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\S 0. Introduction

In the paper we will discuss on an equivalence relation between $(n-1)-$

submanifolds in an n.manifold, and on representations of $(n-1)$ -dimensional
homology classes of an n-manifold. We shall work in the PL category. By the
$smthing$ theory, required results in the differentiable category may be obtained.

R. Thom [8] introduced the concept of “ $L$-equivalence between submanifolds
in a manifold. We shall introduce the $ncepts$ of “ $\tilde{L}$ -equivalence “ between
$(n-1)$ -submanifolds in an n-manifold, and of “ L-manifold ”, see Definitions 4 and
5 in \S 2. Then, we shall obtain;

Theorem 1. Every compact connected orientable manijold, without boundary

or with connected boundary, is an $\tilde{L}$ -manifold.
It is a well known result by R. Thom [81 that every $(n-1)$ -dimensional

homology class $\theta eH_{n-1}(M;Z)$ of an orientable n-manifold $M$ is representable by

a submanifold in $M$. But, he didn’t refer to the number of connected com-
wnents of the submanifold representing $\theta$ . We will give the necessary and
sufficient condition for $\theta$ to be representable by a submanifold having $\beta$ connected
$com\infty nents$ .

Let $M$ be a compact orientable n-manifold. By the Poincar\’e duality,
$H_{n-1}(M;Z)$ is a free abelian group of finite rank. Let $\{g_{1}, g_{2}, \cdots, g,\}$ be a free
abelian basis for $H_{n-1}(M;Z)$ . An implication of Theorem 1 is as follows;

Theorem 2. Let $M$ be a compact connected orientable $n- manif_{0}u$ without
boundary or with connected boundary. For a non-trivial homology class

$\theta=a_{1}g_{1}+a_{2}g_{2}+\cdots+a_{r}g,$ ,

of $H_{n-1}|M;Z$) the following conditions are equivalent;

(1) $\theta$ can be represented by a submanifold having $\beta$ connected components in $M$.
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(2) $\beta\geqq|\alpha|$ , where $\alpha$ is the greatest common divisor $(a_{1}, a_{2}, \cdots, a_{r})$ of
$a_{1},$ $a_{2},$ $\cdots,$ $a_{r}$ .

So, as a special case of Theorem 2, we have;

Theorem 3. Let $M$ be a compact connected orientable n.manifold without
boundary or with connected boundary. For a non-trivial homology class

$\theta=a_{1}g_{1}+a_{2}g_{2}+\cdots+a_{r}g,$ ,

of $H_{n-1}(M;Z)$ , the following conditions are equivalent;
(1) $\theta$ can be represented by a connected submanifold in $M$.
(2) the greatest common divisor $(a_{1}, a_{2}, \cdots, a_{r})=1$ .
First in this direction, T. Kaneko [2] obtained a complete answer to this

problem for closed surfaces in 1965. Then S. Suzuki extended his result to
surfaces with boundary [71 and also in the direction for the above Theorem 2 [61.

The author gave an extension of our problem to 3-manifolds under some condi.
tions [91. In this paper this problem will be perfected. In preparing this paper,
M. Kato has informed the author that independently H. Nakatsuka has also
proved our Theorem 3 by different methods.

In \S 1, we shall introduce an elementary operation $\coprod_{k}$ , and give the $prf$ of
Lemma 1, which is of importance in the sequel. In \S 2, we shall introduce the
$ncepts$ of “ $\tilde{L}$ -equivalence ” and “ L-manifold”. We shall consider the relation
between ” L-equivalence ” and ” L-equivalence ”, and prove Theorem 1. In \S 3,
we will give the proofs of Theorems 2 and 3.

$\backslash In$ this paper, all manifolds will be compact and oriented. PL embeddings
will be locally flat and submanifolds in a manifold will be locally flat and closed.
And an ambient n-manifold $M$ is always connected, but a submanifold in a
manifold is not always connected unless we mention.

I am indebted to Professors T. Homma, F. Hosokawa, M. Kato, S. Suzuki
and T. Yanagawa for their help.

\S 1. Notations and operations $k$

Throughout the paper, $\partial M,$ intM, clM denote the boundary, the interior and
the closure of a manifold $M$, respectively. $N(A;B)$ denotes a regular neigh-
borhood of a subpolyhedron $A$ in a polyhedron $B$ . Homeomorphism and $iso\eta orphism$

are denoted by the same symbol $\cong$ , while $\approx,$
$\simeq$ and $\sim$ denote, respectively, to

isotopy, homotopy and homology. $I,$ $D^{k}$ and $\Delta^{m}$ mean, respectively, the closed
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interval $[0,1]$ , k-simplex and m-simplex.

