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§0. Introduction

In the paper we will discuss on an equivalence relation between (n—1)-
submanifolds in an #-manifold, and on representations of (#—1)-dimensional
homology classes of an #-manifold. We shall work in the PL category. By the
smoothing theory, required results in the differentiable category may be obtained.

R, Thom introduced the concept of “ L-equivalence” between submanifolds
in a manifold. We shall introduce the concepts of “ L-equivalence” between
(n—1)-submanifolds in an #-manifold, and of “ L-manifold ”, see Definitions 4 and
5 in §2. Then, we shall obtain;

Theorem 1. Euvery compact connected orientable manifold, without boundary
or with connected boundary, is an L-manifold.

It is a well known result by R. Thom [8] that every (n—1)-dimensional
homology class 6 € H,_.,(M; Z) of an orientable z#-manifold M is representable by
a submanifold in M. But, he didn’t refer to the number of connected com-
ponents of the submanifold representing ¢. We will give the necessary and
sufficient condition for 6 to be representable by a submanifold having 8 connected
components.

Let M be a compact orientable #-manifold. By the Poincaré duality,
H,_(M; Z) is a free abelian group of finite rank. Let {gi, £, -, &} be a free
abelian basis for H,_,(M; Z). An implication of Theorem 1 is as follows;

Theorem 2. Let M be a compact connected orientable n-manifold without
boundary or with connected boundary. For a non-trivial homology class

0=d1g1+dzgz+ oo targr ,
of H,_,¢M; Z) the following conditions are equivalent;

(1) 6 can be represented by a submanifold having B connected components in M.
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(2) B=lal, where a is the greatest common divisor (a,,a,, -+-,ar) of

alv a2, *r,Cr.
So, as a special case of Theorem 2, we have;

Theorem 3. Let M be a compact comnected orientable n-manifold without
boundary or with connected boundary. For a non-trivial homology class

0=a1g1+agg2+ cee +argr ’

of H._,(M; Z), the following conditions are equivalent;
(I) 0 can be represented by a connected submanifold in M.
(2) the greatest common divisor (ai,a,, -+ -,ar)=1.

First in this direction, 7. Kaneko [2] obtained a complete answer to this
problem for closed surfaces in 1965. Then S. Suzuki extended his result to
surfaces with boundary [7] and also in the direction for the above Theorem 2 [6].
The author gave an extension of our problem to 3-manifolds under some condi-
tions [9]. In this paper this problem will be perfected. In preparing this paper,
M. Kato has informed the author that independently H. Nakatsuka has also
proved our [Theorem 3 by different methods.

In §1, we shall introduce an elementary operation (i, and give the proof of
[Lemma 1, which is of importance in the sequel. In §2, we shall introduce the
concepts of “ L-equivalence ” and “ L-manifold”. We shall consider the relation
between “ L-equivalence” and “ L-equivalence ”, and prove [Theorem 1. In §3,
we will give the proofs of Theorems 2 and 3.

* In this paper, all manifolds will be compact and oriented. PL embeddings
will be locally flat and submanifolds in a manifold will be locally flat and closed.
And an ambient #-manifold M is always connected, but a submanifold in a
manifold is not always connected unless we mention.

I am indebted to Professors 7. Homma, F. Hosokawa, M. Kato, S. Suzuki
and T. Yanagawa for their help.

§1. Notations and operations k

Throughout the paper, dM, intM, cIM denote the boundary, the interior and
the closure of a manifold M, respectively. N(A; B) denotes a regular neigh-
borhood of a subpolyhedron A in a polyhedron B. Homeomorphism and isomgorphism
are denoted by the same symbol =%, while =, ™~ and ~ denote, respectively, to
isotopy, homotopy and homology. I, D¥ and 4™ mean, respectively, the closed
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interval [0, 1], k-simplex and m-simplex.

For a submanifold A in a manifold, —A is the submanifold having the
opposite orientation of A. For integers ai, a., **-, &, (a1, a; - - -. a:) denotes the
greatest common divisor of them. Especially, we assume that (@, @, - - -, @) 20.

