EXTENSIONS OF VECTOR MEASURES

By

SACHIO OHBA

(Received November 7, 1971)

1. Introduction.

A fundamental problem in measure theory is that of finding conditions under which countably additive measure on a ring or a field R can be extended to a countably additive measure on a wider class of sets containing R. In case m is a non-negative measure, this problem is essentially solved by the Carathéodory process of generating an outer measure m^* and taking the family of m^* -measurable sets (see Halmos [9] § 10—§ 13). In recent years many authors have considered the extension ploblem when the range of m is contained in a vector space X or a topological group X. If X is a Banach space, then there are solutions due to Gǎinǎ [7] (in the case m has finite variation), Kluvanek [11], [12] Dinculeanu and Kluvanek [4] (in the case m is absolutely continuous with respect to a non-negative measure), Gould [8] (in the case m is locally bounded and X satisfies axiom (A), he has generalized the notions of outer measure and measurable sets). If X is a commutative complete topological group and m is of bounded variation, then there is a very nice extension theorem by Takahashi [16].

In this paper, we shall obtain another condition (Theorem 1 and Theorem 3 (3)) which is equivalent to other ones already considered. Now we shall consider the extension theorem under which X is a special Banach space.

2. Extensions of vector measures.

Let S be a set and Σ a field (algebra) of subsets of S. Then there exists the smallest σ -field $\sigma(\Sigma)$ containing Σ . The σ -field $\sigma(\Sigma)$ is called the σ -field generated by Σ .

Let X be a Banach space and X^* its dual.

Definition 1. A set function m defined on Σ with values in X is called a vector measure if for every sequence $\{E_n\}$ of mutually disjoint sets of Σ with $E = \bigcup_{n=1}^{\infty} E_n \in \Sigma$ we have $m(E) = \sum_{n=1}^{\infty} m(E_n)$.

SACHIO OHBA

For every set $E \subseteq S$ we put $\tilde{m}(E) = \sup \{ ||m(A)|| : A \subseteq E, A \in \Sigma \}$. Then $\tilde{m}(E)$ has the following properties:

- (i) $0 \leq \tilde{m}(E) \leq +\infty$.
- (ii) $E_1 \subset E_2 \Longrightarrow \tilde{m}(E_1) \le \tilde{m}(E_2)$.
- (iii) $\tilde{m}(E_1 \cup E_2) \leq \tilde{m}(E_1) + \tilde{m}(E_2)$ for every sets $E_1, E_2 \in \Sigma$.

Theorem 1. Every vector measure $m: \sum \to X$ can be extended to uniquely a vector measure $m_1: \sigma(\Sigma) \to X$ if and only if

(0) for every sequence $\{E_n\}$ of mutually disjoint sets of Σ we have $\lim_{n \to \infty} ||m(E_n)|| = 0$.

Proof. The necessity is obvious.

Sufficiency. By Brooks ([18] Theorem 2) there exists a positive bounded measure ν on Σ such that $\lim_{\nu(A)\to 0} ||m(A)|| = 0$ and $\nu(E) \leq \tilde{m}(E)$ $(E \in \Sigma)$. By Halmos ([9] § 13. Theorem A) ν has a unique extension $\bar{\nu}$ on $\sigma(\Sigma)$. The boundedness of $\bar{\nu}$ is obvious. We put $\rho(E_1, E_2) = \bar{\nu}(E_1 \Delta E_2) = \bar{\nu}(E_1 - E_2) + \bar{\nu}(E_2 - E_1)$ for every sets $E_1, E_2 \in \sigma(\Sigma)$. Then we can consider on $\sigma(\Sigma)$ the uniform structure τ defined by the semi-distance ρ and by Halmos ([9] § 13. Theorem D) $\Sigma \subset \sigma(\Sigma)$ is dense in $\sigma(\Sigma)$ for the topology induced by τ . Since $\lim_{\bar{\nu}(A)\to 0} ||m(A)|| = \lim_{\nu(A)\to 0} ||m(A)|| = 0$, $A \in \Sigma$, by Dinculeanu and Kluvanek ([4] Theorem 2) m can be extended to a vector measure $m_1: \sigma(\Sigma) \to X$ such that $\lim_{\bar{\nu}(A)\to 0} ||m_1(A)|| = 0$, $A \in \sigma(\Sigma)$.