For a submanifold $A$ in a manifold, $-A$ is the submanifold having the
opposite orientation of $A$ . For integers $a_{1},$ $a_{2},$ $\cdots,$ $a_{\lambda},$

$(a_{1}, a_{2}\cdots.a_{j})$ denotes the
greatest common divisor of them. Especially, we assume that $(a_{1}, a_{2}, \cdots, a_{\lambda})\geqq 0$ .

Let $A$ be an $(n-1)$ -submanifold in an n-manifold $M$. Let $l$ be a simple oriented
arc in $M$ that spans $A$ with discoherent orientation, i.e. $l\cap A=\partial l\cap A=\partial l$ , and let
$f:I\rightarrow M$ be an embedding such that $f(I)=l$ . Then, we can add an n-cell $I\times\Delta^{n-1}$

to $A$ by a homeomorphism $f;I\times\Delta\rightarrow N(l;M)$ such that $\overline{f}|_{I\times\{v\}}=f,\overline{f}(\partial I\times\Delta)\subset A$

and $\overline{f}(intI\times\Delta)=\phi$ ; and obtain an $(n-1)$ -submanifold $A_{*}=\{A-f(\partial I\times\Delta)\}\cup\overline{f}(I\times\partial\Delta)$

having the orientation induced by $A$ . When we perform the operation above,

we shall say that the $(n-1)$ -submanifold $A_{*}$ is obtained from $A$ by an operation $\coprod_{1}$

(along $l$ in $M$) and denote $A\coprod_{1}$ . For any integer $k$ , let $f:D^{k}\times\Delta^{m-k}\rightarrow M$ be an
embedding such that $f(\partial D\times\Delta)\subset A$ and $ f(intD\times\Delta)\cap A=\phi$ . We can add an
n-cell $D^{k}\times\Delta^{m-k}$ to $A$ by an embedding $f$ and obtain an $(n-1)$ -submanifold
$A_{*}=\{A-f(\partial D\times\Delta)\}Uf(D\times\partial\Delta)$ having the orientation induced by $A$ . Then, we shall
say that the $(n-1)$ -submanifold $A_{*}$ is obtained from $A$ by an operation $\coprod_{k}$ and
denote $A\coprod_{k}$ . Moreover, we will denote $A\coprod_{1}\coprod_{2}\coprod_{1}\coprod_{1}\coprod_{2}$ and $A\coprod_{8}\coprod_{8}\coprod_{2}\coprod_{1}\coprod_{2}$ etc.
by $A\coprod_{1}^{3}\coprod_{2}^{2}\coprod_{3}^{0}\cdots\coprod_{n}^{0}$ and $A\coprod_{1}^{1}\coprod_{2}^{2}\coprod_{8}^{2}\coprod_{4}^{0}\cdots\coprod_{n}^{0}$ etc. unless $nfusion$ . It will be
noticed that;

$Propos\ddagger tion1$ . An $oPeration\coprod_{k}$ does not exchange the homology class, that
is $A=A\coprod_{k}$ in $H_{n-1}(M;Z)$ .

In general for two submanifolds $A$ and $B$ in $M$, we cannot always apply an
operation $\coprod_{1}$ , see Lemma 2.

Definition 1. Let $A$ be non-connected $(n-1)$ -submanifold in an n-manifold $M$

and let $A_{1},$ $A_{2}$ be distinct connected components of $A$ . Then, $A_{1}$ and $A_{2}$ are
said to be well-situated (relative to $A$) iff there is a simple oriented arc $l$ that
spans $A_{1}$ and $A_{2}$ with discoherent orientation, i.e. $l\cap A=l\cap(A_{1}\cup A_{2})=\partial l\cap(A_{1}\cup A_{2})$

$=\partial l$ .
Lemma 1. Let $A_{1},$ $A_{2}$ be disjoint connected $(n-1)$ -submanifold in an n-manifold

