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1, Summary.

Strassen presented a generalization of the law of the iterated logarithm
for independent random sequences and Chover [1] gave another proof of
Strassen’s main result. On the other hand, the authors proved in and [4] that
the law of the iterated logarithm and its Strassen’s version hold for some classes
of strictly stationary processes satisfying mixing conditions. The main object
of this paper is to generalize the results in [4] to processes generated by mixing
processes.

2. Preliminaries, the law of the iterated logarithm.

Let {x;, —o0<j<oo} be a strictly stationary process defined on a probability
space (2, B, P) with Ex;j?<o, satisfying either the uniformly strong mixing
(u.s.m.) condition:

(1) sup I—,—(lA-—)lP(An B)—P(A)P(B)|=¢(n) | 0 (n—0)

k oo
Adem_ ., Be mk+u

or the strong mixing (s. m.) condition:

| (2) sup |P(AN B)—P(A)P(B)|=a(n) | 0 (n—>0)

Aem” , Be mp

where M?% denotes the g-algebra generated by the random variables xj, j=a, @
+1, --+, b. Further, let H be a Hilbert space of random variables, measurable
with respect to M3, and U an isometric operator on HZ.. Define

(3) Y;=U'Y (Ye H>..)

and
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(4) Sn=Y1+"‘+Y‘n
with SO——-O. Put

(5) F=EY;'+2 3 EY,Y;
P

if the series converges. In what follows, we assume that ¢*>0. Let
(6) P(k)y=E|Y—E{Y|ME}|* .

The following is the results in [3].

Theorem A. Let {x;, —oo< j<co} be a strictly stationary process, and {Y;}
random variables obtained by the method indicated above with EY;=0. Further,
let one of the following three sets of requirements be fulfilled:

@ (I-1) {xs} satisfies the u.s.m. condition,
(I-2) E|Y|**% <o for some 0,>0,
(I-3) ¢(m)=0(n"**2) for some ¢>(1+4d,)7,
(I-4) ¢(B)=0(k~**%) for some 9,>0.

aIn (I-1) {x;j} satisfies the s.m. condition,
(II-2) |Y;|<M with probability one,
(II-3) a(n)=0@n"**%) for some >0,
(II1-4) ¢(R)=0(k~%*%) for some 0,>0.

11y (II1-1) {x;} satisfies the s.m. condition,
(II-2) E|Y|**%s<oo for some 3;>0;

(M1-3) 3 @()P1EI<oo0 for some 0<¥' <ds,
<
(II1-4) ¢(B)=0(k=2*%) for some 8,>0.
Then, the process {Y;} obeys the law of the iterated logarithm.

3. Strassen’s version of the law of the iterated logarithm.

Next, we consider the space C of all continuous functions on [0, 1] vanishing
at 0, with the usual maximum norm, and, for each w€ 2, define the functions
fa(t, @), n=3/e* in C as follows:

Si/X(n) for t==k/n, k=0, 1,---, n
(7 ) fﬂ(t’ (D)"—-"
linearly interpolated for t€[k/n, (k+1)/n]

k=0,-- -, n—1,
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where X(n)=(2n0® log log n®*?>. We denote by K the subset of C consisting
of all functions %(f) absolutely continuous with respect to Lebesgue measure

1,
such that S {h(H):dt=1, where A(#) stands for the Radon-Nikodym derivative of
0

h. For any integer m and any function 2€C, let llak be the piecewise
approximation to # defined by
h(v/m) for t=y/m, v=0, 1,---, m,

(8) (k) ()= {
linearly interpolated for t€[v/m, (v+1)/m]

vy=0, -+, m—1.
We shall prove the following

Theorem. Under the same assumptions in Theorem A, for almost every w € 2,
the sequence of functions {f»(t, ®), n=3/0*} is precompact in C and ils derived
set is the set K.

Proof. Firstly, we shall prove the theorem under Condition (I). Since, using
the method of the proof of Theorem 6 in [3], we have

(9) B( max |S;1>6aX(n)) =2P(|Sal ZaX(n))+O((log n)~®)
and
(10) _sup_ |P(S+<z0v'n)—0(2)|=0(llog 7))

(cf. (56) in [3]), where

0(2)= v ].-Zfr

2
S e % dx

so, using the method of the proof of Theorem 2 in [1], we have from (9) and
10) that for almost every €@ the sequence of functions {fx(t, ), #Z3/0’} is
equicontinuous. .

