L-EQUIVALENCE AND REPRESENTATIONS OF HOMOLOGY CLASSES

By

KAZUO YOKOYAMA

(Received Feb. 10, 1972)

§0. Introduction

In the paper we will discuss on an equivalence relation between (n-1)submanifolds in an *n*-manifold, and on representations of (n-1)-dimensional homology classes of an *n*-manifold. We shall work in the PL category. By the smoothing theory, required results in the differentiable category may be obtained.

R. Thom [8] introduced the concept of "*L-equivalence*" between submanifolds in a manifold. We shall introduce the concepts of " \tilde{L} -equivalence" between (n-1)-submanifolds in an *n*-manifold, and of " \tilde{L} -manifold", see Definitions 4 and 5 in §2. Then, we shall obtain;

Theorem 1. Every compact connected orientable manifold, without boundary or with connected boundary, is an \tilde{L} -manifold.

It is a well known result by *R*. Thom [8] that every (n-1)-dimensional homology class $\theta \in H_{n-1}(M; Z)$ of an orientable *n*-manifold *M* is representable by a submanifold in *M*. But, he didn't refer to the number of connected components of the submanifold representing θ . We will give the necessary and sufficient condition for θ to be representable by a submanifold having β connected components.

Let M be a compact orientable *n*-manifold. By the Poincaré duality, $H_{n-1}(M; Z)$ is a free abelian group of finite rank. Let $\{g_1, g_2, \dots, g_r\}$ be a free abelian basis for $H_{n-1}(M; Z)$. An implication of Theorem 1 is as follows;

Theorem 2. Let M be a compact connected orientable n-manifold without boundary or with connected boundary. For a non-trivial homology class

 $\theta = a_1g_1 + a_2g_2 + \cdots + a_rg_r$,

of $H_{n-1}(M; Z)$ the following conditions are equivalent;

(1) θ can be represented by a submanifold having β connected components in M.

(2) $\beta \ge |\alpha|$, where α is the greatest common divisor (a_1, a_2, \dots, a_r) of a_1, a_2, \dots, a_r .

So, as a special case of Theorem 2, we have;

Theorem 3. Let M be a compact connected orientable n-manifold without boundary or with connected boundary. For a non-trivial homology class

$$\theta = a_1g_1 + a_2g_2 + \cdots + a_rg_r$$
,

of $H_{n-1}(M; Z)$, the following conditions are equivalent;

(1) θ can be represented by a connected submanifold in M.

(2) the greatest common divisor $(a_1, a_2, \dots, a_r) = 1$.

First in this direction, T. Kaneko [2] obtained a complete answer to this problem for closed surfaces in 1965. Then S. Suzuki extended his result to surfaces with boundary [7] and also in the direction for the above Theorem 2 [6]. The author gave an extension of our problem to 3-manifolds under some conditions [9]. In this paper this problem will be perfected. In preparing this paper, M. Kato has informed the author that independently H. Nakatsuka has also proved our Theorem 3 by different methods.

In §1, we shall introduce an elementary operation \Box_k , and give the proof of Lemma 1, which is of importance in the sequel. In §2, we shall introduce the concepts of " \tilde{L} -equivalence" and " \tilde{L} -manifold". We shall consider the relation between "L-equivalence" and " \tilde{L} -equivalence", and prove Theorem 1. In §3, we will give the proofs of Theorems 2 and 3.

In this paper, all manifolds will be compact and oriented. PL embeddings will be locally flat and submanifolds in a manifold will be locally flat and closed. And an ambient n-manifold M is always connected, but a submanifold in a manifold is not always connected unless we mention.

I am indebted to Professors T. Homma, F. Hosokawa, M. Kato, S. Suzuki and T. Yanagawa for their help.

$\S 1$. Notations and operations k

Throughout the paper, ∂M , *intM*, *clM* denote the boundary, the interior and the closure of a manifold M, respectively. N(A; B) denotes a regular neighborhood of a subpolyhedron A in a polyhedron B. Homeomorphism and isomorphism are denoted by the same symbol \cong , while \approx , \simeq and \sim denote, respectively, to isotopy, homotopy and homology. I, D^k and Δ^m mean, respectively, the closed

interval [0, 1], k-simplex and m-simplex.

