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1. Introduction.
In the paper “Concerning suspension spheres” [8], the author showed in

Theorem 4 that if $Z$ is a compact metric space of the homotopy type of $S^{n}$ so
that $Z\times R^{1}$ is an open $(n+1)$-manifold, $n\geq 4$ and $Z$ contains a topological n-cell,
then the suspension of $Z$ is a topological $(n+1)$ -sphere. In this paper we in-
vestigate some related suspension problems. Along the way we shall prove, by
somewhat simpler means, a more general result than the above; namely, Theorem
1: Let (X, $B$) be a collared compact metric pair. If $(X-B)\times R^{k}$ is an open
$(n+k)$-manifold, $n+k\geq 5$ and $k>0$ , and $X$ is contractible, then the suspension of
$X\times I^{k}$ is homeomorphic to $I^{n+k+1}$ .

The notation $X^{*}Y$ represents the join of spaces $X$ and Y. The suspension
of $X$ is $S^{0*}X=S(X)$ ; the cone of $X$ is $I^{0*}X=C(X)$ . $OC(X)=C(X)-X$ is called
the open cone over X. $A$ closed pair (X, $A$ ) is called collared (bicollared) if $A$

has an open neighborhood $N$ for which $(N, A)\approx(A\times[0,1),$ $A\times O$) $((N, A)\approx(A\times$

$(-1,1),$ $A\times 0$)).

Suppose (X, $A$ ) and $(Y, B)$ are disjoint closed pairs and $f:A\approx B$ is a bicon-
tinuous bijection. (X, $A$ ) $\#(Y, B)$ denotes the adjunction space $X\bigcup_{f}$ Y. If $(Y, B)$

is a disjoint copy of (X, $A$) then 2(X, $A$ ) $=(X, A)\#(Y, B)$ is called the double of
(X, $A$). In some cases where little confusion will result we shall simply write
$X\#Y$ or $2X$, as for example when doubling a manifold with boundary along its
boundary.

2. Suspending contractible neighborhoods.
Henceforth all spaces considered are $T_{2}$ .
Lemma 1. Let (X, $B$) be a finite dimensional compact collared pair. Suppose

$X$ is acyclic with respect to $\check{C}ech$ cohomology and $X-B$ is an n-gm, a generalized
n-manifold in the sense of $\text{{\it \v{C}}}_{ech}$ cohomology. Then $B$ is an $(n-1)- gm$ with the
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cohomology of $S^{n-1}$ .
Proof. $B\times R^{1}$ is homeomorphic to an open subset of $X-B$, so that $B\times R^{1}$

is an orientable n-gm. By Theorem 6 of [5] $B$ is an $(n-1)- gm$ and by the
Kunneth formula $B$ is orientable. Since $B$ is collared in $X$, the latter is an
n-gm with boundary $B$ as defined in [5; 1.3]. Thus $X$ is a generalized n-cell
in the sense of [2; 1.1] so that $B$ has the cohomology of $S^{n-1}$ .

We thank F. Reymond for helping to simplify this proof.

Theorem 1. Let (X, $B$) be a collared compact metric pajr. Suppose that
$(X-B)\times R^{k}$ is an open $(n+k)$-manifold, $n+k\geq 5$ with $k>0$ , and $X$ is contractible.

If $Y=X\times I^{k}$ , then $Y\approx C(\partial Y)$ and $S(Y)\approx I^{n+k+1}\approx Y\times I$.
Proof. Consider $Y=X\times I^{k}$ . Lemma 2 of [8] indicates that $(X\times I, \partial(X\times I))$

is a collared pair, so that inductively it follows that $(Y, \partial Y)$ is a collared pair.

If n $=1,$ $X-B\approx R^{1}andIntY\approx R^{k+1}$ . If n $>lthentbylemmalBisconnected$ .
This implies that $X-B$ is O-connected at infinity so that $(X-B)\times R^{k}$ is l-con-
nected at infinity. Applying Theorem 1.1 of [9] we again may conclude that
$(X-B)\times R^{k}=IntY\approx R^{n+k}$ .

