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1. Introduction.

- A fundamental problem in measure theory is that of finding conditions under
which countably additive measure on a ring or a field R can be extended to a
countably additive measure on a wider class of sets containing R. In case m is
a non-negative measure, this problem is essentially solved by the Carathéodory
process of generating an outer measure m* and taking the family of m*-measurable
sets (see Halmos [9] §10—§13). In recent years many authors have considered
the extension ploblem when the range of m is contained in a vector space X or a
topological group X. If X is a Banach space, then there are solutions due to
G&iné (in the case m has finite variation), Kluvanek [11], [12] Dinculeanu and
Kluvanek (in the case m is absolutely continuous with respect to a non-negative
measure), Gould (in the case m is locally bounded and X satisfies axiom (A),
he has generalized the notions of outer measure and measurable sets). If X is a
commutative complete topological group and m is of bounded variation, then there
is a very nice extension theorem by Takahashi [16)].

In this paper, we shall obtain another condition and (3))
which is equivalent to other ones already considered. Now we shall consider the
extension theorem under which X is a special Banach space.

2. Extensions of vector measures.

Let S be a set and 3 a field (algebra) of subsets of S. Then there exists
the smallest o-field ¢(3}) containing X. The o-field ¢(X) is called the o-field

generated by .
Let X be a Banach space and X* its dual.

Definition 1. A set funétion m defined on 3 with values in X is called a
vector measure if for every sequence {E.} of mutually disjoint sets of X with

E=_ En€ 3 we have m(E)= 3 m(Ex).
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For every set ECS we put #(E)=sup {|m(A)|| : AcE, A€3}. Then w(E)
has the following properties:

(i) 0=m(E)=-+oo,

(ii) E\CE, = m(E)=m(E,).

(iii) #(E,UE;)=m(E)+m(E,) for every sets E;, E,€3.

Theorem 1. Every vector measure m: X—X can be extended to uniquely a

vector measure m,: o()—X if and only if
(0) for every sequence {E.} of mutually disjoint sets of 3 we have lim|m(Ea)]=0.

Proof. The necessity is obvious.
Sufficiency. By Brooks ([18] Theorem 2) there exists a positive bounded measure
v on > such that l(iAmHom(A)ll=O and v(E)sm(E) (E€X). By Halmos ([9] §13.
vid)—

Theorem A) v has a unique extension ¥ on ¢(). The boundedness of 5 is obvious.
We put p(E,, E;)=v(E,dE;)=5(E,— E,)+3(E,—E,) for every sets E;, E;€3¢(3). Then
we can consider on ¢(2)) the uniform structure = defined by the semi-distance p
and by Halmos ([9] §13. Theorem D) X co(X) is dense in ¢(3) for the topology
induced by 7. Since ;l%‘r‘r)xllo m(A)|l=yl§g1_]lgn(A)ll=O, A€ 3, by Dinculeanu and Kluvanek

([4] Theorem 2) m can be extended to a vector measure m;: ¢(3)—X such that
;EI)llollml(A)ll=O, Aea(D).

The uniqueness of m, is immediate by Dinculeanu ([2] § 2. Proposition 6).
Corollary. The condition (0) is equivalent to

(0") for every sequence {Ea} of mutually disjoint sets of 3 the series 21 m(En)
converges unconditionally.

Proof. (0')=>(0). It is obvious.
(00=>(0’). By Theorem 1 m has an unique extension m,: ¢(3)—X. For every

sequence {E.} of mutually disjoint sets of > we have m,( QIE,.)= i_o‘.lm(En) and

8

lm(En) converges unconditionally.

n

I

Example 1. Every finite non-negative measure on 3, satisfies the condition

(0) of [Theorem 1.

Example 2. If m has finite variation, then m satisfies the condition (0) of

[Theorem 1. .
Example 3. (Dinculeanu and Kluvanek [4]) Let S be an uncountable infinite
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set, > the field consisting of the finite subsets of S and their complements and
X the Banach space of bounded function on S with the sup-norm. Define
m: —X by m(A)=¢4 if A is finite and m(A)=—¢s-4 if S—A is finite (where
¢4 is the characteristic function of set 4). Then m is a vector measure. If S—A
is finite, then there exists a sequence {as} of points of A. Since [[m({@s})|=I¢s,ll
=1 (n=1, 2, - - -), m not satisfies the condition (0).

Theorem 2. Let R be a ring and o(R) the o-ring generated by R. Every
vector measure m: R—X can be extended to uniquely m,: ¢(R)—>X if and only if
one of the following conditions is satisfied.

(1) there exists a positive bounded measure v on R such thatv(l‘z;)n_z“l)lm(A) =0, A€eR

(Dinculeanu and Kluvanek [4] Theorem 2, Corollary 1).
(2) wm satisfies the condition (0) of Theorem 1.
(3) the set {m(E): E€ R} is conditionally weakly compact (Kluvanek [12] Theorem

4.1).

Proof. The necessity of (1) is obvious.
(1)==1(2). Since v satisfies the condition (0) and (l‘iir)nﬂm(A) |=0, it is obvious.

(2)=>(3). It is obvious from Brooks Theorem 1, [Corollary). The sufficiency
of (3) is obvious from Kluvanek Theorem 4.1).

