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1. Introduction.

A fundamental problem in measure theory is that of finding conditions under
which countably additive measure on a ring or a field $R$ can be extended to a
countably additive measure on a wider class of sets containing $R$ . In case $m$ is
a non-negative measure, this problem is essentially solved by the Carath\’eodory

process of generating an outer measure $m^{*}$ and taking the family of $m^{*}$-measurable
sets (see Halmos [91 \S 10--\S 13). In recent years many authors have considered
the extension ploblem when the ran$ge$ of $m$ is contained in a vector space $X$ or a
topological group $X$. If $X$ is a Banach space, then there are solutions due to
Gaina [7] (in the case $m$ has finite variation), Kluvanek [111, [121 Dinculeanu and
Kluvanek [4] (in the case $m$ is absolutely continuous with respect to a non-negative
measure), Gould [8] (in the case $m$ is locally bounded and $X$ satisfies axiom (A),

he has generalized the notions of outer measure and measurable gets). If $X$ is a
commutative compl\‘ete topological group and $m$ is of bounded variation, then there
is a very nice extension theorem by Takahashi [161.

In this paper, we shall obtain another condition (Theorem 1 and Theorem 3 (3))

which is equivalent to other ones already considered. Now we shall consider the
extension theorem under which $X$ is a special Banach space.

2. Extensions of vector measures.
Let $S$ be a set and $\Sigma$ a field (algebra) of subsets of $S$ . Then there exists

the smallest $\sigma- field\sigma(\sum)$ containing $\sum$ . The $\sigma- field\sigma(\sum)$ is called the $\sigma- field$

generated by $\sum$ .
Let $X$ be a Banach space and $X^{*}$ its dual.

Definition 1. A set function $m$ defined on $\sum$ with values in $X$ is called a
vector measure if for every sequence $\{E_{n}\}$ of mutually disioint sets of $\Sigma$ with

$ E=\bigcup_{n=1}^{\infty}E_{l}e\Sigma$ we have $m(E)=\sum_{=1}^{\infty}m(E_{n})$ .
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For every set $E\subset S$ we put $\tilde{m}(E)=\sup$ { $\Vert m(A)\Vert$ : $A\subset E,$ A $e\sum$ }. Then $\tilde{m}(E)$

has the following properties:
(i) $ 0\leqq\tilde{m}(E)\leqq+\infty$ .
(ii) $E_{1}\subset E_{2}\Rightarrow\tilde{m}(E_{1})\leqq\tilde{m}(E_{2})$ .
(iii) $\tilde{m}(E_{1}\cup E_{2})\leqq\tilde{m}(E_{1})+\tilde{m}(E_{2})$ for every sets $E_{1},$ $ E_{2}e\sum$ .
Theorem 1. Every vector measure $m:\Sigma\rightarrow X$ can be extended to uniquely a

vector measure $m_{1}$ : $\sigma(\sum)\rightarrow X$ if and only if
(0) for every sequence $\{E_{n}\}$ of mutually disjoint sets of $\Sigma$ we have $\lim_{n\rightarrow\infty}\Vert m(E_{n})\Vert=0$ .

Proof. The necessity is obvious.
Sufficiency. By Brooks ([181 Theorem 2) there exists a positive bounded measure
$\nu$ on $\sum$ such that $\lim_{\nu(4)}\Vert_{0}m(A)\Vert\rightarrow=0$ and $\nu(E)\leqq\tilde{m}(E)(Ee\sum)$ . By Halmos ([91 \S 13.