For a submanifold A in a manifold, -A is the submanifold having the opposite orientation of A. For integers $a_1, a_2, \dots, a_\lambda$, $(a_1, a_2, \dots, a_\lambda)$ denotes the greatest common divisor of them. Especially, we assume that $(a_1, a_2, \dots, a_\lambda) \ge 0$.

Let A be an (n-1)-submanifold in an *n*-manifold *M*. Let *l* be a simple oriented arc in *M* that spans A with discoherent orientation, *i.e.* $l \cap A = \partial l \cap A = \partial l$, and let $f:I \longrightarrow M$ be an embedding such that f(I)=l. Then, we can add an *n*-cell $I \times \Delta^{n-1}$ to A by a homeomorphism $\overline{f}: I \times A \longrightarrow N(l; M)$ such that $\overline{f}|_{I \times \{v\}} = f$, $\overline{f}(\partial I \times A) \subset A$ and $\overline{f}(intI \times A) = \phi$; and obtain an (n-1)-submanifold $A_* = \{A - \overline{f}(\partial I \times A)\} \cup \overline{f}(I \times \partial A)$ having the orientation induced by A. When we perform the operation above, we shall say that the (n-1)-submanifold A_* is obtained from A by an operation \Box_1 (along *l* in *M*) and denote $A \Box_1$. For any integer *k*, let $f:D^k \times A^{m-k} \longrightarrow M$ be an embedding such that $f(\partial D \times A) \subset A$ and $f(intD \times A) \cap A = \phi$. We can add an *n*-cell $D^k \times A^{m-k}$ to A by an embedding *f* and obtain an (n-1)-submanifold $A_* = \{A - f(\partial D \times A)\} \cup f(D \times \partial A)$ having the orientation induced by A. Then, we shall say that the (n-1)-submanifold A_* is obtained from A by an operation \Box_k and denote $A \Box_k$. Moreover, we will denote $A \Box_1 \Box_2 \Box_1 \Box_1 \Box_2$ and $A \Box_8 \Box_8 \Box_2 \Box_1 \Box_2$ etc. by $A \Box_1^3 \Box_2^3 \Box_3^0 \cdots \Box_n^n$ and $A \Box_1^1 \Box_2^3 \Box_3^3 \Box_1^0 \cdots \Box_n^n$ etc. unless confusion. It will be noticed that;

Proposition 1. An operation \Box_k does not exchange the homology class, that is $A = A \Box_k$ in $H_{n-1}(M; Z)$.

In general for two submanifolds A and B in M, we cannot always apply an operation \Box_1 , see Lemma 2.

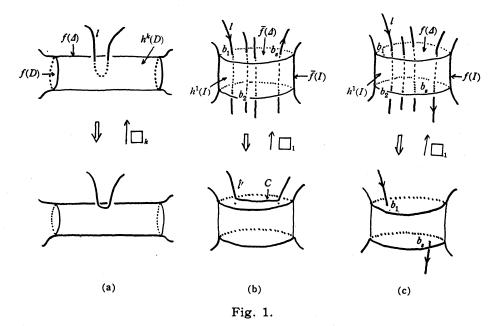
Definition 1. Let A be non-connected (n-1)-submanifold in an *n*-manifold M and let A_1, A_2 be distinct connected components of A. Then, A_1 and A_2 are said to be *well-situated* (*relative to A*) iff there is a simple oriented arc l that spans A_1 and A_2 with discoherent orientation, *i.e.* $l \cap A = l \cap (A_1 \cup A_2) = \partial l \cap (A_1 \cup A_2)$ $= \partial l$.

Lemma 1. Let A_1 , A_2 be disjoint connected (n-1)-submanifold in an n-manifold M. If A_1 and A_2 are not well-situated relative to $A_1 \cup A_2$, then any one component of $A_1 \square_1^{\lambda_1} \square_2^{\lambda_2} \square_3^{\lambda_3} \cdots \square_{n-1}^{\lambda_{n-1}}$ and any one component of $A_2 \square_1^{\mu_1} \square_2^{\mu_2} \square_3^{\mu_3} \cdots \square_{n-1}^{\mu_{n-1}}$ are not well-situated relative to $A_1 \square_1^{\lambda_1} \square_2^{\lambda_2} \square_3^{\mu_3} \cdots \square_{n-1}^{\lambda_{n-1}} \square_2^{\lambda_2} \square_3^{\mu_3} \cdots \square_{n-1}^{\mu_{n-1}}$.

