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1. Introduction.

Let $A$ be any bounded subset of a Banach space X. Darbo [11 defined $\gamma(A)$ ,
the measure of noncompactness of $A$ , to be inf { $d>0|A$ can be covered by a
finite number of sets of diameter less than or equal to $d$}.

If $D$ is a subset of the Banach space $X$ and $f$ is a continuous map from $D$

to $X,$ $f$ is called a k-set-contraction, if $\gamma[f(A)]$ $\leqq k\gamma[A]$ for $A$ , any bounded
subset of $D$. Specially if $k<1$ , we say that $f$ is a strict-set-contraction, an
important example of which is furnished by a map of the form $U+T$, $U$ is a
strict contraction (i.e. $||Ux+Uy\Vert\leqq k\Vert x-y\Vert,$ $k<1$ ) and $T$ is completely continuous
(not necessarily linear).

Darbo proved that if $D$ is a bounded closed convex subset of a Banach space
$X$ and $f:D\rightarrow D$ is a strict-set-contraction, then $f$ has a fixed point.

In this paper, we consider a map of the form $U+T,$ $U$ is a linear bounded
iteratively strict-set.contraction (i.e. a linear bounded operator such that some
iterate $U^{p}$ is a strict-set-contraction) and $T$ is completely continuous (not

necessarily linear).

2. Background.

At first we mention the fundamental properties of the measure of noncom-
pactness in the form of the proposition. They are useful to prove theorems
latter.

Proposition 1. Let $X$ be a Banach slace and $A$ and $B$ are bounded subsets
of X. Then we have

$(a)$ if $A\subset B$, then $\gamma(A)\leqq\gamma(B)$ ,
$(b)$ $\gamma(A\cup B)=\max\{\gamma(A), \gamma(B)\}$ ,
$(c)$ $\gamma(\overline{A})=\gamma(A)$ if $\overline{A}$ denotes the closure of $A$ ,
$(d)\gamma(\overline{co}A)=\gamma(A)$ if we denote the convex closure $oJ$ $A$ by $\overline{co}A$ ,
$(e)$ $\gamma(A+B)\leqq\gamma(A)+\gamma(B)$ if we denote $\{a+b|aeA, beB\}$ by $A+B$,
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$(f)$ if $A$ is compact, then $\gamma(A)=0$ .
Proposition 2. Let $B$ be a closed bounded convex set in a Banach space $X$,

and let $f;B\rightarrow B$ be a continuous map Let $B_{1}=\overline{co}f(B),$ $B_{n}=\overline{co}f(B_{n-1})$ , for $n>0$ .
Assume that $r(B_{n})\rightarrow 0$ . Then $f$ has a fixed point.

The proofs of these propositions are contained in the references [11 and [21.

3. Fixed point theorem.

Theorem 1. Let $B$ be an $oPen$ ball of radius $r$ and center $\theta$ , origin of a
Banach sPace X. If $f;X\rightarrow X$ is a map of the form $U+T,$ $U$ is a linear bounded
iteratively strict-set-contraction and $T$ is comPletely continuous, and $f$ satisfies the
boundary condition

$(LS)$ : $f(x)=\alpha x$ for some $x$ in $\partial B$ , then $\alpha\leqq 1$

where $\partial B$ denotes the boundary of B. Then $f$ has a fixed point in $\overline{B}$ .
In the $prf$ of theorem 1 we shall make use of the following lemmas.

Lemma 1. Let $D$ be any bounded subset of a Banach sPace X. If $f;X\rightarrow X$

is a map of the form $L+T,$ $L$ is a linear bounded map and $T$ is completely
continuous. Then we have $\gamma[f(\overline{co}(D\cup\theta))]=r[f(D)]$ .

Proof. Since $\overline{co}(D\cup\theta)\supset D$, by Proposition $1(a),$ $\gamma[f(\overline{co}(D\cup\theta))]\geqq\gamma[f(D)]$ . On
the other hand, since $f(\overline{co}(D\cup\theta))\subset L(\overline{co}(D\cup\theta))+T(\overline{co}(D\cup\theta))$ and the compactness

of the map $T$, we see that $\gamma[f(\overline{co}(D\cup\theta))]\leqq\gamma[L(\overline{co}(D\cup\theta))]$ by Proposition 1 (e), (f).