Theorem A) $\nu$ has a unique extension $\overline{\nu}$ on $\sigma(\Sigma)$ . The boundedness of $\overline{\nu}$ is obvious.
We put $\rho(E_{1}, E_{2})=\overline{\nu}(E_{1}\Delta E_{2})=\overline{\nu}(E_{1}-E_{2})+\overline{\nu}(E_{2}-E_{1})$ for every sets $E_{1},$ $E_{2}\in\sigma(\sum)$ . Then
we can consider on $\sigma(\Sigma)$ the uniform structure $\tau$ defined by the semi-distance $\rho$

and by Halmos ([91 \S 13. Theorem D) $\Sigma\subset\sigma(\Sigma)$ is dense in $\sigma(\Sigma)$ for the topology
induced by $\tau$ . $Since_{\frac{1}{\nu}}im_{J}\Vert m(A)\Vert=\lim_{)(A\rightarrow 0}\Vert m(A)\Vert=0,$

$A$$e\sum\nu(A\rightarrow 0$ by Dinculeanu and Kluvanek

([41 Theorem 2) $m$ can be extended to a vector measure $m_{1}$ : $\sigma(\Sigma)\rightarrow X$ such that
$\lim_{\overline{\nu}(A)\rightarrow 0}\Vert m_{1}(A)\Vert=0,$

$Ae\sigma(\Sigma)$ .
The uniqueness of $m_{1}$ is immediate by Dinculeanu ([21 \S 2. Proposition 6).

Corollary. The condition (0) is equivalent to
$(0^{\prime})$ for every sequence $\{E_{n}\}$ of mutually disjoint sets of $\Sigma$ the series $\sum_{*=1}^{\infty}m(E_{n})$

converges unconditionally.

Proof. $(0^{\prime})\Rightarrow(0)$ . It is obvious.
(0) $\Rightarrow(0^{\prime})$ . By $Threm1m$ has an unique extension $m_{1}$ : $\sigma(\sum)\rightarrow X$. For every

sequence $\{E_{n}\}$ of mutually $dis\dot{j}oint$ sets of $\Sigma$ we have $m_{1}(\bigcup_{n=1}^{\infty}E_{n})=\sum_{n=1}^{\infty}m(E_{n})$ and

$\sum_{n=\uparrow}^{\infty}m(E_{n})$ converges unconditionally.

Example 1. Every finite non-negative measure on $\sum$ satisfies the condition
(0) of Theorem 1.

Example 2. If $m$ has finite variation, then $m$ satisfies the condition (0) of
Theorem 1.

Example 3. (Dinculeanu and Kluvanek [4]) Let $S$ be an uncountable infinite
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set, $\sum$ the field consisting of the finite subsets of $S$ and their complements and
$X$ the Banach space of bounded function on $S$ with the sup-norm. Define
$m:\sum\rightarrow X$ by $m(A)=\varphi_{A}$ if $A$ is finite and $m(A)=-\varphi_{S-A}$ if $S-A$ is finite (where

$\varphi_{A}$ is the characteristic function of set $A$). Then $m$ is a vector measure. If $S-A$

is finite, then there exists a sequenoe $\{a_{n}\}$ of points of $A$ . Since $\Vert m(\{a_{n}\})\Vert=\Vert\varphi_{a_{n}}\Vert$

$=1(n=1,2, \cdot\cdot),$ $m$ not satisfies the condition (0).

Theorem 2. Let $R$ be a ring and $a(R)$ the a-ring generated by R. Every

vector measure $m:R\rightarrow X$ can be extended to uniquely $m_{1}$ : $\sigma(R)\rightarrow X$ if and only if
one of the following conditions is satisfied.
(1) there exists a positive bounded measure $\nu$ on $R$ such $that\lim\Vert m(A)\Vert\nu(A)\rightarrow 0=0,$ A $eR$

(Dinculeanu and Kluvanek [4] Theorem 2, Corollary 1).

(2) $m$ satisfies the condition (0) of Theorem 1.
(3) the set $\{m(E):EeR\}$ is conditionally weakly compact (Kluvanek [12l Theorem
4.1).

Proof. The necessity of (1) is obvious.
(1) $\Rightarrow(2)$ . Since $\nu$ satisfies the condition (0) $and\lim\Vert m(A)\nu(A)\rightarrow 0\Vert=0$ , it is obvious.

(2) $\rightarrow(3)$ . It is obvious from Brooks ([18] $Threm1$ , Corollary). The sufficiency

of (3) is obvious from Kluvanek ([12] Theorem 4.1).