Proof. Suppose that a component, say B_1 , of $A_1 \Box_1^{\lambda_1} \Box_2^{\lambda_2} \Box_3^{\lambda_3} \cdots \Box_{n-1}^{\lambda_{n-1}}$ and a component, say B_2 , of $A_2 \Box_1^{\mu_1} \Box_2^{\mu_2} \Box_3^{\mu_3} \cdots \Box_{n-1}^{\mu_{n-1}}$ are well-situated relative to

 $A_1 \square_1^{\lambda_1} \square_2^{\lambda_2} \square_3^{\lambda_3} \cdots \square_{n-1}^{\lambda_{n-1}} \cup A_2 \square_1^{\mu_1} \square_2^{\mu_2} \square_3^{\mu_3} \cdots \square_{n-1}^{\mu_{n-1}}$. So there is a simple oriented arc *l* that spans B_1 and B_2 with discoherent orientation. We may assume ∂l , say a_1, a_2 , is contained in A_1 and A_2 by slight deformation.

Let $\nu = \lambda_1 + \lambda_2 + \cdots + \lambda_{n-1} + \mu_1 + \mu_2 + \cdots + \mu_{n-1}$. If the ν -th operation is an operation \Box_k , $k=2, 3, \cdots, n-1$, we can exclude the intersection of l and the k-handle $h^k(D) = f(D^k \times \Delta^{n-k})$ by deforming l isotopically, since $l \cap h^k(D) = \arcsin(l \cap \partial h^k(D)) = l \cap (\partial D \times \Delta)$ and $\partial D \times \Delta \cong S^{k-1} \times \Delta^{n-k}$, see Fig. 1(a). If the ν -th operation is an operation \Box_1 , we deform l isotopically so that l intersects with $f(\partial I \times \Delta^{n-1})$ transversally. If $l \cap f(I \times \Delta^{n-1}) \neq \phi$, then it consists of some arcs, and $l \cap f(\partial I \times \Delta)$ consists of some points $b_1, b_2, \cdots, b_{\ell}$ numbered from a_1 to a_2 on l. If b_1 and b_{ℓ} are contained in same component, say C, of $f(\partial I \times \Delta)$, we can join b_1 and b_{ℓ} in C and obtain a simple arc $l' = \overline{a_1 b_1} \cup \overline{b_1 b_\ell} \cup \overline{b_\ell a_2}$. By deforming l' isotopically, we can obtain a simple arc $l' = \overline{a_1 b_1} \cup \overline{b_1 b_\ell} \cup \overline{b_\ell a_2}$. By deforming l' isotopically, we can be an obtain a simple arc $l' = \overline{a_1 b_1} \cup \overline{b_1 b_\ell} = \phi$, see Fig. 1(b). So, we may assume b_1 and b_{ℓ} are not contained in same component of $f(\partial I \times \Delta)$. Then we will reserve only two simple arcs $l_1' = \overline{a_1 b_1}$ and $l_2' = \overline{b_\ell a_2}$, see Fig. 1(c).



By the repetition of the procedure, we have simple oriented subarcs l_1, l_2, \dots, l_p of l such that $l_i \cap (A_1 \cup A_2) = \partial l_i \cap (A_1 \cup A_2) = \text{two}$ points, say c_i, d_i . Clearly, d_i and c_{i+1} are contained in A_j , and homology insersection numbers at the points d_i , c_{i+1} are 1 and -1 (or -1 and 1), $i=1, 2, \dots, p-1$, j=1, 2, see Fig. 1 (b) (c). Since A_1 , A_2 is connected, we can join d_i and c_{i+1} by simple arc \tilde{l}_i and obtain a simple oriented arc $\tilde{l}=l_1 \cup \tilde{l}_1 \cup l_2 \cup \tilde{l}_2 \cup \cdots \cup \tilde{l}_{p-1} \cup l_p$. By deforming l isotopically, we can obtain a simple oriented arc l that spans A_1 and A_2 with discoherent orientation. Therefore, A_1 and A_2 are well-situated, which is a contradiction.

Lemma 2. Let M be an n-manifold with non-connected boundary. Let A_1, A_2 be distinct component of ∂M having the orientation induced by M. Then, A_1 and $(-A_2)$ are not well-situated.

Proof. Let l be a simple arc in M that spans A_1 and A_2 . If we give an arbitrary orientation for l, then it has the coherent orientation with A_1 (or $-A_2$), as M is orientable. And if we give the another orientation for l, then it has the coherent orientation with $-A_2$ (or A_1). That is, there exists no arc in M oriented discoherently with A_1 and $(-A_2)$.