Let A be an (#—1)-submanifold in an #-manifold M. Let / be a simple oriented
arc in M that spans A with discoherent orientation, i.e. /N A=0/N A=0dl, and let
f:I—M be an embedding such that f(I)=I. Then, we can add an n-cell IxX4"™*
to A by a homeomorphism f:Ix 4—>N(; M) such that flmw=f, F@OIX4)CA
and f(intIX 4)=¢; and obtain an (#—1)-submanifold Ax={A—f@IX )} U f(Ixd4)
having the orientation induced by A. When we perform the operation above,
we shall say that the (#—1)-submanifold Ax is obtained from A by an operation [,
(along / in M) and denote A [J;. For any integer %, let f:D*X 4~"*—— M be an
embedding such that f(@DXx4)CcA and f(ntDX4)NA=¢. We can add an
n-cell D¥*x4™* to A by an embedding f and obtain an (2—1)-submanifold
Ax={A—f(@Dx 4)} U f(Dx d4) having the orientation induced by A. Then, we shall
say that the (#—1)-submanifold Ax is obtained from A by an operation [1r and
denote A[Jx. Moreover, we will denote A[J:[1,00,0:(0, and A[s[Js[1.[1:[]; etc.
by ACCEON---0% and ADICE0308---00% etc. unless confusion. It will be
noticed that;

Proposition 1. An operation [« does not exchange the homology class, that
is A=A in H,_.(M; Z).

In general for two submanifolds A and B in M, we cannot always apply an

operation [J;, see Lemma 2.

Definition 1. Let A be non-connected (#—1)-submanifold in an #-manifold M
and let A,;, A; be distinct connected components of A. Then, A, and A. are
said to be well-situated (relative to A) iff there is a simple oriented arc ! that
spans A; and A, with discoherent orientation, 7.e. IN A=IN(A,;U A)=03IN (4, U A,)
=al.

Lemma 1. Let A,, A, be disjoint connected (n—1)-submanifold in an n-manifold
M. If A, and A, are not well-situated relative to AU A,, then any one component
of A,OQM[0e03s---[02"7 and any one component of A,1¥10052005:---0521t are
not well-situated relative to A,[1}103:004s- - - 321 U AL 0f 2008 - - - [a i

An-1

Proof. Suppose that a component, say Bi, of A:[(0#1[#2(Jfs---[J22(" and a
component, say B, of A,[(0%1[0¢2[¥s---[057' are well-situated relative to
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A, COMOe02s- - - O2rrt U A, 0041 0%204s- - - [0, So there is a simple oriented
arc / that spans B; and B, with discoherent orientation. We may assume 0/,
say ai, as, is contained in A; and A. by slight deformation.

Let v=A442+ - +A 1+t pe+--+p,.-y. If the v-th operation is an
operation [, £=2,3, ---,n—1, we can exclude the intersection of / and the k-
handle A*(D)=f(D*x4"% by deforming [ isotopically, since [N k*¥(D)=arcs,
INar*(D)=IN DX 4) and dDx 4==S*"1x 4" *, see Fig. 1(a). If the »-th operation
is an operation [;, we deform / isotopically so that / intersects with f(01 x4"~%)
transversally. If INf(IX4" ')+#¢, then it consists of some arcs, and /N f(3 X 4)
consists of some points by, b, - -+, bs numbered from a, to a@; on /. If b, and b,
are contained in same component, say C, of f(0/X4), we can join &; and b, in C
and obtain a simple arc !=a.b, Ubd. Ubea,. By deforming I isotopically, we can
obtain a simple arc i’ such that I’Nf(Ix4)=¢, see Fig. 1(b). So, we may assume
b, and b, are not contained in same component of f(@/X4). Then we will
reserve only two simple arcs li’=a,b; and l,’=b.a,, see Fig. 1(c).

(a) (b) (c)
Fig. 1.