Since $L$ is linear, it follows that $L(\overline{co}(D\cup\theta))=\overline{co}(L(D\cup\theta))=\overline{co}(L(D)\cup L(\theta))$ , so
$\gamma[L(\overline{co}(D\cup\theta))]=r[L(D)]$ . By Proposition 1 (e), (f), $\gamma[L(D)]\leqq\gamma[f(D)]+\gamma[-T(D)]$

$\leqq\gamma[f(D)]$ . Hence we have that $\gamma[f(\overline{co}(D\cup\theta))]\leqq\gamma[f(D)]$ and consequently
$\gamma[f(\overline{co}(D\cup\theta))]=\gamma[f(D)]$ .

Lemma 2. Let $R$ be the radial retraction of $X$ onto $\overline{B}$ , i.e.

$R(x)=\left\{\begin{array}{l}x if \Vert x\Vert\leqq r,\\(rxl\Vert x\Vert) if \Vert x\Vert\geqq r.\end{array}\right.$

Let $f;X\rightarrow X$ be a map of the form $U+T,$ $U$ is a linear bounded iteratively strict-
set-contraction and $T$ is comPletely continuous, and we define the map $F(x)=$

$R(f(x))$ for all $x$ in B. Then $F:\overline{B}\rightarrow\overline{B}$ has a fixed Poin $t$.
Proof. Let $B_{\iota}=\overline{co}F(\overline{B})$ , $B_{n+1}=\overline{co}F(B_{n})$ and let $C_{\iota}=-(f(\overline{B})\cup\theta)$ , $C_{+1}$

$=\overline{co}(f(C_{n})\cup\theta)$ for $n>0$ . Clearly $B_{n+1}\subset B$, for $n>0$ and since $R(D)\subset\overline{\omega}(D\cup\theta)$ for
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$D$, any bounded subset of $X$, then we have $B_{n}\subset C_{n}$ for $n>0$ .
Therefore $\liminf\gamma(C_{n})$ implies that $\gamma(B_{n})\rightarrow 0$ . Since $\overline{B}$ is a closed bounded

$ n\rightarrow\infty$

convex subset of $X$, in order to prove this lemma by Proposition 2, it suffices

to show that $\liminf\gamma(C_{n})=0$ . Since $f^{j}$ is a map of the form $U^{j}+T_{j}$ , where $T_{j}$

$ n\rightarrow\infty$

is completely continuous and $U^{j}$ is a linear bounded map, $\gamma[f^{j}(\overline{co}(D\cup\theta))]=r[f^{j}(D)]$

follows from Lemma 1.

Applying this relation repeatedly we see
$\gamma(C_{i})=\gamma[\overline{co}(f(C_{i-1})\cup\theta)]=\gamma[f(C_{i-1})]=r[f(\overline{co}(f(C_{1-2})\cup\theta))]$

$=r[f^{2}(C_{i-2})]=\cdots=r[f^{:-1}(C_{1})]=r[f^{i}(\overline{B})]$ .
There is some integer $p>0$ such that $U^{p}$ is a k-set-contraction, $k<1$ , since $U$ is

an iteratively strict-set-contraction.
If $i=pn(n>0)$ , then we have

$\gamma(C_{pn})=r[f^{pn}(\overline{B})]\leqq\gamma[U^{pn}(\overline{B})]=r[T_{pn}(\overline{B})]\leqq\gamma[U^{pn}(\overline{B})]\leqq k^{n}\gamma(\overline{B})$ .
Therefore this implies $\lim_{n\rightarrow}\inf_{\infty}\gamma(C_{n})=0$ .

Proof of theorem 1. By lemma 2, there exists $ue\overline{B}$ such that $F(u)=u$ .
But then $u$ is also a fixed point of $f$. Indeed if $ueB$, then $\Vert R(f(u))\Vert<r$ .
Therefore $R(f(u))=f(u)=u$ . Alternatively, if $ue\partial B$ and $u$ is not a fixed point

of $f$, then $\alpha=\Vert f(u)\Vert lr>1$ , which is excluded by our condition (LS). Hence $u$ is

a fixed point of $f$.
Corollary 1. Let $f;X\rightarrow X$ be a map of the form $U+T,$ $U$ is a linear bounded

$iterat\dot{w}$ely strict.set-contractiOn and $T$ is completely continuous, and suPpose that $f$

satisfies any one of the following conditions:
$(a)$ $f(\overline{B})\subset\overline{B}$,
$(b)$ $f(\partial B)\subset\overline{B}$ ,
$(c)$ $\Vert f(x)-x\Vert^{2}\geqq\Vert f(x)\Vert^{2}-\Vert x\Vert^{2}$ , for all $x$ in $\partial B$,
$(d)$ $(f(x), \omega)\leqq(x, \omega)$ , any $\omega eJ(x)$ , for all $x$ in $\partial B$, where $J$ is a duality

maPping of $X$ into the set of all subsets of $X^{*}$ such that

$J(x)=\{\omega|\omega eX^{*};\Vert\omega\Vert=\Vert x\Vert;(x, \omega)=\Vert x\Vert\cdot\Vert\omega\Vert\}$ .
Then $f$ has a fixed point in $\overline{B}$.

