\widetilde{L}-EQUIVALENCE AND REPRESENTATIONS OF HOMOLOGY CLASSES

By
Kazuo Yokoyama

(Received Feb. 10, 1972)

§ 0. Introduction

In the paper we will discuss on an equivalence relation between ($n-1$)submanifolds in an n-manifold, and on representations of ($n-1$)-dimensional homology classes of an n-manifold. We shall work in the PL category. By the smoothing theory, required results in the differentiable category may be obtained.
R. Thom [8] introduced the concept of "L-equivalence" between submanifolds in a manifold. We shall introduce the concepts of " \tilde{L}-equivalence" between ($n-1$)-submanifolds in an n-manifold, and of " \tilde{L}-manifold", see Definitions 4 and 5 in §2. Then, we shall obtain;

Theorem 1. Every compact connected orientable manifold, without boundary or with connected boundary, is an \tilde{L}-manifold.

It is a well known result by R. Thom [8] that every ($n-1$)-dimensional homology class $\theta \in H_{n-1}(M ; Z)$ of an orientable n-manifold M is representable by a submanifold in M. But, he didn't refer to the number of connected components of the submanifold representing θ. We will give the necessary and sufficient condition for θ to be representable by a submanifold having β connected components.

Let M be a compact orientable n-manifold. By the Poincaré duality, $H_{n-1}(M ; Z)$ is a free abelian group of finite rank. Let $\left\{g_{1}, g_{2}, \cdots, g_{r}\right\}$ be a free abelian basis for $H_{n-1}(M ; Z)$. An implication of Theorem 1 is as follows;

Theorem 2. Let M be a compact connected orientable n-manifold without boundary or with connected boundary. For a non-trivial homology class

$$
\theta=a_{1} g_{1}+a_{2} g_{2}+\cdots+a_{r} g_{r},
$$

of $H_{n-1}(M ; Z)$ the following conditions are equivalent;
(1) θ can be represented by a submanifold having β connected components in M.
(2) $\beta \geqq|\alpha|$, where α is the greatest common divisor $\left(a_{1}, a_{2}, \cdots, a_{r}\right)$ of $a_{1}, a_{2}, \cdots, a_{r}$.
So, as a special case of Theorem 2, we have;
Theorem 3. Let M be a compact connected orientable n-manifold without boundary or with connected boundary. For a non-trivial homology class

$$
\theta=a_{1} g_{1}+a_{2} g_{2}+\cdots+a_{r} g_{r}
$$

of $H_{n-1}(M ; Z)$, the following conditions are equivalent;
(1) θ can be represented by a connected submanifold in M.
(2) the greatest common divisor ($a_{1}, a_{2}, \cdots, a_{r}$) $=1$.

First in this direction, T. Kaneko [2] obtained a complete answer to this problem for closed surfaces in 1965. Then S. Suzuki extended his result to surfaces with boundary [7] and also in the direction for the above Theorem 2 [6]. The author gave an extension of our problem to 3 -manifolds under some conditions [9]. In this paper this problem will be perfected. In preparing this paper, M. Kato has informed the author that independently H. Nakatsuka has also proved our Theorem 3 by different methods.

In $\S 1$, we shall introduce an elementary operation \square_{k}, and give the proof of Lemma 1, which is of importance in the sequel. In §2, we shall introduce the concepts of " \tilde{L}-equivalence" and " \tilde{L}-manifold". We shall consider the relation between " L-equivalence" and " \tilde{L}-equivalence", and prove Theorem 1. In $\S 3$, we will give the proofs of Theorems 2 and 3.

In this paper, all manifolds will be compact and oriented. PL embeddings will be locally flat and submanifolds in a manifold will be locally flat and closed. And an ambient n-manifold M is always connected, but a submanifold in a manifold is not always connected unless we mention.

I am indebted to Professors T. Homma, F. Hosokawa, M. Kato, S. Suzuki and T. Yanagawa for their help.