3. Vector measures on a ring

Definition 2. $A$ non-void class $\varphi$ of subsets of $S$ is called a $\delta$ -ring if
(1) $A$ , Be $\varphi^{\underline{-\backslash }}A\cup Be\varphi,$ $ A-Be\varphi$ .
(2) $ A_{n}e\varphi(n=1,2, \cdot\cdot)\Rightarrow\bigcap_{*=1}^{\infty}A_{n}e\varphi$ .
Let $R$ be a ring of subsets of $S$ . Then there exists the smallest $\delta\cdot ring\varphi(R)$ con-
taining $R$ (Dinculeanu [2] \S 1. Proposition 6). The $\delta$ -ring $\varphi(R)$ is called the $\delta$ -ring
generated by $R$.
Let $X$ be a Banach space and $X^{*}$ its dual.

Theorem 3. Every vector measure $m:R\rightarrow X$ can be extended to uniquely a
vector measure $m_{1}$ : $\varphi(R)\rightarrow X$ if and only if one of the following conditions is
satisfied.
(1) for every set $EeR$ there exists a finite non-negative measure $\nu_{B}$ on $R$ such
that $\nu_{E}(A)\rightarrow 0\lim||m(A)\Vert=0,$

$A\subset E,$ A $eR$ (Dinculeanu and Kluvanek [4] Theorem 2,

Corollary 2).
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(2) for every set $E\epsilon R$ and every number $\epsilon>0$ there exists a positive integer $n$

such that if $E_{\ell}eR,$ $E_{i}\subset E$ ($i=1,2$ , , n) and $E_{i}\cap E_{j}=\phi(i\neq j)$ , then there exists
a positive integer $i_{0}(1\leqq i_{0}\leqq n)$ such that $\Vert m(E:_{0})||<\epsilon$ (Takahashi [16] Theorem 1).

(3) for every set $EeR$ and every sequence $tE_{n}I$ of mutually disjoint sets of $R$ with
$E_{*}\subset E(n=1,2, \cdots)$ we have $\lim_{n\rightarrow\infty}\Vert m(E_{n})\Vert=0$ .
(4) for every set $EeR$ the set $\{m(F):F\subset E, FeR\}$ is conditionally weakly compact
in $X$ (Kluvanek [13] Theorem 5.3).

Proof. By Dinculeanu and Kluvanek ([4] Theorem 2, Corollary 2) (1) is the
necessary (and sufficient) condition in order that $m$ has a countably additive ex-
tension $m_{1}$ : $\varphi(R)\rightarrow X$.
(1) $\Rightarrow(2)$ . Since $\nu_{E}$ is finite, $\nu_{E}$ satisfies the condition (2). Then $m$ satisfles the
condition (2), $since\lim_{\backslash }||m(A)\Vert=0\nu_{E}A_{1}\rightarrow 0A\subset E,$ A $eR$ .
(2) $\Rightarrow(3)$ . It is obvious.
(3) $\Rightarrow(4)$ . For every set $EeR$ we put $\sum(E)=\{F;F\subset E, FeR\}$ .
Then $\sum(E)$ is a field of subsets of $E$ and $m$ satisfies the condition (0) of Theorem 1.
Therefore $m$ can be extended to uniquely a vector measure $m_{1}$ : $a(\sum(E))\rightarrow X$. By
Bartle, Dunford and Schwartz ([11 Theorem 2.9) the set $\{m_{1}(A):A\in\sigma(\sum(E))\}$ is
conditionally weakly compact and hence the set $\{m(A);Ae\sum(E)\}$ so is.
The sufficiency of (4) is immediate by Kluvanek ([131 Theorem 5.3).

Corollary. The following is equivalent to the condition (3) of Theorem 3,
$(3^{\prime})$ for every set $EeR$ and every sequence $\{E_{n}\}$ of mutually disjoint sets of $R$ with

$E_{n}\subset E(n=l, 2, \cdot\cdot)$ the series $\sum_{n\approx 1}^{\infty}m(E_{n})$ converges unconditionally.