Proof. Clearly (a) and (b), each separately, implies (LS). Hence the

theorem 1 is applicable. Next suppose that $f(x)=\alpha x$ for some $x$ in $\partial B$. Then
(c) $i_{1}nplies$ that $(\alpha-1)^{2}\geqq\alpha^{2}-1$ . So $\alpha\leqq 1$ . And (d) implies that $(\alpha x, \omega)\leqq(x, \omega)$ .
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So $\alpha\leqq 1$ . So $\alpha\leqq 1$ . Therefore (c) and (d) respectively implies (LS). Hence the
theorem 1 is aPplicable.

4, Mapping theorem.

A map $f$ is said to be quasi-bounded if the number defined by

$|f|=\lim_{||x||\rightarrow}\sup_{\infty}\frac{\Vert f(x)\Vert}{\Vert x\Vert}$ ,

is finite. The number $|f|$ is called the quasi-norm of $f$. It is easy to see that
$f$ is quasi-bounded if and only if there exist positive constants $\alpha$ and $\beta$ such
that $\Vert x\Vert\geqq\alpha$ implies that $||f(x)\Vert\leqq\beta\Vert x||$ .

Theorem 2. Let $f:X\rightarrow X$ be a map of the form $U+T,$ $U$ is a linear bounded
iteratively strict-set-contraction and $T$ is comPletely continuous, and let $f$ be quasi-
bounded with $|f|<1$ . Then any given $y$ in $X$, there exists $x$ in $X$ such that
$x-f(x)=y$ .

Proof. Let $\epsilon>0$ be such that $|f|+\epsilon<1$ . Since $f$ is quasi-bounded, if $\Vert x\Vert$

is large enough, we see

11 $ f(x)\Vert\leqq(|f|+\epsilon)\Vert x\Vert$ .
Let $y$ be any element of $X$, on the assumption that $\Vert x\Vert$ is large enough, we see

11 $f(x)+y-x\Vert^{2}+\Vert x\Vert^{2}-\Vert f(x)+y\Vert^{2}$

$\geqq\Vert x\Vert^{2}-(\Vert f(x)\Vert+\Vert y\Vert)^{2}$

$\geqq\Vert x|1^{2}-\Vert f(x)\Vert^{2}-2||y\Vert\cdot\Vert f(x)\Vert-||y\Vert^{2}$

$\geqq(1-(|f|+\epsilon)^{2})\Vert x\Vert^{2}-2\Vert y\Vert\cdot(|f|+\epsilon)\Vert x\Vert-\Vert y||^{2}$

Therefore there exists large number $r$ such that
$||f(x)+y-x\Vert^{2}\geqq\Vert f(x)+y\Vert^{2}-\Vert x\Vert^{2}$ for all $x$ such that $\Vert x\Vert=r$ . Since the map

$f^{\prime}$ : $X\rightarrow X$ defined by $f^{\prime}(x)=f(x)+y$ is easily seen to be a map of the form $U+T$
$+y,$ $U$ is a linear bounded iteratively strict-set-contraction and $T+y$ is completely
continuous, then Corollary 1 (c) is aPplicable for $f^{\prime}$ . Therefore given any $y$ in
$X$, there exists $x$ in $X$ such that $f^{\prime}(x)=f(x)+y=x$ .

Corollary 2. If $V$ be a bounded linear $oPerator$ on $X$ such that the iterate
$V^{p}$ is a strict contraction for some $P>0$ and $T$ be quasi.bounded and $comPletely$

continuous on X. If in additton the quasi-norm of $T$ satisfies
$|T|<1-k$
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where $ k=sup||x||\leq 1\Vert V(x)\Vert$ . Then for any $y$ in $X$, there exists $x$ in $X$ such that

$x-V(x)-T(x)=y$ .
This corollary was proved by Nashed and Wong [31. But this is a special

case of our theorem 2.
We wish to express our sincere thanks to Prof. M. Orihara for his kindly

suggestions.
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