§ 1. Notations and operations k

Throughout the paper, $\partial M, \operatorname{int} M, c l M$ denote the boundary, the interior and the closure of a manifold M, respectively. $N(A ; B)$ denotes a regular neighborhood of a subpolyhedron A in a polyhedron B. Homeomorphism and isomorphism are denoted by the sąme symbol \cong, while \approx, \simeq and \sim denote, respectively, to isotopy, homotopy and homology. I, D^{k} and Δ^{m} mean, respectively, the closed
interval $[0,1], k$-simplex and m-simplex.
For a submanifold A in a manifold, $-A$ is the submanifold having the opposite orientation of A. For integers $a_{1}, a_{2}, \cdots, a_{\lambda},\left(a_{1}, a_{2} \cdots, a_{i}\right)$ denotes the greatest common divisor of them. Especially, we assume that ($a_{1}, a_{2}, \cdots, a_{2}$) $\geqq 0$.

Let A be an $(n-1)$-submanifold in an n-manifold M. Let l be a simple oriented arc in M that spans A with discoherent orientation, i.e. $l \cap A=\partial l \cap A=\partial l$, and let $f: I \longrightarrow M$ be an embedding such that $f(I)=l$. Then, we can add an n-cell $I \times \Delta^{n-1}$ to A by a homeomorphism $\bar{f}: I \times \Delta \longrightarrow N(l ; M)$ such that $\left.\bar{f}\right|_{I \times(v)}=f, \bar{f}(\partial I \times \Delta) \subset A$ and $\bar{f}($ int $I \times \Delta)=\phi$; and obtain an ($n-1$)-submanifold $A_{*}=\{A-\bar{f}(\partial I \times \Delta)\} \cup \bar{f}(I \times \partial \Delta)$ having the orientation induced by A. When we perform the operation above, we shall say that the ($n-1$)-submanifold A_{*} is obtained from A by an operation \square_{1} (along l in M) and denote $A \square_{1}$. For any integer k, let $f: D^{k} \times \Delta^{m-k} \longrightarrow M$ be an embedding such that $f(\partial D \times \Delta) \subset A$ and $f($ int $D \times \Delta) \cap A=\phi$. We can add an n-cell $D^{k} \times \Delta^{m-k}$ to A by an embedding f and obtain an ($n-1$)-submanifold $A_{*}=\{A-f(\partial D \times \Delta)\} \cup f(D \times \partial \Delta)$ having the orientation induced by A. Then, we shall say that the $(n-1)$-submanifold A_{*} is obtained from A by an operation \square_{k} and denote $A \square_{k}$. Moreover, we will denote $A \square_{1} \square_{2} \square_{1} \square_{1} \square_{2}$ and $A \square_{8} \square_{8} \square_{2} \square_{1} \square_{2}$ etc. by $A \square_{1}^{3} \square_{2}^{2} \square \square_{3}^{0} \cdots \square_{n}^{0}$ and $A \square_{1}^{1} \square_{2}^{2} \square \square_{3}^{2} \square_{4}^{0} \cdots \square_{n}^{0}$ etc. unless confusion. It will be noticed that;

Proposition 1. An operation \square_{k} does not exchange the homology class, that is $A=A \square_{k}$ in $H_{n-1}(M ; Z)$.

In general for two submanifolds A and B in M, we cannot always apply an operation \square_{1}, see Lemma 2.

Definition 1. Let A be non-connected ($n-1$)-submanifold in an n-manifold M and let A_{1}, A_{2} be distinct connected components of A. Then, A_{1} and A_{2} are said to be well-situated (relative to A) iff there is a simple oriented arc l that spans A_{1} and A_{2} with discoherent orientation, i.e. $l \cap A=l \cap\left(A_{1} \cup A_{2}\right)=\partial l \cap\left(A_{1} \cup A_{2}\right)$ $=\partial l$.