M. If $A_{1}$ and $A_{2}$ are not well-situated relative to $A_{1}\cup A_{2}$ , then any one componenl

of $A_{1}\coprod_{1}^{\lambda}1\coprod_{2}^{\lambda}2\coprod_{3}^{\lambda}s\cdots\coprod_{n-1}^{\lambda_{n-1}}$ and any one component of $A_{2}\coprod_{1}^{\mu}1\coprod_{2}^{\mu}2\coprod_{3}^{\mu}\$\cdots\coprod_{n-1}^{\mu_{n-1}}$ are
not well.situated relative to $A_{1}\coprod_{1}^{\lambda}1\coprod_{2}^{\lambda}s\coprod_{3}^{\mu}s\cdots\square _{n-1}^{\lambda_{n-1}}\cup A_{2}\coprod_{1}^{\mu}1\coprod_{2}^{\mu}2\coprod_{8^{\ell}}^{\mu,}\cdots\coprod_{n-1}^{\mu_{n-1}}$ .

Proof. Suppose that a component, say $B_{1}$ , of $A_{1}\coprod_{1}^{\lambda}1\coprod_{2}^{\lambda}2\coprod_{3}^{\lambda}\epsilon\cdots\coprod_{n-1}^{\lambda_{n-1}}$ and a
component, say $B_{2}$ , of $A_{2}\coprod_{1}^{\mu}1\coprod_{2}^{\mu}2\coprod_{3}^{\mu}8\cdots\coprod_{n-1}^{\mu_{n-1}}$ are well-situated relative to
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$A_{1}\coprod_{1}^{\lambda}1\coprod_{2}^{\lambda}2\coprod_{3}^{\lambda}8\cdots\coprod_{n-1}^{\lambda_{n-1}}\cup A_{2}\coprod_{1}^{\mu}1\coprod_{2}^{\mu}2\coprod_{3}^{\mu}3\cdots\coprod_{n-1}^{\mu_{n-1}}$ . So there is a simple oriented
arc $l$ that spans $B_{1}$ and $B_{2}$ with discoherent orientation. We may assume $\partial l$ ,

say $a_{1},$ $a,$ , is contained in $A_{1}$ and $A_{2}$ by slight deformation.
Let $\nu=\lambda_{1}+\lambda_{2}+\cdots+\lambda_{n-1}+\mu_{1}+\mu_{2}+\cdots+\mu_{n-1}$ . If the v-th operation is an

operation $\coprod_{k},$ $k=2,3,$ $\cdots,$ $n-1$ , we can exclude the intersection of $l$ and the k-
handle $h^{k}(D)=f(D^{k}\times\Delta^{n-k})$ by deforming 1 isotopically, since $l\cap h^{k}(D)=arcs$ ,
$l\cap\partial h^{k}(D)=l\cap(\partial D\times\Delta)$ and $\partial D\times\Delta\cong S^{k-1}\times\Delta^{n-k}$ , see Fig. $1(a)$ . If the v-th operation

is an operation $\coprod_{1}$ , we deform $l$ isotopically so that $l$ intersects with $f(\partial I\times\Delta^{n-1})$

transversally. If $ I\cap f(I\times\Delta^{n-1})\neq\phi$ , then it consists of some arcs, and $l\cap f(\partial I\times\Delta)$

consists of some points $b_{1},$ $b_{2},$
$\cdots,$

$b$. numbered from $a_{1}$ to $a_{2}$ on $l$ . If $b_{1}$ and $b$.
are contained in same component, say $C$, of $f(\partial I\times\Delta)$ , we can ioin $b_{1}$ and $b_{\iota}$ in $C$

and obtain a simple arc $l^{\prime}=\overline{a_{1}b_{1}}\cup\overline{b_{\iota}b.}\cup\overline{b_{\iota}a_{2}}$. By deforming $l^{\prime}$ isotopically, we can
obtain a simple arc $\overline{l}^{\prime}$ such that $\overline{l}^{\prime}\cap f(I\times\Delta)=\phi$ , see Fig. $1(b)$ . So, we may assume
$b_{1}$ and $b_{\iota}$ are not $ntained$ in same component of $f(\partial I\times\Delta)$ . Then we will
reserve only two simple aroe $l_{1}^{\prime}=\overline{a_{1}b_{1}}$ and $l_{2}^{\prime}=\overline{b.a_{2}}$ , see Fig. 1 $(c)$ .

$\psi\uparrow$

U $Tu_{\iota}$ a $\uparrow\square _{1}$

(a) (b) (c)

Fig. 1.

