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1. A tensor P}; of Riemannian Space Va is called second order recurrent if
1.1) Pi’;k,lm:almP-’:ljk ’

for some non-zero tensor ai», where a comma denotes covariant differentiation
with respect to the metric tensor gi;. The tensor ai; of is called tensor of
recurrence. '

A non-flat Riemannian Space is called second order recurrent if the curvature
tensor R}, of the space is second order recurrent. A Riemannian space Va

(n>3) is called conformally recurrent space of second order if the conformal
curvature tensor C};; given by ' '

(1.2) | Cliv=Rl— _n_lE (Rt gii—Ri"gin + Riduh— Ruxd i)

R

=1 —2)

(0x gii— 6" gir)
is second order recurrent. Recurrent spaces and conformally recurrent spaces
both of second order will be denoted by 2K» and *C. respectively.

These spaces have been studied by many authors including Lichnerowicz [1],
Thompson [2], Chaki and Roychowdhury [38]. This paper is concerned with the
spaces in which the conharmonic curvature tensor Laijx given by

1.3) Lrijt=Rhuijti— ;:1_3 (gijRue— gniRix+ graRii— LixRnj)

is second order recurrent. Such spaces will be called conharmonically recurrent-

spaces of second order and will be denoted by *La. *La’s with some additional"
conditions are also considered. '

2. (i) The scalar curvature and the tensor of recurrence of a *L.

Let Laijx satisfy the relation
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2.1) Luiik,im=q@imLpijx ,

for some non-zero tensor ais. From and it follows that

1

2.2) Rhuijk,im— "

(&iiRnk,im—GniRik,im~+ GhRig, im— ik Rhj,im)
=Qim {Rhijk — ;—Z-i—é (giiRne—gniRin+ gheRii— githj)} .

Transvecting with g% and simplifying, we get

L (R im—Ram)gm=0 .
n—2

Therefore, for n>2,
2.3 Rin=ainR .

Since aim is a non-zero tensor, R cannot be a non zero constant. Hence the
results:

Theorem 1. The scalar curvature of a :L. n>2) cannot be a non zero
constant.

Theorem 2. In a *La (n>Z2) of non-zero scalar curvature R, the temsor of
recurrence is symmetric and is given by aimn=1/R)R,im.

(ii) The conformal curvature tensor of a L.

Consider Chijr in a *Ls. From [1.2) and [1.3), it follows that

Chije=Lhnije+ Thiir ,
where Thijr is given by

R

m (ghkgij'—ghjgik) .

Thijn=

Because of [2.3), we have

Thise,im=aimThijn
and consequently

Chijk,im=aimChijr
Hence we have the result:

Theorem 3. A *L. (n>3) is a *Ca with the same tensor of recurrence.
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(iii) Einstein ®*L,

For n>2, the scalar curvature of an Einstein space is constant. Hence in
view of theorem 1, in an Einstein L., R=0 and consequently R:;j=0 and La:jx
reduces to Raije. Also in an Einstein K, Rij=0. Thus we have the following
results:

Theorem 4. The Ricci tensor of an Einstein *La (n>2) is zero.

Theorem 5. A non-flat Einstein space Van>2) is a *La if and only if it is
a K. with the same tensor of recurrence.

(iv) Ricci recurrent *L.

A Riemannian space Va (#>3) is called Ricci recurrent spaces of second
order if its Ricci tensor satisfies

2.4) Rij,im=afnRij
and
Ri;j#£0,

for a non-zero tensor a@¥s. Let us suppose that ¢ ®L. is also a Ricci-recurrent
space of second order. Transvecting with g%, we get

R,l‘m=a7ka .
Hence, in view of [2.3), we have a¥.=ain if R+0. From [1.3), it follows that
(2.5) Ruijk,im=Lnijk,im= Shijk,im ,

where Srijx is given by

Shije=

[giiRre— gniRix+ gneRij— ginRaj] .

By virtue of and a¥.=aim, (2.5) reduces to
Ruijk,im=aim(Lrijr+ Shijk) = aimRhijk .
Thus we have the result:

Theorem 6. A second order Ricci recurrent *L. (n>3) of mnon-zero scalar
curvature is a :Kn with same tensor of recurrence.

(v) Symmetric L,

Let a *Ls be symmetric. Since it is symmetric, we have




92 ' RANJAN KUMAR GARAI

Ruijk,1=0 .
Consequently
(2.6) " Rhsije,im=0 ,
2.7) Rij,in=0
and
(2.8) Rin=0.

Because of and [2.8), we get R=0. In view of (2.6) and [2.7), from [1.3),
it follows that

Luise,im=0
or
2.9 aimLriin=0 .

Since aim+#0, (2.9) gives Lnijx=0.
Also, for n>2, Laijx=0 implies R=0.
Thus we have the result:

Theorem 7. There are no symmetric *La’s (n>2) besides the conharmonic-
ally flat ones and the scalar curvature of such spaces is zero.

(vi) :L, admitting concurrent (vector field

Let a :L. admit a concurrent vector field v* [4]. Then
(2.10) vij=pds*,
where p is a nbn-zero constant. From [2.10), it follows that
- (2.11) Vi, i=pgij .
Consequently

vi,ik— Vi, ki=0 .

Hence by Ricci’s identity

(2.12) ' ”hR,bjk=0 .
Transvecting with g%, we get
(2.13) nwRi*=0 .