Lemma 1. Let A_{1}, A_{2} be disjoint connected ($n-1$)-submanifold in an n-manifold M. If A_{1} and A_{2} are not well-situated relative to $A_{1} \cup A_{2}$, then any one component of $\left.A_{1} \square \square_{1}^{\lambda_{1}} \square \square_{2}^{\lambda_{2}} \square\right]_{3}^{\lambda_{3}} \cdots \square_{n-1}^{\lambda_{n-1}}$ and any one component of $A_{2} \square_{1}^{\mu_{1}} \square_{2}^{\mu_{2}} \square{ }_{3}^{\mu_{3}} \cdots \square_{n-1}^{\mu_{n-1}}$ are not well-situated relative to $A_{1} \square_{1}^{1_{1}} \square_{2}^{\lambda_{2}} \square{ }_{3}^{\mu_{3}} \cdots \square_{n-1}^{\lambda_{n-1}} \cup A_{2} \square_{1}^{\mu_{1}} \square_{2}^{\mu_{2}} \square_{3}^{\mu_{2}} \cdots \square_{n-1}^{\mu_{n-1}}$.

Proof. Suppose that a component, say B_{1}, of $A_{1} \square \square_{1}^{\lambda_{1}} \square_{2}^{\lambda_{2}} \square \square_{3}^{\lambda_{3}} \cdots \square_{n-1}^{\lambda_{n}-1}$ and a component, say B_{2}, of $A_{2} \square_{1}^{\mu} \square_{2}^{\mu} \square_{3}^{\mu_{3}} \cdots \square_{n-1}^{\mu_{n-1}}$ are well-situated relative to
$A_{1} \square \square_{1}^{\lambda_{1}} \square_{2}^{\lambda_{2}} \square_{3}^{\lambda_{3}} \cdots \square_{n-1}^{\lambda_{n}-1} \cup A_{2} \square_{1}^{\mu_{1}} \square_{2}^{\mu_{2}} \square_{3}^{\mu_{3}} \cdots \square_{n-1}^{\mu_{n-1}}$. So there is a simple oriented $\operatorname{arc} l$ that spans B_{1} and B_{2} with discoherent orientation. We may assume ∂l, say a_{1}, a_{2}, is contained in A_{1} and A_{2} by slight deformation.

Let $\nu=\lambda_{1}+\lambda_{2}+\cdots+\lambda_{n-1}+\mu_{1}+\mu_{2}+\cdots+\mu_{n-1}$. If the ν-th operation is an operation $\square_{k}, k=2,3, \cdots, n-1$, we can exclude the intersection of l and the k handle $h^{k}(D)=f\left(D^{k} \times \Delta^{n-k}\right)$ by deforming l isotopically, since $l \cap h^{k}(D)=$ arcs, $l \cap \partial h^{k}(D)=l \cap(\partial D \times \Delta)$ and $\partial D \times \Delta \cong S^{k-1} \times \Delta^{n-k}$, see Fig. $1(a)$. If the ν-th operation is an operation \square_{1}, we deform l isotopically so that l intersects with $f\left(\partial I \times \Delta^{n-1}\right)$ transversally. If $l \cap f\left(I \times \Delta^{n-1}\right) \neq \phi$, then it consists of some arcs, and $l \cap f(\partial I \times \Delta)$ consists of some points $b_{1}, b_{2}, \cdots, b_{s}$ numbered from a_{1} to a_{2} on l. If b_{1} and b_{s} are contained in same component, say C, of $f(\partial I \times \Delta)$, we can join b_{1} and b_{s} in C and obtain a simple arc $l^{\prime}=\overline{a_{1} b_{1}} \cup \overline{b_{1} b_{s}} \cup \overline{b_{8} a_{2}}$. By deforming l^{\prime} isotopically, we can obtain a simple arc \bar{l}^{\prime} such that $j^{\prime} \cap f(I \times \Delta)=\phi$, see Fig. $1(b)$. So, we may assume b_{1} and b_{s} are not contained in same component of $f(\partial I \times \Delta)$. Then we will reserve only two simple arcs $l_{1}^{\prime}=\overline{a_{1} b_{1}}$ and $l_{2}{ }^{\prime}=\overline{b_{s} a_{2}}$, see Fig. 1 (c).