By the repetition of the procedure, we have simple oriented subarcs
$l_{1},$ $l_{2},$

$\cdots,$
$l_{p}$ of $l$ such that $h\cap(A_{1}\cup A_{2})=\partial l_{*}\cdot\cap(A_{1}\cup A_{2})=two$ points, say ci, $d_{i}$ .

Clearly, $d_{i}$ and $c_{\ell+1}$ are contained in $A_{i}$ , and homology insersection numbers at
the points $ds,$ $c_{\ell+1}$ are 1 and $-1$ (or $-1$ and 1), $i=1,2,$ $\cdots,$ $p-1,$ $j=1,2$ , see
Fig. 1 $(b)(c)$ . Since $A_{1},$ $A_{2}$ is connected, we can ioin $d_{i}$ and $c_{\ell+1}$ by simple arc
$i_{i}$ and obtain a simple oriented arc $\overline{l}=l_{1}\cup\overline{l}_{1}\cup l_{2}\cup\overline{l}_{2}\cup\cdots\cup\overline{t}_{p-1}\cup l_{p}$ . By deforming
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$\overline{l}$ isotopically, we can obtain a simple oriented arc $\overline{l}$ that spans $A_{1}$ and $A_{2}$ with
discoherent orientation. Therefore, $A_{1}$ and $A_{2}$ are well-situated, which is a
contradiction.

Lemma 2. Let $M$ be an n-manifold with non-connected boundary. Let $A_{1},$ $A_{2}$

be distinct $comPonent$ of $\partial M$ having the orientation induced by M. Then, $A_{1}$ and
$(-A_{2})$ are not well-situated.

Proof. Let $l$ be a simple arc in $M$ that spans $A_{1}$ and $A_{2}$ . If we give an
arbitrary orientation for $l$ , then it has the coherent orientation with $A_{1}(or-A_{2})$ ,

as $M$ is orientable. And if we give the another orientation for 1, then it has
the coherent orientation with $-A_{2}$ (or $A_{1}$). That is, there exists no arc in $M$

oriented discoherently with $A_{1}$ and $(-A_{2})$ .

\S 2. L-equivalence and $\tilde{L}$-equivalence

Definiton 2. (R. Thom [8]) Let $U,$ $V$ be m-submanifolds in an n-manifold
$M$. Then, we say that $U$ and $V$ are L-equivalent, iff there is an $(m+1)-$

submanifold $W$ in $M\times I$ satisfying the following conditions;

(1) $W\cap M\times\{0\}=U$ , $W\cap M\times\{1\}=V$ ;

and
(2) $\partial W=U-V$ .
Definition 3. An n-manifold $M$ is said to be an L-manifold, iff for any two

$(n-1)$ -submanifolds $U,$ $V$ such that $U\sim V,$ $U$ and $V$ are L-equivalent.

Proposition 2. (R. Thom [8]) Every manifold is an L-manifold.
We will introduce stronger concepts than these as follows;

Deflnition 4. Let $U,$ $V$ be $(n-1)$ -submanifolds in an n-manifold $M$. Then,

we say that $U$ and $V$ are $\tilde{L}$ -equivalent, iff there exists a sequence $\{A_{1}, A_{2}, \cdots, A_{\iota}\}$

of $(n-1)$ -submanifolds in $M$ so that
(1) $U=A_{1\prime}$ $V=A_{*};$

and
(2) $A_{i+1}$ is isotopic to $A_{i}$ or obtained from $ A\ell$ by an operation $\coprod_{k}$ ; $i=1,2$ ,

$\ldots$ $s-1,$ $k=1,2,$ $\cdots,$ $n-1$ .
Deflnition 5. An n-manifold $M$ is said to be an $\tilde{L}$ -manifold, iff either one

of the following $nditions$ is satisfied;

(1) every $(n-1)$ -submanifold is homologous to $0$ in $M$;

or
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(2) for any two $(n-1)$ -submanifolds $U,$ $V$ such that $U,$ $VtO$ and $U\sim V,$ $U$

and $V$ are L-equivalent
Let $U$ be an $(n-1)$ -submanifold in an n-manifold $M$ without boundary or

with connected boundary. And let $S_{1},$ $S_{2}\cdots,$ $S_{r}$ be mutually disjoint $(n-1)$ .
spheres such that each $S_{i}$ bounds n-ball $B_{i}$ in $M$ and $ B_{i}\cap U=\phi$ .