$\S 2.$ L-equivalence and L-equivalence

Definiton 2. (*R. Thom* [8]) Let U, V be *m*-submanifolds in an *n*-manifold *M*. Then, we say that U and V are *L*-equivalent, iff there is an (m+1)-submanifold W in $M \times I$ satisfying the following conditions;

(1) $W \cap M \times \{0\} = U$, $W \cap M \times \{1\} = V$;

and

(2) $\partial W = U - V$.

Definition 3. An *n*-manifold M is said to be an *L*-manifold, iff for any two (n-1)-submanifolds U, V such that $U \sim V, U$ and V are *L*-equivalent.

Proposition 2. (R. Thom [8]) Every manifold is an L-manifold.

We will introduce stronger concepts than these as follows;

Definition 4. Let U, V be (n-1)-submanifolds in an *n*-manifold M. Then, we say that U and V are \tilde{L} -equivalent, iff there exists a sequence $\{A_1, A_2, \dots, A_n\}$ of (n-1)-submanifolds in M so that

(1) $U=A_1$, $V=A_s$;

and

(2) A_{i+1} is isotopic to A_i or obtained from A_i by an operation \Box_k ; $i=1,2, \dots, s-1, k=1,2,\dots, n-1$.

Definition 5. An *n*-manifold M is said to be an \tilde{L} -manifold, iff either one of the following conditions is satisfied;

(1) every (n-1)-submanifold is homologous to 0 in M; or

(2) for any two (n-1)-submanifolds U, V such that U, V≁0 and U~V, U and V are L̃-equivalent

Let U be an (n-1)-submanifold in an *n*-manifold M without boundary or with connected boundary. And let S_1, S_2, \dots, S_r be mutually disjoint (n-1)spheres such that each S_i bounds *n*-ball B_i in M and $B_i \cap U = \phi$.

We apply an operation \Box_1 for distinct components of $\tilde{U}=U\cup S_1\cup S_2\cup\cdots\cup S_r$, denoted $\tilde{U}\xrightarrow{1}\tilde{U}\Box_1$, if it is possible. If we can still apply an operation \Box_1 to distinct components of $\tilde{U}\Box_1$, we apply an operation \Box_1 . We repeat this procedure as often as possible, and have an (n-1)-submanifold $\tilde{U}\Box_1^2$ such that we cannot apply an operation \Box_1 to distinct components of $\tilde{U}\Box_1^2$. Then, we have the following diagram;

$$\begin{array}{cccc} & \tilde{U} \xrightarrow{1} \tilde{U} \square_{1} \xrightarrow{1} \cdots \xrightarrow{1} \tilde{U} \square_{1}^{i} \xrightarrow{1} \cdots \xrightarrow{1} \tilde{U} \square_{1}^{i} \\ \stackrel{(*)}{\ast} & \cup & \cup & \cup & \cup \\ U_{0} = U \longrightarrow U_{1} & \longrightarrow \cdots & \longrightarrow U_{i} & \longrightarrow \cdots & \longrightarrow U_{\lambda} \end{array}$$

where U_{i+1} is an (n-1)-submanifold obtained from U_i by applying the operation \Box_1 in the following sense;

(1) $U_{i+1}=U_i$, when the *i*-th operation \Box_1 is applied to components of $\widetilde{U}\Box_1^i - U_i$.

(2) $U_{i+1} = (U_i \cup A) \square_1$, when the *i*-th operation \square_1 is applied to U_i and a component A of $\tilde{U} \square_i^i - U_i$.

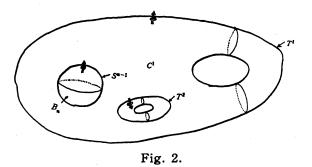
(3) $U_{i+1} = U_i \square_i$, when the *i*-th operation \square_i is applied to U_i .

Lemma 3. If $U_{2} \neq \tilde{U} \square_{1}^{2}$, then U is homologous to 0 in M.