\downarrow १ロ.

(a)

$\downarrow \uparrow \square_{1}$

(b)

(c)

Fig. 1.

By the repetition of the procedure, we have simple oriented subarcs $l_{1}, l_{2}, \cdots, l_{p}$ of l such that $l_{i} \cap\left(A_{1} \cup A_{2}\right)=\partial l_{i} \cap\left(A_{1} \cup A_{2}\right)=$ two points, say c_{i}, d_{i}. Clearly, d_{i} and c_{i+1} are contained in A_{j}, and homology insersection numbers at the points d_{i}, c_{i+1} are 1 and -1 (or -1 and 1), $i=1,2, \cdots, p-1, j=1,2$, see Fig. $1(b)(c)$. Since A_{1}, A_{2} is connected, we can join d_{i} and c_{i+1} by simple arc \bar{l}_{i} and obtain a simple oriented arc $\bar{l}=l_{1} \cup \bar{l}_{1} \cup l_{2} \cup \bar{l}_{2} \cup \cdots \cup \bar{l}_{p-1} \cup l_{p}$. By deforming
\bar{l} isotopically, we can obtain a simple oriented arc \dot{l} that spans A_{1} and A_{2} with discoherent orientation. Therefore, A_{1} and A_{2} are well-situated, which is a contradiction.

Lemma 2. Let M be an n-manifold with non-connected boundary. Let A_{1}, A_{2} be distinct component of ∂M having the orientation induced by M. Then, A_{1} and $\left(-A_{2}\right)$ are not well-situated.

Proof. Let l be a simple arc in M that spans A_{1} and A_{2}. If we give an arbitrary orientation for l, then it has the coherent orientation with A_{1} (or $-A_{2}$), as M is orientable. And if we give the another orientation for l, then it has the coherent orientation with $-A_{2}$ (or A_{1}). That is, there exists no arc in M oriented discoherently with A_{1} and $\left(-A_{2}\right)$.

§ 2. L-equivalence and $\tilde{\mathbf{L}}$-equivalence

Definiton 2. (R. Thom [8]) Let U, V be m-submanifolds in an n-manifold M. Then, we say that U and V are L-equivalent, iff there is an ($m+1$)submanifold W in $M \times I$ satisfying the following conditions;
(1) $W \cap M \times\{0\}=U, \quad W \cap M \times\{1\}=V$;
and
(2) $\partial W=U-V$.

Definition 3. An n-manifold M is said to be an L-manifold, iff for any two ($n-1$)-submanifolds U, V such that $U \sim V, U$ and V are L-equivalent.

Proposition 2. (R. Thom [8]) Every manifold is an L-manifold.
We will introduce stronger concepts than these as follows;
Definition 4. Let U, V be $(n-1)$-submanifolds in an n-manifold M. Then, we say that U and V are \tilde{L}-equivalent, iff there exists a sequence $\left\{A_{1}, A_{2}, \cdots, A_{s}\right\}$ of ($n-1$)-submanifolds in M so that
(1) $U=A_{1}, \quad V=A_{s} ;$
and
(2) A_{i+1} is isotopic to A_{i} or obtained from A_{i} by an operation $\square_{k} ; i=1,2$, $\therefore . s-1, k=1,2, \cdots, n-1$.
Definition 5. An n-manifold M is said to be an \tilde{L}-manifold, iff either one of the following conditions is satisfied;
(1) every ($n-1$)-submanifold is homologous to 0 in M;
(2) for any two (n-1)-submanifolds U, V such that $U, V \nsim 0$ and $U \sim V, U$ and V are \tilde{L}-equivalent
Let U be an ($n-1$)-submanifold in an n-manifold M without boundary or with connected boundary. And let $S_{1}, S_{2} \cdots, S_{r}$ be mutually disjoint ($n-1$)spheres such that each S_{i} bounds n-ball B_{i} in M and $B_{i} \cap U=\phi$.