We apply an operation $\coprod_{1}$ for distinct components of $\tilde{U}=U\cup S_{\iota}\cup S_{2}\cup\cdots\cup S,$ ,

denoted $\tilde{U}\rightarrow^{1}\tilde{U}\coprod_{1}$ , if it is possible. If we can still apply an operation $\coprod_{\iota}$ to
distinct $mponents$ of $\tilde{U}\coprod_{1}$ , we apply an operation $\coprod_{1}$ . We repeat this procedure
as often as possible, and have an $(n-1)\cdot submanifold\tilde{U}\coprod_{1}^{\lambda}$ such that we cannot
apply an operation $\coprod_{1}$ to distinct components of $\tilde{U}\coprod_{1}^{\lambda}$ . Then, we have the follow-
ing diagram;

$\tilde{U}\rightarrow^{1}\tilde{U}\coprod_{1}\rightarrow^{1}$ . . . $\rightarrow^{1}\tilde{U}\coprod_{1}\ell\rightarrow^{1}$ . . . $\leftrightarrow^{1}\tilde{U}$

$(_{*}^{*})$ $\cup$ $\cup$ $\cup$ $\cup$

$U_{0}=U\rightarrow U_{1}$ $\rightarrow\cdots\rightarrow U_{i}$ $\rightarrow\cdots\rightarrow U_{\lambda}$

where $U_{\ell+1}$ is an $(n-1)$ -submanifold obtained from $U_{i}$ by applying the operation
$\coprod_{1}$ in the following sense;

(1) $U_{l+1}=U_{i}$ , when the i-th operation $\coprod_{1}$ is aPplied to comwnents of $\tilde{U}\coprod_{1}\ell-U:$ .

pone
$ntAof^{+1}\tilde{U}\coprod_{1}^{(2)}\ell-U_{i}U.=(U_{i}\cup A)\coprod_{1}$

, when the i.th operation $\coprod_{1}$ is applied to $U_{i}$ and a com-

(3) $U_{i+1}=U_{i}\coprod_{1}$ , when the i-th operation $\coprod_{1}$ is applied to $U_{i}$ .
Lemma 3. If $U_{\lambda}\neq\tilde{U}\coprod_{1}^{\lambda}$ , then $U$ is homologous to $0$ in $M$.
Proof. Suppose $U_{\lambda}\neq\tilde{U}\coprod_{1}^{\lambda}$ . So there exists a component $S^{n-1}$ of $\tilde{U}_{-1}^{-\lambda}$ .

Clearly, $S^{n-1}$ bounds n.ball $B^{n}$ . Let $C_{1}$ be a component of $M-N(\tilde{U}\coprod_{1}^{\lambda} ; M)-B$

whose boundary contains $S^{n-1}$ . Let $T_{1},$
$\cdots,$

$T_{p}$ be $mponents$ distinguished $S^{n-1}$

of $\partial C^{1}$ such that $T_{i}\subset\tilde{U}\coprod_{1}^{\lambda}$ . By assumption, if $S^{n-1}$ has discoherent (or coherent)

orientation with $C_{1}$ , $T_{i}$ has $herent$ (or discoherent) orientation with $C_{1}$ ,
$i=1,2,$ $\cdots,p$ . If $P>1$ then $T_{1}$ and $T_{2}$ are well-situated which is a contradiction
to the property of $\tilde{U}\coprod_{1}^{\lambda}$ . Hence $p=1$ and $T_{1}$ is homologous to $0$ since $\partial M$ is
homologous to $0$ , see Fig. 2.

Let $C_{2}$ be a component of $M-N(\tilde{U}\coprod_{1}^{\lambda} ; M)-B-C_{1}$ whose boundary contains
$T_{1}$ . By the repetition of the above procedure, we have a component $T_{2}^{\prime}$ of
$\tilde{U}\coprod_{1}^{\lambda}-B$ homologous to $0$ .

We repeat the above procedure as often as possible, and have a sequence
$\{T_{1}, T_{2}^{\prime}, \cdots, T_{\ell-1}^{\prime}\}$ of all components of $\tilde{U}\coprod_{1}^{\lambda}-B$. And every component of $\tilde{U}\coprod_{1}^{\lambda}-B$

is homologous to $0$ in $M$.
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Fig. 2.