By the repetition of the procedure, we have simple oriented subarcs
li,ly, +++,lp of I such that LiN(A,UA.)=0dliN(A,UA;)=two points, say ci,d;.
Clearly, di: and c:+; are contained in Aj, and homology insersection numbers at
the points di, ¢.+1 are 1 and —1 (or —1 and 1), i=1,2, ---,p—1, j=1,2, see
Fig. 1 (b) (c). Since A;, A, is connected, we can join di and c:+1 by simple arc
I; and obtain a simple oriented arc /=04 UL ULULU---Ul,_;Ul,. By deforming
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I isotopically, we can obtain a simple oriented arc { that spans A, and A. with
discoherent orientation. Therefore, A; and A, are well-situated, which is a
contradiction. ’

Lemma 2. Let M be an n- mamfold with non-connected boundary. Let A,, A,
be distinct component of M having the orientation mduced by M. Then, A, and
(—A:) are not well-situated.

Proof. Let / be a simple arc in M that spans A; and A.. If we give an
arbitrary orientation for /, then it has the coherent orientation with A; (or —A4,),
as M is orientable. And if we give the another orientation for /, then it has
the coherent orientation with —A, (or A,). That is, there exists no arc in M
oriented discoherently with A; and (—A4.).

§2. L-equivalence and i-equivalence

Definiton 2. (R. Thom[8]) Let U, V be m-submanifolds in an #-manifold
M. Then, we say that U and V are L-equivalent, iff there is an (m+1)-
submanifold W in MX I satisfying the following conditions;

(1) WnMx{o=U, WNnMx{}=V
and '

(2) aW=U-V.

Definition 3. An z-manifold M is said to be an L-manifold, iff for any two
(n—1)-submanifolds .U, V such that U~V, U and V are L-equivalent.

Proposition 2. (R.. Thom [8)) Every manifold is an L-manifold.
We will introduce stronger concepts than these as follows;

Definition 4. Let U, V be (n—1)-submanifolds in an #-manifold M. Then,
we say that U and V are L-equivalent, iff there exists a sequence {A1, Az, *+-, A}
of (#—1)-submanifolds in M so that

(1) U=A4,, V=As;
and

(2) A, is isotopic to A: or obtained from A: by an operation [lk; =1, 2,

el s—1, B=1,2, -, n—1.

Definition 5. An #-manifold M is said to be an L-manifold, iff either one
of the following conditions is satisfied;

(1) every (n—1)-submanifold is homologous to 0 in M;
or
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(2) for any two (#—1)-submanifolds U, V such that U, V#0 and U~V, U
and V are L-equivalent
Let U be an (n—1)-submanifold in an #-manifold M without boundary or
with connected boundary. And let S, S::--, S, be mutually disjoint (#—1)-
spheres such that each S: bounds #z-ball B; in M and B;N U=4¢.
We apply an operation [, for distinct components of U=UUS,US;U--- US,

denoted U —;f]th, if it is possible. If we can still apply an operation [J; to
distinct components of U0, we apply an operation [J;. We repeat this procedure
as often as possible, and have an (#—1)-submanifold U1 such that we cannot
apply an operation [, to distinct components of U [OJ#. Then, we have the follow-
ing diagram;
(7——1—»(751 . > U . »UO2
o ou U U U

U=U—U, —e — Ui —e —Ui

where U,,, is an (#n—1)-submanifold obtained from U; by applying the operation
[J; in the following sense;

(1) U..1=Us, when the i-th operation [, is applied to components of Ui —Us.

(2) Ui=(UiUA),, when the i-th operation [J; is applied to U; and a com-
ponent A of UCli—Us.

(3) Uiwy=Uild,, when the i-th operation [J; is applied to Us.

Lemma 3. If U:=U0?, then U is homologous to 0 in M.

Proof. Suppose Ux#=UTJ?. So there exists a component S*~! of U?—U,.
Clearly, S™! bounds #-ball B*. Let C; be a component of M—N(U)?; M)—B
whose boundary contains S*~*, Let T3, ---, T, be components distinguished Sn-t
of dC' such that TicC ﬁl]f. By assumption, if S™~* has discoherent (or coherent)
orientation with C;, 7: has coherent (or discoherent) orientation with C;,
=1,2,---,p. If p>1 then T, and T, are well-situated which is a contradiction -
to the property of UJ?. Hence p=1 and T, is homologous to 0 since 9M is
homologous to 0, see Fig. 2.