Proof. Suppose $U_{\lambda} \neq \tilde{U} \square_{1}^{\lambda}$. So there exists a component S^{n-1} of $\tilde{U} \square_{1}^{\lambda} - U_{\lambda}$. Clearly, S^{n-1} bounds *n*-ball B^{n} . Let C_{1} be a component of $M - N(\tilde{U} \square_{1}^{\lambda}; M) - B$ whose boundary contains S^{n-1} . Let T_{1}, \dots, T_{p} be components distinguished S^{n-1} of ∂C^{1} such that $T_{i} \subset \tilde{U} \square_{1}^{\lambda}$. By assumption, if S^{n-1} has discoherent (or coherent) orientation with C_{1} , T_{i} has coherent (or discoherent) orientation with C_{1} , $i=1,2,\dots,p$. If p>1 then T_{1} and T_{2} are well-situated which is a contradiction to the property of $\tilde{U} \square_{1}^{\lambda}$. Hence p=1 and T_{1} is homologous to 0 since ∂M is homologous to 0, see Fig. 2.

Let C_2 be a component of $M - N(\tilde{U} \square_1^2; M) - B - C_1$ whose boundary contains T_1 . By the repetition of the above procedure, we have a component T_2' of $\tilde{U} \square_1^2 - B$ homologous to 0.

We repeat the above procedure as often as possible, and have a sequence $\{T_1, T_2', \dots, T_{i-1}'\}$ of all components of $\tilde{U} \square_i^2 - B$. And every component of $\tilde{U} \square_i^2 - B$ is homologous to 0 in M.



Since every component of $\widetilde{U}\square_1^2$ in *B* is homologous to 0, $\widetilde{U}\square_1^2$ is homologous to 0. Therefore *U* is homologous to 0 in *M*.

Lemma 4. $M, U, S_i, \tilde{U}, \tilde{U} \square_1^2$; the same as above. If U is not homologous to 0 in M, then U and \tilde{U} are \tilde{L} -equivalent.

Proof. It is enough to prove that U and $\tilde{U}\square_{1}^{\lambda}$ are \tilde{L} -equivalent. We will proceed by induction on λ . If $\lambda=0$, by Lemma 3, r=0 and Lemma is obvious. Suppose $\lambda>0$. We have the diagramm (*), and moreover $\tilde{U}\square_{1}^{\lambda}=U_{\lambda}$ by Lemma 3. By induction then, U_{1} and $\tilde{U}\square_{1}^{\lambda}$ are \tilde{L} -equivalent. Therefore it is enough to prove that U and U_{1} are \tilde{L} -equivalent. If the first operation \square_{1} falls under the case (1) or (3), then it is obvious. Suppose the first operation \square_{1} falls under the case (2). That is, the first operation \square_{1} is applied to U and S_{i} , $i=1, 2, \cdots, r$. Since S_{i} bounds *n*-ball B_{i} in M and $B_{i} \cap U=\phi$, U is isotopic to $U_{1}=(U\cup S_{i})\square_{1}$. Therefore U and $\tilde{U}\square_{1}^{\lambda}$ are \tilde{L} -equivalent.

Lemma 5. Every L-manifold, without boundary or with connected boundary, is an \tilde{L} -manifold.

Proof. If every (n-1)-submanifold in M is homologous to 0, Lemma is obvious. So we may assume that there is an (n-1)-submanifold, say U, in M which is not homologous to 0.

Let V be an (n-1) submanifold in M such that $V \sim U$. By assumption, there is an *n*-submanifold W in $M \times I$ satisfying the following conditions;

 $(1) \quad W \cap M \times \{0\} = U, \qquad W \cap M \times \{1\} = V;$

and

(2) $\partial W = U - V$.

By deforming W isotopically, we have an *n*-submanifold W' in $M \times I$ such that $f|_{W'}: W' \longrightarrow I$ is a non-degenerate mapping, see [3] [4], where $f: M \times I \longrightarrow I$ is a projection. Since the critical points are finite, we may assume that there exist no critical points in $M \times [0, 1/4] \cup M \times [3/4, 1]$. By deforming W' isotopically,

we have an *n*-submanifold \widetilde{W} in $M \times I$ satisfying the following conditions;

(1) $f|_{\overline{w}}: W \longrightarrow I$ is non-degenerate,

(2) the critical points of index 0 consist in $M \times (0, 1/4)$,

(3) the critical points of index *n* consist in $M \times (3/4, 1)$,

and

(4) the critical points of index $1, 2, \dots, n-1$ consist in $M \times (1/4, 3/4)$.