Since every component of $\tilde{U}\coprod_{1}^{\lambda}$ in $B$ is homologous to $0,\tilde{U}\coprod_{1}^{\lambda}$ is homologous

to $0$ . Therefore $U$ is homologous to $0$ in $M$.
Lemma 4. $M,$ $U$, Si, $\tilde{U},\tilde{U}\coprod_{1}^{\lambda}$ ; the same as above. If $U$ is not homologous

to $0$ in $M$, then $U$ and $\tilde{U}$ are $\tilde{L}$ -equivalent.

Proof. It is enough to prove that $U$ and $\tilde{U}\coprod_{1}^{\lambda}$ are $\tilde{L}$-equivalent. We will
proceed by induction on $\lambda$ . If $\lambda=0$ , by Lemma 3, $r=0$ and Lemma is obvious.
Suppose $\lambda>0$ . We have the diagramm (:), and moreover $\tilde{U}\coprod_{1}^{\lambda}=U_{\lambda}$ by Lemma3.
By induction then, $U_{1}$ and $\tilde{U}\coprod_{1}^{\lambda}$ are $\tilde{L}$ -equivalent. Therefore it is enough to prove
that $U$ and $U_{1}$ are $\tilde{L}$ -equivalent. If the first operation falls under the case (1)

or (3), then it is obvious. Suppose the first operation $\coprod_{1}$ falls under the case (2).

That is, the first operation $\coprod_{1}$ is applied to $U$ and $S_{i},$ $i=1,2,$ $\cdots,$ $r$ . Since $S$:
bounds n-ball $B_{i}$ in $M$ and $B_{i}\cap U=\phi,$ $U$ is isotopic to $U_{1}=(U\cup S_{i})\coprod_{1}$ . Therefore
$U$ and $\tilde{U}\coprod_{1}^{\lambda}$ are $\tilde{L}$ -equivalent.

Lemma 5. Every L-manifold, without boundary or with connected boundary,
is an $\tilde{L}$ -manifold.

Proof. If every $(n-1)$ -submanifold in $M$ is homologous to $0$ , Lemma is
obvious. So we may assume that there is an $(n-1)$ -submanifold, say $U$, in $M$

which is not homologous to $0$ .
Let $V$ be an $(n-1)$ submanifold in $M$ such that $V\sim U$. By assumption,

there is an n-submanifold $W$ in $M\times I$ satisfying the following conditions;

(1) $W\cap M\times\{0\}=U$, $W\cap M\times\{1\}=V$ ;
and

(2) $\partial W=U-V$ .
By deforming $W$ isotopically, we have an n-submanifold $W^{\prime}$ in $M\times I$ such

that $f|w$ ’ : $W^{\prime}\rightarrow I$ is a non.degenerate mapping, see [3] [41, where $f:M\times I\rightarrow I$

is a proiection. Since the critical points are finite, we may assume that there
exist no critical points in $M\times[0,1/4]\cup M\times[3/4,1]$ . By deforming $W^{\prime}$ isotopically,
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we have an n-submanifold $\tilde{W}$ in $M\times I$ satisfying- the following conditions;

(1) $f|_{\hat{W}}$ : $\tilde{W}\rightarrow I$ is non-degenerate,
(2) the critical points of index $0$ consist in $M\times(O, 1/4)$ ,

(3) the critical points of index $n$ consist in $M\times\sim(3/4,1)$ ,

and
(4) the critical points of index 1, 2, $\cdots,$ $n-1$ consist in $M\times(1/4,3/4)$ .
Therefore, $M\times\{1/4\}$ consists of an $(n-1)$ -submanifold $U^{\prime}$ and $(n-1)$ -spheres

$S_{1},$ $S_{2},$
$\cdots,$

$S_{r}$ such that $U^{\prime}$ is isotopic to $U$ in $M$ and each sphere $S_{i}$ bounds
n-ball $B_{i}$ in $M$ ; and $M\times\{3/4\}$ consists of an $(n-1)$-submanifold $V^{\prime}$ and $(n-1)-$

spheres $S_{1}^{\prime},$ $S_{2}^{\prime},$

$\cdots,$
$S_{t}^{\prime}$ such that $V^{\prime}$ is isotopic to $V$ in $M$ and each sphere $S_{j^{\prime}}$

bounds n-ball $B_{j^{\prime}}$ in $M$. Clearly $ B_{i}\cap U^{\prime}=\phi$ and $ B_{i}^{\prime}\cap V^{\prime}=\phi$ .
Since the critical point of index $k$ corresponds the operation $\coprod_{k},$ $k=1,2,$ $\cdots$ ,