3. Vector measures on a ring

Definition 2. A non-void class ¢ of subsets of S is called a d-ring if
(1) A, Bep—AUBe€¢p, A—Be€o.

(2) An€on=1,2,- - ')éél‘q”e""

Let R be a ring of subsets of S. Then there exists the smallest d-ring ¢(R) con-
taining R (Dinculeanu §1. Proposition 6). The d-ring ¢(K) is called the d-ring
generated by R.

Let X be a Banach space and X* its dual.

Theorem 3. Ewvery vector measure m: R—>X can be extended to uniquely a
vector measure m,: ¢(R)—>X if and only if one of the following conditions is
satisfied.

(I) for every set E€R there exists a finite non-negative measure ve on R such
that yllz;r((j)len(A)ll =0, AcC E, Ae R (Dinculeanu and Kluvanek [4] Theorem 2,

Corollary 2).
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(2) for every set E<sR and every number e>0 there exists a positive integer n
such that if Es€ R, EiCE (i=1, 2, - - -, n) and EiN E;=¢(i = j), then there exists
a positive integer i, (1=i,=n) such that |m(E:)|<e (Takahashi [16]1 Theorem 1I).

(3) for every set E€ R and every sequence {Ex} of mutually disjoint sets of R with
E.CE (n=1, 2, +++) we have iz’_ﬁllm(En)ll =0.

(4) for every set E€R the set {im(F): FCE, Fe R} is conditionally weakly compact
in X (Kluvanek [13] Theorem 5.3).

Proof. By Dinculeanu and Kluvanek Theorem 2, (1) is the
necessary (and sufficient) condition in order that m has a countably additive ex-
tension m;: ¢(R)—X. _

(1)=(2). Since ve is finite, vr satisfies the condition (2). Then m satisfies the
condition (2), since lim|m(A)|=0, ACE, AeR.

vE 4,0

(2)=>(3). It is obvious.

(3)=—(4). For every set E€ R we put 2 (E)={F: FCE, FeR}.

Then 3(E) is a field of subsets of E and m satisfies the condition (0) of [Theorem 1.
Therefore m can be extended to uniquely a vector measure m;: ¢(32(E))—X. By
Bartle, Dunford and Schwartz ([1] Theorem 2.9) the set {m;(4): Aed(Z (E))} is
conditionally weakly compact and hence the set {m(A): Ae 3(E)} so is.

The sufficiency of (4) is immediate by Kluvanek ([13] Theorem 5.3).

Corollary. The following is equivalent to the condition (3) of Theorem 3,
(3’) for every set E€ R and every sequence {En} of mutually disjoint sets of R with

EwcE (n=1, 2, - - -) the series ilm(En) conver ges unconditionally.

The proof is obvious.

We shall now consider the extension theorem in the case X is a special Banach
space.

Theorem 4. Let X be a Banach space such that
(A) if {xa} is a sequence in X whose norms have a positive lower bound, then
there exists for arbitrary positive number K a finite subsequence {xn,} such that
| Zrxn, | > K.
Then m: R—X has a countably additive extension m,: ¢(R)—>X if and only if m
s locally bounded over R, that is, for every set E€ R m(E)<-+ (Gould [8] § 4).

Proof. Necessity. Since for each x*e X* x*m, is a scalar measure of the
d-ring ¢(R), by Dinculeanu ([2] § 3, Proposition 14) we have #*,(E)=sup {|x*m,(4)|:
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ACE, Ae¢(R)}<+oo for every set E€¢(R). By uniform boundedness theorem
mi(E)<4oo. Therefore n(E)<m,(E)<-+oo for every set E€R. '

Sufficiency. We shall show that the locally boundedness of m implies (3) of
Theorem 3. If it is false, then there exist a set E€ R, a number ¢>0 and a
sequence {Ex} of mutually disjoint sets of R with E.CE (n=1, 2, --*) such that
lm(Ex)||>¢ for all . By hypothesis (4) for any positive number K there exists
a finite subsequence {m(Ea,)} such that [ X m(Ew)l|> K. Since |3 m(Ex,)||

=|lm(U E,)| > K, we have m(E)=+o0, Therefore we have a contradiction.

Corollary 1. Let X be a weakly complete Banach space. Then m has a
countably additive extension m,: ¢(R)—>X if and only if for every x* € X* the scalar
measure x*m has finile variation x*m.

Proof. Necessity. By Gould Theorem 3.1) X satisfies the hypothesis (A)
in By Dinculeanu ([2]§ 3. Proposition 7) #*m(E)=%*m(E)<4-i*m(E)
<4-|x*||-m(E). Since m(E)<-+o from the above theorem, we have ¥*7(E) < + oo,
Sufficiency. It is obvious from the inequality |x*m(E)|=x*m(E) and the uniform
boundedness theorem.

Corollary 2. If X is a reflexive Banach space and sup {|{m(E)||:E€ R} <+ oo,
then m has a countably additive extension m.: ¢(R)—>X (Fox [5] Theorem).

Proof. Since X is reflexive, X is weakly complete. It is obvious, since
F*m(A)=4-|x*|-sup {[m(E)|: E€eR}<+oo.

The author wishes to express his heart-felt thanks to Professor I. Kluvanek
for his kind encouragement.
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