Now, we shall prove that for almost all we€®, the derived set of the
sequence of functions is contained in K. To prove this, it suffices to show
(see [1] and [4]) that

(11) Zr P(A,) <o

where

A,={w m’”z:; (umf,.,)( v+l ,w)—(n,,,fn,)(—”’; ) w>:|2>(1+s)2}

m
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and #n.=[c"] with some suitably chosen c=c(e)>1. Let i be the smallest integer
such that #/#.=v/m and j the largest integer such that j/z.<(v+1)/m. Let

ru=Cm log log nraz)l/z{(n,,, f”r)( ”;;1 >_ ([ f.) ( i_ )}

12) =(2m log log n.0%)'/*{1/X(n.,) ﬁ Yi+ye,s}

N GN/nr/m E Yi+(@2mlog log n-0°)"/’y,,, v=0,1,---,m—1,

where
Y= (In fa,) (ni w) — (IIn f.,,)(-;iz- , w)
+ Wafo) (2L 0) =) (£ 0).

Furthermore, let N,,,» denote the number of summands of the first term, j—i,
which is ~n./m. Put ¢-=[N{!3#/?], with some 0<p<4,/(2+4,), and let

— 1 I ey e e e
(13) Ne,v= (N,-,,,—-Zq,-)l/zo‘ k=i+2q,.+1 Zk'l , V 0, 1,  m 1
where
(14) Zi=E{Yi| M} .

It follows from the proof of Theorem 18. 6. 1 in [2], that {Z;®} is a strictly
stationary process with EZ;*=0 and satisfies the u.s.m. condition with the
function ¢z(n) for which

1, n=2s
(15) §Dz(n)§
' o(n—2s), n>2s
and
(16) sup ———IP(An B)—P(A)P(B)| =¢z(n)

demt _2),Beng, 2 P(A)
where M2(Z) is the o-algebra generated by the Z;, j=a, a+1, ---, b. Let

Z®o=Y;—Z;®

and define ¢.,,(»=0,1, -+, m—1) as
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Cr=8rv—7r
1 izay
{ 2 Y+ 2 Y+ 3

(Nr v—24r)%0 k=j=q,+1 k=itg,+1

+ (2m log log n,0%)'/%y,,, .

Zy‘ar)

Then

LFs

Il 5 v+ X vt I

(Nr,v—2gr)0%  k=3+1 k=i—g,+1 k=it g, +1

2(2m log log #n.0%)'/* i=ay 2.
* (N' l‘_‘?'q")l/z E{( 2 Yk+ =J"24r+1Yk+k=i+211-+1 k )yr,v}

+2m log log n-a*Ely.,.|* .

Z-k(w |2

Elg. 2=

Since
E| ,?31 Yi'<£E| Y]
and

El 3 Ziw|rs(j—i—2¢0)EIZsP=(N;,.—24,)'9(q.)

k=itg,+1

so, from (I-4) and the definition of ¢- that there exists a positive number 7

such that
ElCr,vP:O(nr_r)

and hence
m-—1 ) m—1 - m—1 m—1
E| §0 6';,»—-20 77| S2 EoElvr,uCr,vI-f- y.s_z‘.()EICr,»I2
m—1 m—1
<2 3 {E e o[ P/HEIL P+ T ElGr =007 .
Therefore, by Chebyshev’s inequality, we have, for sufficiently large 7,
m—1:
P(An=P( X ¢.,>(1+¢)*2 log log nr0%))
m—1 m—1 m—1
< P( 2.0773.»>(1+s)2(2 log log 7,02 —n,""/*)+ P(| E_OEE,,—- z_oyﬁ,,lgn,-rﬂ)
m—1 :
= P( 207)3, , > (1+¢")(2 log log 7:0%)+O(n,~ /%)

where ¢/>0 with 1+¢’ <(1+¢)%. As {Z;9} satisfies Condition (II) of Theorem 1
in with the function ¢z(#n), so from Theorem 3 in [4]

m—1
ZP(Z7. > (1+¢’)(2 log log n-0%) <o

which implies [11).
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Finally, using [10), we can prove that K is contained in the derived set of
{fa(¢, w), n=3/0%} (cf. The proofs of Lemma 5 in [1] and Theorem 5 in [4)).

Thus, we complete the proof of the theorem under (I). The proof under
either (II) or (III) is carried out by the same method as above. Thus, the proof
is completed.
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