$n-1$ , $\tilde{U}=U^{\prime}\cup S_{1}\cup S_{2}\cup\cdots\cup S_{r}$ and $\tilde{V}=V^{\prime}\cup S_{1}^{\prime}\cup S_{2}^{\prime}\cup\cdots\cup S_{t}^{\prime}$ are $\tilde{L}$ -equivalent in
$M$. By Lemma 4, $\tilde{U}$ and $U^{\prime}$ are $\tilde{L}$ -equivalent, and $\tilde{V}$ and $V^{\prime}$ are $\tilde{L}\cdot equivalent$ .
Hence $U^{\prime}$ and $V^{\prime}$ are $\tilde{L}$ -equivalent. Therefore, $U$ and $V$ are $\tilde{L}\cdot equivalent$ .

Combining this with Proposition 2, we will obtain the following;

Theorem 1. Every connected manifold, without boundary or with connected
boundary, is an $\tilde{L}$ -manifold.

While, for the other manifolds, we will obtain the following;

Proposition 3. Every manifold $M$ with non-connected boundary is not an
$\tilde{L}- manif_{0}u$ .

Proof. Let $f:D^{n}\rightarrow intM$ be an embedding. Then, $S=f(\partial D)$ is an $(n-1)-$

sphere in $M$. Let $A$ be a component of $\partial M$. Since $M-f(D)$ is an orientable
n-manifold, we give the orientation induced from $M-f(D)$ to $A$ and $S$ . By
Lemma 2, $A$ and $-S$ are not well-situated. Therefore, $A$ and $A\cup(-S)$ are not
$\tilde{L}$ -equivalent. While, $A$ is homologous to $A\cup(-S)$ and $AtO$ . Hence $M$ is not an
$\tilde{L}$ -manifold.

\S 3. Proof of Theorem 2

[Proof of Theorem 3 (2) $\rightarrow(1).$ ]

According to [8] p. 55, Th\’eor6me II. 27, there is an $(n-1)$ -submanifold
representing $\theta$ in $M$. Let $A$ be an $(n-1)$ -submanifold such that the number of
connected components of $A$ is smallest in $(n-1)$ -submanifolds representing $\theta$ in
$M$. Clearly, there is no component of $A$ homologous to $0$ in $M$, and we cannot
apply an operation $\coprod_{1}$ for distinct components of $A$ .
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Let $C_{1},$ $C_{2},$
$\cdots,$

$C_{p}$ be connected components of $A$ . Suppose $p>1$ . Let $M_{i}$

be a component of $M-N(A;M)$ and let $V_{1},$ $V_{2},$
$\cdots,$

$V_{\ell(i)}$ be components of
$\partial M_{i}-\partial M$. Clearly $t(i)\geqq 1$ . Since $V_{j}\sim O$ in $M$ for any $j,$ $t(\iota)\geqq 2$ . Suppose $t(\iota)\geqq 3$ .
If $V_{1}$ has the coherent (or discoherent) orientation with $M\ell,$ $V_{j}$ has the discoherent
(or coherent) orientation with $M_{i},$ $j=2,3,$ $\cdots,$ $t(i)$ . Then, $V_{2}$ and $V_{8}$ are well-
situated in $M_{i}$ . Since $M_{i}$ is orientable, there exists no $s,$ $1\leqq s\leqq P$ , such that $V_{2}$

and $V_{3}$ are contained in $\partial N(C_{s} ; M)$ , see Fig. 3. Therefore, $V_{2}(=C_{\lambda})$ and $V_{8}(=C_{\mu})$

are well-situated in $M$, $1\leqq\lambda,$ $\mu\leqq p$ and $\lambda\neq\mu$ ; which is a contradiction to the
property of $A$ . Hence $t(i)=2$ .

Fig. 3.