The proof is obvious.
We shall now consider the extension theorem in the case $X$ is a special Banach
space.

Theorem 4. Let $X$ be a Banach sPace such that
$(A)$ if $\{x_{n}\}$ is a sequence in $X$ whose norms have a Positive lower bound, then
there exists for arbitrary Positive number $K$ a finite subsequence $\{x_{n_{r}}\}$ such that
$||\sum_{r}x_{n_{r}}\Vert>K$.
Then $m:R\rightarrow X$ has a countably additive extension $m_{1}$ : $\varphi(R)\rightarrow X$ if and only if $m$

is locally bounded over $R$, that is, for every set $ EeR\tilde{m}(E)<+\infty$ (Gould [8] \S 4).

Proof. Necessity. Since for each $x^{*}eX^{*}x^{*}m_{1}$ is a scalar measure of the
$\delta$ -ring $\varphi(R)$ , by Dinculeanu ([21 \S 3, Proposition 14) we have $\tilde{x}^{*}\tilde{m}_{1}(E)=\sup\{|x^{*}m_{1}(A)|$ :
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$A\subset E,$ A $e\varphi(R)$ } $<+\infty$ for every set $Ee\varphi(R)$ . By uniform boundedness theorem
$\tilde{m}_{1}(E)<+\infty$ . Therefore $\overline{m}(E)\leqq\tilde{m}_{1}(E)<+\infty$ for every set $EeR$.
Sufficiency. We shall show that the locally boundedness of $m$ implies (3) of
Theorem 3. If it is false, then there exist a set $EeR$ , a number $\epsilon>0$ and a
sequence $\{E_{n}\}$ of mutually disjoint sets of $R$ with $E_{n}\subset E(n=1,2, \cdots)$ such that
$\Vert m(E_{n})\Vert>\epsilon$ for all $n$ . By hypothesis $(A)$ for any positive number $K$ there exists
a finite subsequence $\{m(E_{n_{r}})\}$ such that $\Vert\sum_{r}m(E_{n_{r}})\Vert>K$. Since $\Vert\sum_{f}m(E_{n_{r}})||$

$=\Vert m(\bigcup_{r}E_{n_{r}})\Vert>K$, we have $\tilde{m}(E)=+\infty$ . Therefore we have a contradiction.

Corollary 1. Let $X$ be a weakly complete Banach space. Then $m$ has a
countably additive extension $m_{1}$ : $\varphi(R)\rightarrow X$ if and only if for every $x^{*}eX^{*}the$ scalar
measure $x^{*}m$ has finile variation $\overline{x}^{*}\overline{m}$ .

Proof. Necessity. By Gould ([8] Theorem 3.1) $X$ satisfies the hypothesis $(A)$

in Theorem 4. By Dinculeanu ([2] \S 3. Proposition 7) $\tilde{x}^{*}\tilde{m}(E)\leqq\overline{x}^{*}\overline{m}(E)\leqq 4\cdot\tilde{x}^{*}\tilde{m}(E)$

$\leqq 4\cdot\Vert x^{*}\Vert\cdot\tilde{m}(E)$ . Since $\tilde{m}(E)<+\infty$ from the above theorem, we have $\overline{x}^{*}\overline{m}(E)<+\infty$ .
Sufficiency. It is obvious from the inequality $|x^{*}m(E)|\leqq\overline{x}^{*}\overline{m}(E)$ and the uniform
boundedness theorem.

Corollary 2. If $X$ is a reflexive Banach space and $ sup\{\Vert m(E)\Vert:EeR\}<+\infty$ ,

then $m$ has a countably additive extension $m_{1}$ : $\varphi(R)\rightarrow X$ (Fox [5] Theorem).

Proof. Since $X$ is reflexive, $X$ is weakly complete. It is obvious, since
$\overline{x}^{*}\overline{m}(A)\leqq 4\cdot\Vert x^{*}\Vert\cdot\sup\{\Vert m(E)\Vert:EeR\}<+\infty$ .

The author wishes to express his heart-felt thanks to Professor I. Kluvanek
for his kind encouragement.
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