithmic order with respect to the distribution of its zeros. The most
striking result of the paper is that the canonical product $P(z)$ is of logarithmic

order $\rho_{1}^{*}+1$ which further equals to $\rho^{*}$ .
2. Theorem. If $f(z)$ has at least one zero, then

$\lim\sup_{\rightarrow\sim}\frac{\log n(r)}{\log\log r}=\rho_{1}^{*}$ ,

where $n(r)$ is the number of the $zeros^{*}$ of $f(z)$ in $|z|\leq r$ .
To prove this we need the following lemma:

Lemma 1. The series

(2.1) $\tilde{\sum_{n=1}}(\log r_{n})^{-\alpha}$

and the integral

(2.2) $\int_{1}^{\infty}\frac{n(x)}{(\log x)^{\alpha+1}}\frac{dx}{x}$

converge or diverge together if $\alpha>0$ .
Proof. A partial sum of the series (2.1) is

(2.3) $\int_{1}^{R}\frac{dn(x)}{(\log x)^{\alpha}}=\frac{n(R\rangle}{(\log R)^{\alpha}}+\alpha f_{1}^{R}\frac{n(x)}{(\log x)^{\alpha+1}}\frac{dx}{x}$

If the left-hand side is bounded as $ R\rightarrow\infty$ , the integral on the right-hand side
does not exceed that on the left and hence (2.2) converges.

Further, if (2.2) converges, we have

$\int_{1}^{R^{2}}\frac{n(x)dx}{(\log x)^{\alpha+1}x}>!_{R}^{R^{2}}\frac{n(x)}{(\log x)^{\alpha+1}}\frac{dx}{x}>n(R)\int_{R}^{R^{2}}\frac{1}{(\log x)^{\alpha+1}}\frac{dx}{x}$

$=\alpha^{-1}\cdot n(R)(1-2^{-a})(\log R)^{-a}$ ,

which implies
$n(R)=O((\log R)^{\alpha})$ .

Thus the right-hand side of (2.3) is bounded and therefore so is the left-hand
side, i.e. (2.1) converges.

Proof of the theorem. Let

$*$ We assume, without any loss of generality, that $n(r)=0$ for $r\leq 1$ .
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$\lim_{r\rightarrow\infty}\sup\frac{\log n(r)}{\log\log r}=\delta$ .
Therefore

$n(r)=O((\log r)^{\delta+}),$ $r\geq r_{0}(\epsilon),$ $\epsilon>0$ ;

so (2.2) and hence (2.1), in view of the above lemma, is convergent if $\alpha>\delta+e$ .
This means that $\rho_{\iota^{*}}\leq\delta$ .

Also, $g$ an increasing sequence $\{r_{k}\}_{k=1}^{\infty}$ such that

$n(r_{k})>(\log rk)^{\delta-}$ .
Therefore, for $R>(r_{k})^{2^{1/\alpha}}$ , we have

$\int_{r_{k}}^{R}\frac{n(x)}{(\log x)^{\alpha+1}}\frac{dx}{x}\geq n(rk)\int_{r_{k}}^{R}\frac{1}{(\log x)^{a+1}}\frac{dx}{x}$

$>(\log r_{k})^{\delta-}\int^{R}.\frac{1}{(\log x)^{\alpha+1}}\frac{dx}{x}$

$=\alpha^{-1}\cdot(\log r_{k})^{\delta-}((\log r_{k})^{-\alpha}-(\log R)^{-\alpha})$

$>(2\alpha)^{-1}(\log r_{k})^{\delta-\alpha-}$

which implies that the integral (2.2) and hence the series (2.1) is divergent for
$\alpha<\delta-\epsilon$ . Hence $\rho_{\iota^{*}}\geq\delta$ .

This proves the theorem.