The uniqueness of m_1 is immediate by *Dinculeanu* ([2] § 2. Proposition 6).

Corollary. The condition (0) is equivalent to

(0') for every sequence $\{E_n\}$ of mutually disjoint sets of Σ the series $\sum_{n=1}^{\infty} m(E_n)$ converges unconditionally.

Proof. $(0') \Longrightarrow (0)$. It is obvious.

 $(0) \Longrightarrow (0')$. By Theorem 1 *m* has an unique extension $m_1: \sigma(\Sigma) \to X$. For every sequence $\{E_n\}$ of mutually disjoint sets of Σ we have $m_1(\bigcup_{n=1}^{\infty} E_n) = \sum_{n=1}^{\infty} m(E_n)$ and $\sum_{n=1}^{\infty} m(E_n)$ converges unconditionally.

Example 1. Every finite non-negative measure on Σ satisfies the condition (0) of Theorem 1.

Example 2. If m has finite variation, then m satisfies the condition (0) of Theorem 1.

Example 3. (Dinculeanu and Kluvanek [4]) Let S be an uncountable infinite

62

set, Σ the field consisting of the finite subsets of S and their complements and X the Banach space of bounded function on S with the sup-norm. Define $m: \Sigma \to X$ by $m(A) = \varphi_A$ if A is finite and $m(A) = -\varphi_{S-A}$ if S-A is finite (where φ_A is the characteristic function of set A). Then m is a vector measure. If S-A is finite, then there exists a sequence $\{a_n\}$ of points of A. Since $||m(\{a_n\})|| = ||\varphi_{a_n}|| = 1$ $(n=1, 2, \cdots)$, m not satisfies the condition (0).

Theorem 2. Let R be a ring and $\sigma(R)$ the σ -ring generated by R. Every vector measure m: $R \rightarrow X$ can be extended to uniquely m_1 : $\sigma(R) \rightarrow X$ if and only if one of the following conditions is satisfied.

(1) there exists a positive bounded measure ν on R such that $\lim_{\nu(A)\to 0} ||m(A)||=0$, $A \in R$

(Dinculeanu and Kluvanek [4] Theorem 2, Corollary 1).

(2) m satisfies the condition (0) of Theorem 1.

(3) the set $\{m(E): E \in R\}$ is conditionally weakly compact (Kluvanek [12] Theorem 4.1).

Proof. The necessity of (1) is obvious. (1) \Longrightarrow (2). Since ν satisfies the condition (0) and $\lim_{\nu(A)\to 0} ||m(A)||=0$, it is obvious. (2) \Longrightarrow (3). It is obvious from *Brooks* ([18] Theorem 1, Corollary). The sufficiency of (3) is obvious from *Kluvanek* ([12] Theorem 4.1).

3. Vector measures on a ring

Definition 2. A non-void class φ of subsets of S is called a δ -ring if (1) A, $B \in \varphi \Longrightarrow A \cup B \in \varphi$, $A - B \in \varphi$.

(2) $A_n \in \varphi(n=1, 2, \cdots) \Longrightarrow \bigcap_{n=1}^{\infty} A_n \in \varphi.$

Let R be a ring of subsets of S. Then there exists the smallest δ -ring $\varphi(R)$ containing R (*Dinculeanu* [2] §1. Proposition 6). The δ -ring $\varphi(R)$ is called the δ -ring generated by R.

Let X be a Banach space and X^* its dual.

Theorem 3. Every vector measure $m: R \rightarrow X$ can be extended to uniquely a vector measure $m_1: \varphi(R) \rightarrow X$ if and only if one of the following conditions is satisfied.

(1) for every set $E \in R$ there exists a finite non-negative measure ν_E on R such that $\lim_{\nu_E(A)\to 0} ||m(A)|| = 0$, $A \subset E$, $A \in R$ (Dinculeanu and Kluvanek [4] Theorem 2, Corollary 2).