Therefore, $M \times \{1/4\}$ consists of an (n-1)-submanifold U' and (n-1)-spheres S_1, S_2, \dots, S_r such that U' is isotopic to U in M and each sphere S_i bounds n-ball B_i in M; and $M \times \{3/4\}$ consists of an (n-1)-submanifold V' and (n-1)-spheres S_1', S_2', \dots, S_i' such that V' is isotopic to V in M and each sphere S_j' bounds n-ball B_j' in M. Clearly $B_i \cap U' = \phi$ and $B_i' \cap V' = \phi$.

Since the critical point of index k corresponds the operation \Box_k , $k=1, 2, \cdots$, n-1, $\tilde{U}=U'\cup S_1\cup S_2\cup \cdots \cup S_r$ and $\tilde{V}=V'\cup S_1'\cup S_2'\cup \cdots \cup S_t'$ are \tilde{L} -equivalent in M. By Lemma 4, \tilde{U} and U' are \tilde{L} -equivalent, and \tilde{V} and V' are \tilde{L} -equivalent. Hence U' and V' are \tilde{L} -equivalent. Therefore, U and V are \tilde{L} -equivalent.

Combining this with Proposition 2, we will obtain the following;

Theorem 1. Every connected manifold, without boundary or with connected boundary, is an \tilde{L} -manifold.

While, for the other manifolds, we will obtain the following;

Proposition 3. Every manifold M with non-connected boundary is not an \tilde{L} -manifold.

Proof. Let $f:D^n \longrightarrow intM$ be an embedding. Then, $S=f(\partial D)$ is an (n-1)sphere in M. Let A be a component of ∂M . Since M-f(D) is an orientable n-manifold, we give the orientation induced from M-f(D) to A and S. By
Lemma 2, A and -S are not well-situated. Therefore, A and $A \cup (-S)$ are not \tilde{L} -equivalent. While, A is homologous to $A \cup (-S)$ and $A \not\sim 0$. Hence M is not an \tilde{L} -manifold.

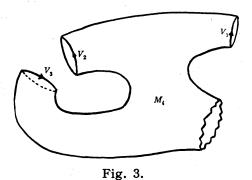
§3. Proof of Theorem 2

[Proof of Theorem 3 (2) \longrightarrow (1).]

According to [8] p. 55, Théorème II. 27, there is an (n-1)-submanifold representing θ in M. Let A be an (n-1)-submanifold such that the number of connected components of A is smallest in (n-1)-submanifolds representing θ in M. Clearly, there is no component of A homologous to 0 in M, and we cannot apply an operation \Box_1 for distinct components of A.

\tilde{L} -EQUIVALENCE AND REPRESENTATIONS OF HOMOLOGY CLASSES

Let C_1, C_2, \dots, C_p be connected components of A. Suppose p > 1. Let M_i be a component of M - N(A; M) and let $V_1, V_2, \dots, V_{t(i)}$ be components of $\partial M_i - \partial M$. Clearly $t(i) \ge 1$. Since $V_j \sim 0$ in M for any j, $t(i) \ge 2$. Suppose $t(i) \ge 3$. If V_1 has the coherent (or discoherent) orientation with M_i , V_j has the discoherent (or coherent) orientation with M_i , $j=2, 3, \dots, t(i)$. Then, V_2 and V_8 are wellsituated in M_i . Since M_i is orientable, there exists no s, $1 \le s \le p$, such that V_2 and V_8 are contained in $\partial N(C_s; M)$, see Fig. 3. Therefore, $V_2(=C_i)$ and $V_8(=C_\mu)$ are well-situated in M, $1 \le \lambda, \mu \le p$ and $\lambda \ne \mu$; which is a contradiction to the property of A. Hence t(i)=2.



Let T_1 , T_2 be components of $\partial M_i - \partial M$. If $T_1 \sim (-T_2)$ in M, T_1 and T_2 are well-situated in M which is a contradiction to the property of A, by the same reason as above. Therefore $T_1 \sim T_2$ in M, since $\partial M \sim 0$. Since M is connected, $C_1 \sim C_2 \sim C_3 \sim \cdots \sim C_p$ in M, Hence pC_1 represents a homology class θ of $H_{n-1}(M; Z)$, which is a contradiction to (2). Therefore p=1 and A is a connected (n-1)submanifold representing θ .

[Proof of Theorem 2 (2) \longrightarrow (1).]