We apply an operation \square_{1} for distinct components of $\tilde{U}=U \cup S_{1} \cup S_{2} \cup \cdots \cup S_{r}$, denoted $\tilde{U} \xrightarrow{1} \tilde{U} \square_{1}$, if it is possible. If we can still apply an operation \square_{1} to distinct components of $\tilde{U} \square_{1}$, we apply an operation \square_{1}. We repeat this procedure as often as possible, and have an ($n-1$)-submanifold $\tilde{U} \square_{1}^{\lambda}$ such that we cannot apply an operation \square_{1} to distinct components of $\tilde{U} \square_{1}^{2}$. Then, we have the following diagram;

where U_{i+1} is an ($n-1$)-submanifold obtained from U_{i} by applying the operation \square_{1} in the following sense;
(1) $U_{i+1}=U_{i}$, when the i-th operation \square_{1} is applied to components of $\tilde{U} \square \square_{1}^{i}-U_{i}$.
(2) $U_{i+1}=\left(U_{i} \cup A\right) \square_{1}$, when the i-th operation \square_{1} is applied to U_{i} and a component A of $\tilde{U} \square_{i}^{i}-U_{i}$.
(3) $U_{i+1}=U_{i} \square_{1}$, when the i-th operation \square_{1} is applied to U_{i}.

Lemma 3. If $U_{\lambda} \neq \tilde{U} \square_{1}^{1}$, then U is homologous to 0 in M.
Proof. Suppose $U_{\lambda} \neq \tilde{U} \square_{1}^{2}$. So there exists a component S^{n-1} of $\tilde{U} \square_{1}^{2}-U_{\lambda}$. Clearly, S^{n-1} bounds n-ball B^{n}. Let C_{1} be a component of $M-N\left(\widetilde{U} \square_{1}^{2} ; M\right)-B$ whose boundary contains S^{n-1}. Let T_{1}, \cdots, T_{p} be components distinguished S^{n-1} of ∂C^{1} such that $T_{i} \subset \tilde{U} \square_{1}^{2}$. By assumption, if S^{n-1} has discoherent (or coherent) orientation with C_{1}, T_{i} has coherent (or discoherent) orientation with C_{1}, $i=1,2, \cdots, p$. If $p>1$ then T_{1} and T_{2} are well-situated which is a contradiction to the property of $\tilde{U} \square_{1}^{2}$. Hence $p=1$ and T_{1} is homologous to 0 since ∂M is homologous to 0, see Fig. 2.

Let C_{2} be a component of $M-N\left(\widetilde{U} \square_{1}^{2} ; M\right)-B-C_{1}$ whose boundary contains T_{1}. By the repetition of the above procedure, we have a component $T_{2}{ }^{\prime}$ of $\tilde{U} \square_{1}^{2}-B$ homologous to 0 .

We repeat the above procedure as often as possible, and have a sequence $\left\{T_{1}, T_{2}{ }^{\prime}, \cdots, T_{l_{-1}}^{\prime}\right\}$ of all components of $\tilde{U} \square_{1}^{2}-B$. And every component of $\tilde{U} \square_{1}^{2}-B$ is homologous to 0 in M.

Fig. 2.
Since every component of $\tilde{U} \square_{1}^{2}$ in B is homologous to $0, \tilde{U} \square_{1}^{2}$ is homologous to 0 . Therefore U is homologous to 0 in M.

Lemma 4. $M, U, S_{i}, \tilde{U}, \tilde{U} \square_{1}^{\lambda}$; the same as above. If U is not homologous to 0 in M, then U and \tilde{U} are \tilde{L}-equivalent.