Let $T_{1},$ $T_{2}$ be components of $\partial M_{\ell}-\partial M$. If $T_{1}\sim(-T_{l})$ in $M,$ $T_{1}$ and $T_{2}$ are
well-situated in $M$ which is a contradiction to the property of $A$ , by the same
reason as above. Therefore $T_{1}\sim T_{2}$ in $M$, since $\partial M\sim O$ . Since $M$ is connected,
$C_{1}\sim C_{2}\sim C_{3}\sim\cdots\sim C_{p}$ in $M$, Hence $pc_{1}$ represents a homology class $\theta$ of $H_{n-1}(M;Z)$ ,

which is a contradiction to (2). Therefore $p=1$ and $A$ is a connected $(n-1)-$

submanifold representing $\theta$ .
[Proof of Theorem 2 (2) $\rightarrow(1).$]

By Theorem 3 (2) $\rightarrow(1)$ , a homology class

$\frac{\theta}{|\alpha|}=\frac{a_{1}}{|\alpha|}g_{1}+\frac{a_{2}}{|\alpha|}g_{2}+\cdots+\frac{a_{r}}{|\alpha|}g_{r}$ ,

can be represented by a connected $(n-1)\cdot submanifold$ $A$ in $M$, since $(a_{1}/|\alpha|$ ,

$\alpha_{2}/|\alpha|,$
$\cdots,$

$\alpha_{r}/|\alpha|$ ) $=1$ .
Let $f:A\times l\rightarrow M$ be an embedding such that $f|_{A\times\{0\}}=id$ . We have mutually

$dis|oint(n-1)$ -submanifolds $A_{i}=f(A\times\{i/|\alpha|\}),$ $i=1,2,$ $\cdots,$
$|\alpha|$ , where each $ A\ell$ has

the same orientation as $\alpha/|\alpha|A’ s$ . Let $S_{1},$ $S_{2},$
$\cdots,$

$S_{r}$ be mutually disioint $(n-1)-$

spheres such that each $S_{i}$ bounds n-ball $B_{i}$ in $M$ and $ B_{i}\cap f(A\times I)=\phi$ , where
$\gamma=\beta-|\alpha|$ . Then we have a required $(n-1)$ -submanifold $ A_{1}\cup A_{2}\cup\cdots\cup A_{|\alpha|}\cup S_{1}\cup S_{2}\cup$

. . . $\cup S_{r}$ in $M$.
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To show Theorems 2 and 3 (1) $\rightarrow(2)$ , it is enough to show the following;

Lemma 6. Let $M$ be an n-manifold without boundary or with connected
boundary. If a non-trivial homology class $f$ of $H_{n-1}(M;Z)$ is $rePresented$ by a
connected $(n-l)$ -submanifold $A$ in $M$, then $\alpha f$ is not rePresentable by an $(n-l)-$

submanifold having $\beta$ connected $comPonents$ in $M$, where $\beta<|\alpha[$ .
Proof. Suppose $\alpha f$ is represented by an $(n-1)$ -submanifold $B$ having $\beta$

connected components in $M$.
Let $g;A\times I\rightarrow M$ be an embedding such that $g|_{Ax\{0\}}=id$. We have mutually

disioint $(n-1)$ -submanifolds $A_{i}=g(A\times\{i/|\alpha|\}),$ $i=1,2,$ $\cdots,$
$|\alpha|$ , where each $A$: has

the same orientation as $\alpha/[\alpha$ } $A’ s$ . Since $M$ is a manifold without boundary or
with connected boundary, $M$ is an $\tilde{L}$ -manifold by Theorem 1. Since
$A_{1}UA_{2}\cup\cdots\cup A_{|\alpha|}\sim B,$ $B$ is isotopic to an $(n-1)$-submanifold $B^{\prime}$ which is obtained
from $A_{1},$ $A_{2},$

$\cdots,$
$A_{|\alpha|}$ by a finite sequence of operations $\coprod_{k}$ . While $A_{i}$ and $A_{j}$ are

not well-situated for $i\neq j$ . Hence, by Lemma 1, $A:\coprod_{1}^{\lambda}1\coprod_{2}^{\lambda}2\cdots\coprod_{n-1}^{\lambda_{n-1}}$ and

$A_{j}\coprod_{1}^{\mu}1\coprod_{2}^{\mu}2\cdots\coprod_{n-1}^{\mu_{n-1}}$ are not well-situated. Therefore there is no sequence of
operations $\coprod_{k}$ such that $(A_{1}\cup A_{2}\cup\cdots\cup A_{|\alpha|})\coprod_{1}^{\nu}1\cdots\coprod_{n-1}^{\nu_{n-1}}$ is an $(n-1)$ -submanifold
having $\beta$ components in $M$, if $\beta\geqq|\alpha|$ . This completes the proof.
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