Let C. be a component of M—N(UO?; M)—B—C, whose boundary contains
T,. By the repetition of the above procedure, we have a component T3’ of
U0?— B homologous to 0.

We repeat the above procedure as often as possible, and have a sequence
{T\, T, ---, T!_,} of all components of U1?—B. And every component of U[]?—B
is homologous to 0 in M.
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Fig. 2.

Since every component of U[J? in B is homologous to 0, U? is homologous
to 0. Therefore U is homologous to 0 in M.

Lemma 4. M, U, S;, U, UO?; the same as above. [f U is not homologous
to 0 in M, then U and U are L-equivalent.

Proof. It is enough to prove that U and U012 are f-equivalent. We will
proceed by induction on 4. If 2=0, by Lemma 3, »=0 and Lemma is obvious.
Suppose 2>0. We have the diagramm (%), and moreover U1?=U: by Lemma3.
By induction then, U, and U002 are L-equivalent. Therefore it is enough to prove
that U and U, are f-equivalent. If the first operation [J; falls under the case (1)
or (3), then it is obvious. Suppose the first operation [, falls under the case (2).
That is, the first operation [, is applied to U and S:, i=1,2, ---,7. Since S;
bounds #-ball B; in M and B;:NU=¢, U is isotopic to U,=(UUS;)[J;. Therefore
U and UO? are L-equivalent.

Lemma 5. Every L-manifold, without boundary or with connected boundary,

is an L-manifold.

Proof. If every (z—1)-submanifold in M is homologous to 0, Lemma is
obvious. So we may assume that there is an (#—1)-submanifold, say U, in M
which is not homologous to 0.

Let V be an (#—1) submanifold in M such that V~U. By assumption,
there is an #-submanifold W in M X I satisfying the following conditions;

(1) WnMmMx{oy=U, WnMx{1}=V;
and

(2) aW=U—-V. .

By deforming W isotopically, we have an #-submanifold W’ in MXI such
that flw:: W/—I is a non-degenerate mapping, see [3] [4], where f: MXxI—I
is a projection. Since the critical points are finite, we may assume that there
exist no critical points in Mx[0,1/4JUMx[3/4,1]. By deforming W’ isotopically,
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we have an #z-submanifold W in MxI satisfying the following conditions;

(1) fl#w: W—>I is non-degenerate, o

(2) the critical points of index 0 consist in MX (0, 1/4),

(3) the critical points of index # consist in MX (3/4, 1),
and . ‘ §

(4) the critical points of index 1,2, :-+,7#—1 consist in MX(1/4, 3/4).

Therefore, Mx{1/4} consists of an (#—1)-submanifold U’ and (#—1)-spheres
S1,Ss, -+, Sr such that U’ is isotopic to U in M and each sphere S: bounds
n-ball B; in M; and MX{3/4} consists of an (#—1)-submanifold V’ and (n—1)-
spheres S/, S)’, -+, S such that V’ is isotopic to V in M and each sphere S;’
bounds #-ball Bi’ in M. Clearly BiNU’=¢ and B/ N V'=4¢.
~ Since the critical point of index % corresponds the operation [z, £=1,2, - -,
n—1, U=U'US,US.U---US, and V=V'US/US/U---US/ are L-equivalent in
M. By Lemma 4, U and U’ are L-equivalent, and V and V’ are L-equivalent.
‘Hence U’ and V' are L-equivalent. Therefore, U and V are E-equivalent.

Combining this with [Proposition 2, we will obtain the following;

| Theorem 1. FEvery connected manifold, without boundary or with connected
‘boundary, is an L-manifold.

While, for the other manifolds, we will obtain the following;

Proposition 3. Every manifold M with non-connected boundary is not an
L -manifold.