Differentiating covariantly with respect to x' and using (2.11), we have
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.{2.14) pRux+vrRE, =0 .

Transvecting (2.14) with g'*, one gets

(2.15) "20R+V'R =0 .
‘ Differentiating {2.15) covariantly with respect #™ and using (2.10), we have
(2.16) 30R,m+V'R 1m=0 .

Now transvecting with »™ and applying [(2.15), we get

2.17) V"W R am—60*°R=0 .

In consequence of [2.3), is reducible to

(2.18) V™ ahm—60%) R=0

If R+0, (2.18) gives

(2.19) ' VU™ ghm=60% .

Hence we have the result:

Theorem 8. If a :Ln (n>2) of non-zero scalar curvature admits a concurrent
vector field v¢ such that vij=pd5, p being a non-zero constant, them V'v™aim=60",
where ai; is the tensor of recurrence.

(vii) ®L. admitting parallel vector field

Putting p=0 in [2.19), one obtains v*v"arm=0.
Thus, we have the result:

Theorem 9. If a *L. (n>2) of mon-zero scalar curvature admits a pamllel
vector field v¢, then aip'vi=0, where ai; is the temsor of recurrence.

(viii) 2L. satisfying the condition R:; :i=Rix,;

Let a ®*La. satisfy the condition

(2.20) Rij k—Rik, ;=0 .
In view of [(2.20), we have
(2.21) Lasie, i+ Luirt, i+ Laiti, 6=0 .

Differentiating covariantly with respect to x™ and applying the property
of 2La, we get

(2.22) Aomdins 34 Qiim Laiir-b @romlniti==0 ,
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aij being the tensor of recurrence of the space. It can be easily verified that
L satisfies the following relations.

(2.23) Laije=—Linjt=—Ljxin=Ljni=Linkj .

Since ai;#0, there exists a vector field #* such that aij'pi=1. Let ajpi=aj.
Then a;pf=1. Now put as in Walker [5].

(2.24) Sij==—prp* Lyisi=— prpe* Litni= — p* pr* Lajin=Sis .
Transvecting with ¢Aelu™, we get
¢ Laijit(@impe™) (¢ Luins) + (@imp™) (¢ Laig) =0
or
(2.25) | ¢ Laise=a3Six—arSi; .
Transvecting with ¢#™ and applying [2.25), we have
Lis=Srsaiax+ Sorana;—Saraia;— Sijanax .
Hence we have the result:

Theorem 10. In a L. which satisfies (2.20), there exists a vector field ai
such that the temnsor Liijr can be expressed in the form

Laiju==Shjasar+ Sirara;—Shraia;—Sijanar ,
where Si; is a symmetric tensor.

Transvecting with g%, we get

(2.26) —12—R,,.=o .
In view of and theorem 1, we have R=0 and consequently
(2.27) aw*Lnijn=0 .

~ Transvecting with £% and using [2.23) and [2.27), we get
an*Lissi=0 , |
where an*=g"aim. Hence the result:
Theorem 11. If a :La satisﬁes the condition A(2.20), then
an*Laiiu=0 ,

where an*=g"aim, aim being the tensor of recurrence.
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(ix) Decomposable 2L,

Let a *L. (n>2) be a product space VpX Va_p whose metric is given by

(2.28) ds’= 3 gapdxtdxf+ 3 giidxidx’
a p=1 i,i=p+1
where ge«s and gi; are functions of (x!, 4%, ---, x?) and (x*!, x**%, -, x*) respec-

tively. We denote by 'R and R the scalar curvatures of V, and Va-» respec-
tively. Then the scalar curvature R of L. is given by

(2.29) R='R+’R.

Since #>2, by and [2.29), we have
(*R+*R),im=aim(*R+*R)

or

(2.30) ’Rim=aim(*R+*R) ,

where latin indices take the values from p-41, - - -, n.
From [(1.3), it follows that

(2.31) Laiﬂj':Raiﬁj""niz [gipRai— LapRiji+ aiRis— giiRuasp)
=1 [gasRi;+ giiRes] .
n—2
From and [2.31), we have
(2.32) ZapRij,im=aim(GapRii+ giiRap) .

Transvecting [2.32) with g%, where ¢ and j take values from p-+1,:--, n, we
get

(2.33) ap 2R,lm=alm{gaﬁ R+ (n""p)Raﬁ} .

Applying [2.30) in [2.33), we obtain

&aptin' R=aim(n—p) Rup

~or

(2.34) alm{gaﬂ IR— (n—p)Raﬁ}zo .
Since am#0, (2.34) gives

1

(2.35) Raﬁ n_p gaB .
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Similarly it can be shown that

2
(2.36) R¢j=—f- 8ii .

Thus, we have the theorem:

‘Theorem 12. If a :L;n (n>1) be a product space VaX Va, then each of the
decomposition spaces and L. itself are Einstein spaces.

Transvecting with g*#, where «a, 8 take values from 1, 2, -+, p, we get
'R(1- ) =0

or
'R(n—2p)=0 .

Similarly from [2.36), one gets
*R(n—2p)=0 .

If n#2p, 'R=R=0 and hence from R=0. Thus we have the result:

Theorem 13. If a *L. (n>2) be a product space VyX Va—p, where n+2p then
the scalar curvatures of each of decomposition spaces and that of ®Ln itself are zero.

In conclusion, I beg to acknowledge my gratefulness to Dr. H. Sen of Burdwan
University who suggested the problem and helped me in the preparation of the
paper.
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