Proof. It is enough to prove that U and $\tilde{U} \square_{1}^{\lambda}$ are \tilde{L}-equivalent. We will proceed by induction on λ. If $\lambda=0$, by Lemma 3, $r=0$ and Lemma is obvious. Suppose $\lambda>0$. We have the diagramm (${ }_{*}^{*}$), and moreover $\tilde{U} \square_{1}^{2}=U_{\lambda}$ by Lemma 3. By induction then, U_{1} and $\tilde{U} \square_{1}^{\lambda}$ are \tilde{L}-equivalent. Therefore it is enough to prove that U and U_{1} are \tilde{L}-equivalent. If the first operation \square_{1} falls under the case (1) or (3), then it is obvious. Suppose the first operation \square_{1} falls under the case (2). That is, the first operation \square_{1} is applied to U and $S_{i}, i=1,2, \cdots, r$. Since S_{i} bounds n-ball B_{i} in M and $B_{i} \cap U=\phi, U$ is isotopic to $U_{1}=\left(U \cup S_{i}\right) \square_{1}$. Therefore U and $\tilde{U} \square_{1}^{2}$ are \tilde{L}-equivalent.

Lemma 5. Every L-manifold, without boundary or with connected boundary, is an \widetilde{L}-manifold.

Proof. If every ($n-1$)-submanifold in M is homologous to 0 , Lemma is obvious. So we may assume that there is an ($n-1$)-submanifold, say U, in M which is not homologous to 0 .

Let V be an $(n-1)$ submanifold in M such that $V \sim U$. By assumption, there is an n-submanifold W in $M \times I$ satisfying the following conditions;
(1) $W \cap M \times\{0\}=U, \quad W \cap M \times\{1\}=V$;
and
(2) $\partial W=U-V$.

By deforming W isotopically, we have an n-submanifold W^{\prime} in $M \times I$ such that $\left.f\right|_{W^{\prime}}: W^{\prime} \longrightarrow I$ is a non-degenerate mapping, see [3] [4], where $f: M \times I \longrightarrow I$ is a projection. Since the critical points are finite, we may assume that there exist no critical points in $M \times[0,1 / 4] \cup M \times[3 / 4,1]$. By deforming W^{\prime} isotopically,
we have an n-submanifold \tilde{W} in $M \times I$ satisfying the following conditions;
(1) $f \mid \dot{w}: \tilde{W} \longrightarrow I$ is non-degenerate,
(2) the critical points of index 0 consist in $M \times(0,1 / 4)$,
(3) the critical points of index n consist in $M \times(3 / 4,1)$,
and
(4) the critical points of index $1,2, \cdots, n-1$ consist in $M \times(1 / 4,3 / 4)$.

Therefore, $M \times\{1 / 4\}$ consists of an ($n-1$)-submanifold U^{\prime} and ($n-1$)-spheres $S_{1}, S_{2}, \cdots, S_{r}$ such that U^{\prime} is isotopic to U in M and each sphere S_{i} bounds n-ball B_{i} in M; and $M \times\{3 / 4\}$ consists of an ($n-1$)-submanifold V^{\prime} and ($n-1$)spheres $S_{1}{ }^{\prime}, S_{2}{ }^{\prime}, \cdots, S_{t}{ }^{\prime}$ such that V^{\prime} is isotopic to V in M and each sphere $S_{j}{ }^{\prime}$ bounds n-ball $B_{j}{ }^{\prime}$ in M. Clearly $B_{i} \cap U^{\prime}=\phi$ and $B_{i}^{\prime} \cap V^{\prime}=\phi$.

Since the critical point of index k corresponds the operation $\square_{k}, k=1,2, \cdots$, $n-1, \tilde{U}=U^{\prime} \cup S_{1} \cup S_{2} \cup \cdots \cup S_{r}$ and $\tilde{V}=V^{\prime} \cup S_{1}{ }^{\prime} \cup S_{2}{ }^{\prime} \cup \cdots \cup S_{t}{ }^{\prime}$ are \tilde{L}-equivalent in M. By Lemma 4, \tilde{U} and U^{\prime} are \tilde{L}-equivalent, and \tilde{V} and V^{\prime} are \tilde{L}-equivalent. Hence U^{\prime} and V^{\prime} are \tilde{L}-equivalent. Therefore, U and V are \tilde{L}-equivalent.

Combining this with Proposition 2, we will obtain the following;
Theorem 1. Every connected manifold, without boundary or with connected boundary, is an \tilde{L}-manifold.