By Theorem 3 (2) \longrightarrow (1), a homology class

$$\frac{\theta}{|\alpha|} = \frac{a_1}{|\alpha|}g_1 + \frac{a_2}{|\alpha|}g_2 + \cdots + \frac{a_r}{|\alpha|}g_r,$$

can be represented by a connected (n-1)-submanifold A in M, since $(a_1/|\alpha|, \alpha_2/|\alpha|, \dots, \alpha_r/|\alpha|)=1$.

Let $f:A \times I \longrightarrow M$ be an embedding such that $f|_{A \times \{0\}} = id$. We have mutually disjoint (n-1)-submanifolds $A_i = f(A \times \{i/|\alpha|\})$, $i=1, 2, \dots, |\alpha|$, where each A_i has the same orientation as $\alpha/|\alpha|A'$ s. Let S_1, S_2, \dots, S_r be mutually disjoint (n-1)spheres such that each S_i bounds *n*-ball B_i in M and $B_i \cap f(A \times I) = \phi$, where $\gamma = \beta - |\alpha|$. Then we have a required (n-1)-submanifold $A_1 \cup A_2 \cup \cdots \cup A_{|\alpha|} \cup S_1 \cup S_2 \cup$ $\cdots \cup S_r$ in M.

K. YOKOYAMA

To show Theorems 2 and 3 (1) \longrightarrow (2), it is enough to show the following;

Lemma 6. Let M be an n-manifold without boundary or with connected boundary. If a non-trivial homology class f of $H_{n-1}(M; Z)$ is represented by a connected (n-1)-submanifold A in M, then αf is not representable by an (n-1)submanifold having β connected components in M, where $\beta < |\alpha|$.

Proof. Suppose αf is represented by an (n-1)-submanifold B having β connected components in M.

Let $g: A \times I \longrightarrow M$ be an embedding such that $g|_{A \times \{0\}} = id$. We have mutually disjoint (n-1)-submanifolds $A_i = g(A \times \{i/|\alpha|\})$, $i=1, 2, \dots, |\alpha|$, where each A_i has the same orientation as $\alpha/|\alpha|A$'s. Since M is a manifold without boundary or with connected boundary, M is an \tilde{L} -manifold by Theorem 1. Since $A_1 \cup A_2 \cup \cdots \cup A_{|\alpha|} \sim B$, B is isotopic to an (n-1)-submanifold B' which is obtained from $A_1, A_2, \dots, A_{|\alpha|}$ by a finite sequence of operations \Box_k . While A_i and A_j are not well-situated for $i \neq j$. Hence, by Lemma 1, $A_i \Box_1^{\lambda_1} \Box_2^{\lambda_2} \cdots \Box_{n-1}^{\lambda_{n-1}}$ and $A_j \Box_1^{\mu_1} \Box_2^{\mu_2} \cdots \Box_{n-1}^{\mu_{n-1}}$ are not well-situated. Therefore there is no sequence of operations \Box_k such that $(A_1 \cup A_2 \cup \cdots \cup A_{|\alpha|}) \Box_1^{\nu_1} \cdots \Box_{n-1}^{\nu_{n-1}}$ is an (n-1)-submanifold having β components in M, if $\beta \geq |\alpha|$. This completes the proof.

REFERENCES

- T. Kaneko, K. Aoki and F. Kobayashi: On representations of 1-homology classes of closed surfaces, J. Fac. Soc. Niigata Univ. Ser. I, 3 (1963) 131-137.
- [2] T. Kaneko: On representations of 1-homology class of closed surfaces II, Sci. Rep. of Niigata Univ. Ser. A, 2 (1965) 1-5.
- [3] A. Kosinski: Singularities of piecewise linear mappings. I, Mappings into the real lines, Bull. Amer. Math. Soc., 68 (1962) 110-114.
- [4] J. W. Milnow: MORSE THEORY, Ann. of Math. Studies.
- [5] H. Nakatsuka: On representations of homology classes, to appear.
- [6] S. Suzuki: Simple loops on orientable surfaces, unpublished.
- [7] S. Suzuki: Representation of 1-homolagy classes of bounded surfaces, Proc. of Japan Acad., 46 (1970) 1096-1098.
- [8] R. Thom: Quelques propriétés globales des variétés differentiables, Comment. Math. Helv., 28 (1954) 17-86.
- [9] K. Yokoyama: Surfaces embedded in a S-manifold, Master thesis (Kobe Univ.).

Kobe University Rokkocho Nada-ku Kobe and Sophia University Kioi-cho Chiyoda-ku Tokyo