SACHIO OHBA

(2) for every set $E \in R$ and every number $\varepsilon > 0$ there exists a positive integer n such that if $E_i \in R$, $E_i \subset E$ ($i=1, 2, \dots, n$) and $E_i \cap E_j = \phi(i \neq j)$, then there exists a positive integer i_0 ($1 \le i_0 \le n$) such that $||m(E_{i_0})|| < \varepsilon$ (Takahashi [16] Theorem 1). (3) for every set $E \in R$ and every sequence $\{E_n\}$ of mutually disjoint sets of R with $E_n \subset E$ ($n=1, 2, \dots$) we have $\lim ||m(E_n)|| = 0$.

(4) for every set $E \in R$ the set $\{m(F): F \subset E, F \in R\}$ is conditionally weakly compact in X (Kluvanek [13] Theorem 5.3).

Proof. By Dinculeanu and Kluvanek ([4] Theorem 2, Corollary 2) (1) is the necessary (and sufficient) condition in order that m has a countably additive extension $m_1: \varphi(R) \rightarrow X$.

(1) \Longrightarrow (2). Since ν_E is finite, ν_E satisfies the condition (2). Then *m* satisfies the condition (2), since $\lim_{k \to \infty} ||m(A)|| = 0$, $A \subset E$, $A \in R$.

 $(2) \Longrightarrow (3)$. It is obvious.

(3) \Longrightarrow (4). For every set $E \in R$ we put $\sum (E) = \{F: F \subset E, F \in R\}$.

Then $\Sigma(E)$ is a field of subsets of E and m satisfies the condition (0) of Theorem 1. Therefore m can be extended to uniquely a vector measure $m_1: \sigma(\Sigma(E)) \rightarrow X$. By *Bartle, Dunford* and *Schwartz* ([1] Theorem 2.9) the set $\{m_1(A): A \in \sigma(\Sigma(E))\}$ is conditionally weakly compact and hence the set $\{m(A): A \in \Sigma(E)\}$ so is. The sufficiency of (4) is immediate by *Kluvanek* ([13] Theorem 5.3).

Corollary. The following is equivalent to the condition (3) of Theorem 3, (3') for every set $E \in \mathbb{R}$ and every sequence $\{E_n\}$ of mutually disjoint sets of \mathbb{R} with $E_n \subset E$ $(n=1, 2, \cdots)$ the series $\sum_{n=1}^{\infty} m(E_n)$ converges unconditionally.

The proof is obvious.

We shall now consider the extension theorem in the case X is a special Banach space.

Theorem 4. Let X be a Banach space such that

(A) if $\{x_n\}$ is a sequence in X whose norms have a positive lower bound, then there exists for arbitrary positive number K a finite subsequence $\{x_{n_r}\}$ such that $\|\sum_r x_{n_r}\| > K$.

Then m: $R \rightarrow X$ has a countably additive extension m_1 : $\varphi(R) \rightarrow X$ if and only if m is locally bounded over R, that is, for every set $E \in R \ \tilde{m}(E) < +\infty$ (Gould [8] § 4).

Proof. Necessity. Since for each $x^* \in X^* x^* m_1$ is a scalar measure of the δ -ring $\varphi(R)$, by *Dinculeanu* ([2] § 3, Proposition 14) we have $\tilde{x}^* \tilde{m}_1(E) = \sup \{|x^* m_1(A)|:$

 $A \subset E$, $A \in \varphi(R)$ < + ∞ for every set $E \in \varphi(R)$. By uniform boundedness theorem $\tilde{m}_1(E) < +\infty$. Therefore $\tilde{m}(E) \leq \tilde{m}_1(E) < +\infty$ for every set $E \in R$.

Sufficiency. We shall show that the locally boundedness of m implies (3) of Theorem 3. If it is false, then there exist a set $E \in R$, a number $\varepsilon > 0$ and a sequence $\{E_n\}$ of mutually disjoint sets of R with $E_n \subset E$ $(n=1, 2, \cdots)$ such that $||m(E_n)|| > \varepsilon$ for all n. By hypothesis (A) for any positive number K there exists a finite subsequence $\{m(E_{n_r})\}$ such that $||\sum_r m(E_{n_r})|| > K$. Since $||\sum_r m(E_{n_r})||$

 $= ||m(\bigcup_r E_{n_r})|| > K$, we have $\tilde{m}(E) = +\infty$. Therefore we have a contradiction.