While, for the other manifolds, we will obtain the following;
Proposition 3. Every manifold M with non-connected boundary is not an L-manifold.

Proof. Let $f: D^{n} \longrightarrow i n t M$ be an embedding. Then, $S=f(\partial D)$ is an $(n-1)$ sphere in M. Let A be a component of ∂M. Since $M-f(D)$ is an orientable n-manifold, we give the orientation induced from $M-f(D)$ to A and S. By Lemma 2, A and $-S$ are not well-situated. Therefore, A and $A \cup(-S)$ are not \widetilde{L}-equivalent. While, A is homologous to $A \cup(-S)$ and $A \nsim 0$. Hence M is not an \widetilde{L}-manifold.

§ 3. Proof of Theorem 2

[Proof of Theorem 3 (2) $\longrightarrow(1)$.]
According to [8] p.55, Theorème II.27, there is an $(n-1)$-submanifold representing θ in M. Let A be an ($n-1$)-submanifold such that the number of connected components of A is smallest in ($n-1$)-submanifolds representing θ in M. Clearly, there is no component of A homologous to 0 in M, and we cannot apply an operation \square_{1} for distinct components of A.

Let $C_{1}, C_{2}, \cdots, C_{p}$ be connected components of A. Suppose $p>1$. Let. M_{i} be a component of $M-N(A ; M)$ and let $V_{1}, V_{2}, \cdots, V_{t(i)}$ be components of $\partial M_{i}-\partial M$. Clearly $t(i) \geqq 1$. Since $V_{j} \sim 0$ in M for any $j, t(i) \geqq 2$. Suppose $t(i) \geqq 3$. If V_{1} has the coherent (or discoherent) orientation with M_{i}, V_{j} has the discoherent (or coherent) orientation with $M_{i}, j=2,3, \cdots, t(i)$. Then, V_{2} and V_{s} are wellsituated in M_{i}. Since M_{i} is orientable, there exists no $s, 1 \leqq s \leqq p$, such that V_{2} and V_{3} are contained in $\partial N\left(C_{s} ; M\right)$, see Fig. 3. Therefore, $V_{2}\left(=C_{2}\right)$ and $V_{8}\left(=C_{\mu}\right)$ are well-situated in $M, 1 \leqq \lambda, \mu \leqq p$ and $\lambda \neq \mu$; which is a contradiction to the property of A. Hence $t(i)=2$.

Fig. 3.
Let T_{1}, T_{2} be components of $\partial M_{i}-\partial M$. If $T_{1} \sim\left(-T_{2}\right)$ in M, T_{1} and T_{2} are well-situated in M which is a contradiction to the property of A, by the same reason as above. Therefore $T_{1} \sim T_{2}$ in M, since $\partial M \sim 0$. Since M is connected, $C_{1} \sim C_{2} \sim C_{3} \sim \cdots \sim C_{p}$ in M, Hence $p C_{1}$ represents a homology class θ of $H_{n-1}(M ; Z)$, which is a contradiction to (2). Therefore $p=1$ and A is a connected ($n-1$). submanifold representing θ.
[Proof of Theorem 2 (2) $\longrightarrow(1)$.]
By Theorem 3 (2) $\longrightarrow(1)$, a homology class

$$
\frac{\theta}{|\alpha|}=\frac{a_{1}}{|\alpha|} g_{1}+\frac{a_{2}}{|\alpha|} g_{2}+\cdots+\frac{a_{r}}{|\alpha|} g_{r}
$$

can be represented by a connected ($n-1$)-submanifold A in M, since ($\dot{a}_{1} /|\alpha|$, $\left.\alpha_{2} /|\alpha|, \cdots, \alpha_{r} /|\alpha|\right)=1$.