Theorem 2. A canonical $P(z)$ is an entire function of logarithmic order $\rho_{1}^{*}+1$ .
For this we first prove:

Lemma 2. If
$N(r)=\int_{0}^{r}\frac{n(t)}{t}dt$ ,

then

$\lim_{r\rightarrow}\sup_{\infty}\frac{10}{10}g\frac{N(r)}{\log r}=\rho_{1}^{*}+1g$

Lemma 3. For every entire function of logarithmic order $\rho^{*}$ and logarithmic

convergence exponent $\rho_{1}^{*},$ $\rho^{*}\geq\rho_{\iota^{*}}+1$ .
Proof of the lemmas. The lemma 2 follows from theorem 1 and the

inequalities

$N(r^{2})\geq\int:\frac{n(t)}{t}dt\geq n(r)\int_{r}^{r^{2}}\frac{dt}{t}=n(r)$ . log $r$ ,

and
$N(r)\leq n(r)$ . log $r(1+o(1))$ .



100 P.K. JAIN and V.D. CHUGH

Further, by Jensen’s theorem, (see [11, (2.5.9), p. 15), we have

$N(r)\leq\log M(r,f)$ .
Henoe lemma 3 follows from the above inequality by using lemma 2.

$Proof\cdot\cdot oflth\epsilon$ theorem. It is already known that. $P\langle z$) is always an entire
function (see [11, p. 19). Let $\sigma$ be the logarithmic order of $P(z)$ . Therefore,
by lemma 2, $\sigma\geq\rho_{1}^{*}+1$ . To prove the reverse inequality, write. (see, [1], p. 19)

log $|P(z)|\leq\int_{0}^{r}\frac{n(t)}{t}dt+r\int_{r^{\frac{n(t}{t^{2}}}}^{\infty})_{dt}$ .

Also by Theorem 1,

$n(t)\leq(\log t\}^{\rho_{1^{\prime}}+} , r\geq r_{0}(\epsilon)$ , $\epsilon>0$ .
Therefore

log $|P(z)|<\frac{(\log r)^{\rho_{1^{*+1+}}*}}{\rho_{1}^{*}+1+\epsilon}+r\int;(\log t)^{\rho_{1}\cdot+}\frac{dt}{t^{2}}+O(1)$ .

Now, consider

$I=\int_{r}^{\infty}(\log t)^{\rho_{1^{*}}+}\frac{dt}{t^{2}}$

$=\frac{(\log r)^{\rho_{1^{t}}+l}}{r}+(\rho_{1}^{*}+\epsilon\rangle\int_{r}^{\infty}(Iogt)^{\rho_{1}-1+}\frac{dt}{t^{2}}$

$\leq\frac{(\log r)^{\rho_{1}\cdot+}}{r}+\frac{(\rho_{\iota^{*}}+\epsilon)}{\log r}\int_{r}^{\infty}(\log t)^{\rho_{1}+}\frac{dt}{t^{\mathfrak{g}}}\iota$

$=\frac{(\log r)^{\rho_{1}\cdot+}}{r}+\frac{(\rho_{1}^{*}+\epsilon)}{\log r}I$

which implies

$r\cdot I\leq(\log r)^{\rho_{1^{r}}+}\cdot(1+o(1))$ .
Hence

log $M(r, \rho)\sim\frac{(\log r)^{\rho_{1^{s+1+l}}}}{\rho_{1}^{*}+1+\epsilon}(1+o(1))$ ,

i.e. $\sigma\leq\rho_{1}^{*}+1$ .
Corollary. For an entire $funct_{\dot{i}}onf(z)$ of logarithmic order $\rho^{*}and$ logarithmic

convergence $exPonent\rho_{1}^{*},$ $\rho^{*}=\rho_{1}^{*}+1$ .
Proof. This immediately follows by using theorem 2 in (1.1).

Theorem 3. If $f(z)$ is of logarithmic order $\rho^{*}$ , then
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$n(r)=O((\log r)^{\rho^{v}-1+e})$ ,

for every $\epsilon>0$ .
We omit the proof for conciseness.

Remark Our theorems 1, 2 and 3 are analogous to the results (2.5.8),

(2.6.5) and (2.5.12) respectively in [11. It is to be noted that all our results are
not exactly of the same form as for functions of order $\rho$ (compare for instance

theorem 2 with (2.6.5) and theorem 3 with (2.5.12) in [11).
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