Corollary 1. Let X be a weakly complete Banach space. Then m has a countably additive extension $m_1: \varphi(R) \rightarrow X$ if and only if for every $x^* \in X^*$ the scalar measure x^*m has finite variation $\overline{x}^*\overline{m}$.

Proof. Necessity. By Gould ([8] Theorem 3.1) X satisfies the hypothesis (A) in Theorem 4. By Dinculeanu ([2] § 3. Proposition 7) $\tilde{x}^*\tilde{m}(E) \leq \bar{x}^*\tilde{m}(E) \leq 4 \cdot \tilde{x}^*\tilde{m}(E) \leq 4 \cdot \tilde{x}^*\tilde{m}(E)$. Since $\tilde{m}(E) < +\infty$ from the above theorem, we have $\bar{x}^*\bar{m}(E) < +\infty$. Sufficiency. It is obvious from the inequality $|x^*m(E)| \leq \bar{x}^*\bar{m}(E)$ and the uniform boundedness theorem.

Corollary 2. If X is a reflexive Banach space and $\sup \{||m(E)||: E \in R\} < +\infty$, then m has a countably additive extension $m_1: \varphi(R) \rightarrow X$ (Fox [5] Theorem).

Proof. Since X is reflexive, X is weakly complete. It is obvious, since $\bar{x}*\bar{m}(A) \leq 4 \cdot ||x^*|| \cdot \sup \{||m(E)||: E \in R\} < +\infty$.

The author wishes to express his heart-felt thanks to Professor I. Kluvanek for his kind encouragement.

REFERENCES

- R. G. Bartle, N. Dunford and J. T. Schwartz, Weak compactness and vector measures, Canad. J. Math. 7 (1955) 289-305.
- [2] N. Dinculeanu, Vector Measures (Pergamon Press) New York. 1967.
- [3] N. Dinculeanu, Contribution of Romanian mathematicians to the measure and integration theory, Revue Roumaine Math. pures et appl. 11 (1966) 1075-1102.
- [4] N. Dinculeanu and I. Kluvanek, On vector measures, Proc. London Math. Soc. 17 (1967) 505-512.
- [5] G. Fox, Extensions of a bounded vector measure with values in reflexive Banach space, Canad. Math. Bull. 10 (1967) 525-529.
- [6] G. Fox, Inductive extension of a vector measure under a convergence condition, Canad. J. Math. 20 (1968) 1246-1255.
- [7] S. Găină, Extension of vector measures, Revue Roumaine Math. pures et appl. 8 (1963) 151-154.

SACHIO OHBA

- [8] G.G. Gould, Extensions of vector-valued measures, Proc. London Math. Soc. 16 (1966) 685-704.
- [9] P.R. Halmos, Measure Theory, New York. 1950.
- [10] J.E. Huneycutt. Jr, Extensions of abstract-valued set functions, Trans. Amer. Math. Soc. 141 (1969) 505-513.
- [11] I. Kluvanek, On vector measures (Russian), Mat. Fys. Časopis. 7 (1957) 186-192.
- [12] I. Kluvanek, On the theory of vector measures (Russian), Mat. Fys. Časopis. 11 (1961) 173-191.
- [13] I. Kluvanek, Intégrale vectorielle de Daniell, Mat. Fys. Casopis. 15 (1965) 146-161.
- [14] S. Ohba, Extensions of vector measures (Japanese), Sugaku. 24 (1972), 215-217.
- [15] M. Sion, Outer measures with values in topological group, Proc. London Math. Soc. 19 (1969) 89-106.
- [16] M. Takahashi, On topological-additive-group-valued measures, Proc. Japan Acad. 42 (1966) 330-334.
- [17] M. Takahashi, An extension of a generalized measure, Proc. Japan Acad. 42 (1966) 710-713.
- [18] J. J. Uhl. Jr., Extensions and decompositions of vector measures, J. London Math. Soc. 3 (1971) 672-676.
- [19] J.K. Brooks, On the existence of a control measure for strongly bounded vector measures, Bull. Amer. Math. Soc. 77 (1971) 999-1001.

Kanagawa University Rokkaku-bashi, Kanagawa-ku Yokohama, Japan