Let $f: A \times I \longrightarrow M$ be an embedding such that $\left.f\right|_{A \times(0)}=i d$. We have mutually disjoint ($n-1$)-submanifolds $A_{i}=f(A \times\{i| | \alpha \mid\}), i=1,2, \cdots,|\alpha|$, where each A_{i} has the same orientation as $\alpha /|\alpha| A$'s. Let $S_{1}, S_{2}, \cdots, S_{r}$ be mutually disjoint ($n-1$)spheres such that each S_{i} bounds n-ball B_{i} in M and $B_{i} \cap f(A \times I)=\phi$, where $\gamma=\beta-|\alpha|$. Then we have a required ($n-1$)-submanifold $A_{1} \cup A_{2} \cup \cdots \cup A_{|\alpha|} \cup S_{1} \cup S_{2} \cup$ $\cdots \cup S_{r}$ in M.

To show Theorems 2 and $3(1) \longrightarrow(2)$, it is enough to show the following;
Lemma 6. Let M be an n-manifold without boundary or with connected boundary. If a non-trivial homology class f of $H_{n-1}(M ; Z)$ is represented by a connected ($n-1$)-submanifold A in M, then αf is not representable by an ($n-1$)submanifold having β connected components in M, where $\beta<|\alpha|$.

Proof. Suppose αf is represented by an $(n-1)$-submanifold B having β connected components in M.

Let $g: A \times I \longrightarrow M$ be an embedding such that $\left.g\right|_{A \times(0) 1}=i d$. We have mutually disjoint ($n-1$)-submanifolds $A_{i}=g(A \times\{i| | \alpha \mid\}), i=1,2, \cdots,|\alpha|$, where each A_{i} has the same orientation as $\alpha /|\alpha| A$'s. Since M is a manifold without boundary or with connected boundary, M is an \tilde{L}-manifold by Theorem 1 . Since $A_{1} \cup A_{2} \cup \cdots \cup A_{|\alpha|} \sim B, B$ is isotopic to an ($n-1$)-submanifold B^{\prime} which is obtained from $A_{1}, A_{2}, \cdots, A_{|\alpha|}$ by a finite sequence of operations \square_{k}. While A_{i} and A_{j} are not well-situated for $i \neq j$. Hence, by Lemma $1, A_{i} \square{ }_{1}^{\lambda_{1}} \square_{2}^{\lambda_{2}} \ldots \square_{n-1}^{\lambda_{n-1}^{1}}$ and $A_{j} \square{ }_{1}^{\mu} \square_{2}^{\mu_{2}} \ldots \square_{n-1}^{\mu_{n-1}}$ are not well-situated. Therefore there is no sequence of operations \square_{k} such that $\left(A_{1} \cup A_{2} \cup \cdots \cup A_{|\alpha|}\right) \square_{1}^{\nu} \cdots \square_{n-1}^{\nu}{ }_{n}^{n-1}$ is an $(n-1)$-submanifold having β components in M, if $\beta \geqq|\alpha|$. This completes the proof.

REFERENCES

[1] T. Kaneko, K. Aoki and F. Kobayashi: On representations of 1-homology classes of closed surfaces, J. Fac. Soc. Niigata Univ. Ser. I, 3 (1963) 131-137.
[2] T. Kaneko: On representations of 1-homology class of closed surfaces II, Sci. Rep. of Niigata Univ. Ser. A, 2 (1965) 1-5.
[3] A. Kosinski: Singularities of piecewise linear mappings. I, Mappings into the real lines, Bull. Amer. Math. Soc., 68 (1962) 110-114.
[4] J. W. Milnow: MORSE THEORY, Ann. of Math. Studies.
[5] H. Nakatsuka: On representations of homology classes, to appear.
[6] S. Suzuki: Simple loops on orientable surfaces, unpublished.
[7] S. Suzuki: Representation of 1-homolagy classes of bounded surfaces, Proc. of Japan Acad., 46 (1970) 1096-1098.
[8] R. Thom: Quelques propriétés globales des variétés differentiables, Comment. Math. Helv., 28 (1954) 17-86.
[9] K. Yokoyama: Surfaces embedded in a s-manifold, Master thesis (Kobe Univ.).

Kobe University
Rokkocho Nada-ku Kobe and
Sophia University
Kioi-cho Chiyoda-ku Tokyo