Proof. Let f:D*—intM be an embedding. Then, S=f(@D) is an (n—1)-
sphere in M. Let A be a component of dM. Since M—f(D) is an orientable
n-manifold, we give the orientation induced from M—f(D) to A and S. By
Lemma 2, A and —S are not well-situated. Therefore, A and AU(—S) are not
L-equivalent. While, A is homologous to AU(—S) and A#0. Hence M is not an
L-manifold. ~

§3. Proof of Theorem 2

[Proof of Theorem 3 (2)—(1).]

According to p.55, Théoréme II.27, there is an (z—1)-submanifold
representing 6 in M. Let A be an (#—1)-submanifold such that the number of
connected components of A is smallest in (#z—1)-submanifolds representing 6 in
M. . Clearly, there is no component of A homologous to 0 in M, and we cannot
apply an operation [J; for distinct components of A.
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Let C,,C,, ---,Cp be connected components of A. Suppose p>1. Let M;
be a component of M—N(A; M) and let Vi, Vi, ---, Vi, be components of
OM;—oM. Clearly t({)=1. Since V;~0 in M for any j, #({)=2. Suppose #(i)=3..
If V. has the coherent (or discoherent) orientation with M;, V; has the discoherent
(or coherent) orientation with M;, j=2,3,---,t(G). Then, V, and V, are well-
situated in M;. Since M; is orientable, there exists no s, 1<s<p, such that V,
and V; are contained in dN(C,; M), see Fig. 3. Therefore, V,(=C:) and Vi(=C,)
are well-situated in M, 1=<2,pg=p and A#p; which is a contradiction to the’
property of A. Hence #(3)=2. '

Fig. 3.

Let T, T, be components of dM;—dM. If Ti~(—Ty) in M, T, and T, are
well-situated in M which is a contradiction to the property of A, by the same
reason as above. Therefore T.~7T: in M, since dIM~0. Since M is connected,
Ci~Cy~Cy~-++-~C, in M, Hence pC, represents a homology class 6 of H,_.(M; Z),
which is a contradiction to (2). Therefore p=1 and A is a connected (n—1)-
submanifold representing 6. |

[Proof of Theorem 2 (2)—(1).]

By (2)—(1), a homology class
7 a1 Qs
= + et r
a1l & Tal & a8

can be represented by a connected (n—1)-submanifold A in M, since (d1/ lal,
as/lal, -+, ar/lal)=1.

Let f:AXI—>M be an embedding such that fl.xe=id. We have rnutually_‘
disjoint (#—1)-submanifolds Ai=f(AX{i/lal}), i=1,2, -+, lal, where each A: has
the same orientation as a/lald’s. Let Si, Sa, ---,Sr be mutually disjoint (»—1)-
spheres such that each S; bounds #z-ball B; in M and B:iNf(AXI)=¢, where
T=/9‘—-la|. Then we have a required (#—1)-submanifold A; UA; U+ UA USiUS; U

-+ US: in M. '
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To show Theorems 2 and 3 (1)—(2), it is enough to show the following;

Lemma 6. Let M be an n-manifold without boundary or with connected
boundary. If a non-trivial homology class f of H...(M; Z) is represented by a
connected (n—1)-submanifold A in M, then af is not representable by an (n—1I)-
submanifold having B connected components in M, where B<lal.

Proof. Suppose af is represented by an (#—1)-submanifold B having 8
connected components in M.

Let g: AXI—>M be an embedding such that gl.x;=id. We have mutually
disjoint (#—1)-submanifolds Ai=g(A X {i/|al}), i=1,2, ---, lal, where each A: has
the same orientation as «/lal4’s. Since M is a manifold without boundary or
with connected boundary, M is an L-manifold by Theorem 1. Since
A;UA,U---UA,, ~B, B is isotopic to an (#—1)-submanifold B’ which is obtained
from A, A,, -+, Ao by a finite sequence of operations [(Jx. While A: and A; are

not well-situated for ##j. Hence, by Lemma 1, AiJ#1[J%---[0*;! and

A;C04 2.5 are not well-situated. Therefore there is no sequence of

operations [« such that (4;UA4:U--- UA)Ot- .. is an (r—1)-submanifold
having B components in M, if f=|al. This completes the proof.
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