Since $(Y, \partial Y)$ is collared, the compact space $2(Y, \partial Y)$ is covered by two open
$(n+k)$-cells. Therefore by Theorem 3 of [6], $2Y\approx S^{n+k}$ . Now Lemma 3 of [8]

suggests that $S(\partial Y)\approx S^{n+k}$ and Int $Y\approx OC(\partial Y)$ . This means that $(Y, \partial Y)\approx(C(\partial Y)$ ,
$\partial Y)$ .

This leads immediately to the formulas $ S(Y)\approx S(C(\partial Y))\approx C(S(\partial Y))\approx C(S^{n+k})\approx$

$I^{n+k+1}$ .
Finally $Y\times I\approx C(\partial Y)\times C(S^{0})$ . Lemmas 3 and 4 of [4] then give us the chain

of homeomorphisms, $C(\partial Y)\times C(S^{0})\approx C(S(\partial Y))\approx C(S^{n+k})\approx I^{n+k+1}$ .
We next examine an easy application of our work to polyhedral neigh-

borhoods in triangulated manifolds.

Theorem 2. Let $K$ be a compact contractible subcomplex interior to the metric
triangulated n-manifold M. Then if $X$ is a closed $2nd$-derived neighborhood of $K$

in $M$ and $n\geq 5,2X\approx S^{n}$ .
Proof. Let $B=BdX$ in $M$. From Lemmas 1 and 3 of [7] it follows that

(X, $B$) is a collared pair, $X\sim K$ and 2(X, $B$) is an n-manifold. The pair (X, $B$)

satisfy the hypotheses of Theorem 1, so that $S(2X)\approx S(\partial(X\times I))\approx S^{n+1}$ . Conse-
quently $2X$ is a closed n-manifold of the homotopy type of $S^{n}$ and is therefore
a topological n-sphere by Theorem 7 of [3].

Corollary. With the same hypotheses, $X\times I\approx I^{n+1}$ .
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Proof. This is a direct result of Theorem 1 of [8].

Note. For $n\geq 5$ , this generalizes Theorems 1 and 2 of [7].

Theorem 3. (DesusPensim Theorem) Let (X, $B$) be a collared $comPact$ Pair so
that $S(B)\approx S^{n-1}$ and $S(X\times D\approx\Gamma^{+1}$ . Then $ S(X)\approx\Gamma$ .

Proof. It follows that $S^{n}\approx S(\partial(X\times I))\approx S(2X)$ . Inasmuch as $B$ is bicollared
in 2(X, $B$), if we refer to Lemma 4 of [8] we may see that $S(X)\approx\Gamma$ .

Application. We shall show, as was claimed in the Introduction, that
Theorems 1 and 3 above imply Theorem 3 of [8], which in tum is used to prove
Theorem 4 of [8].

Thus let (X, $A$) be a collared compact metric pair so that $S(A)\approx S^{*}$ , and
$(X-A)\times R^{1}$ is an open $(n+1)$-manifold. Furthermore $X$ is contractible and $n\geq 4$ .
By Theorem 1 $S(X\times D\approx\Gamma^{+2}$ . Now if we use the Desuspension Theorem, we
may deduce that $S(X)\approx I^{n+1}$ .

3. Some other suspension results.

Definition. If $x\in X$ the reduced suspension $RS(X, x)$ will be the quotient

space $(S^{0*}X)/(S^{0*}x)$ .
In the terminology used by the author in [8] our next result may be

described as follows. If $X$ is a suspension sphere and $v\in X$ has a cone neigh-
borhood $C$ , then 2($X$-Int $C$) is a double suspension sphere.

Theorem 4. Let $S(X)\approx S^{n}$ and suppose $v\in X$ has a closed neighborhood $C$ with
the following Properties. ( $C$ , Bd $C,$ $v$) $\approx(BdC)^{*}v$ , Bd $C,$ $v$) and Bd $C$ is bicollared in
X. Then if $Y=2$($X$-Int $C$), $SS(Y)=S^{1*}Y\approx S^{n+1}$ . Also if $n\neq 4$ and $\pi_{1}(Y)=0$ ,
$S(Y)\approx S^{n}$ and $RS(X, v)\approx S^{n}$ .

Proof. We represent $S^{0}$ as $\{p, q\}$ so that $S^{n}\approx S(X)=p^{*}X^{*}q$ and denote $p^{*}v^{*}q$

by $K$. If we properly fit together the linear parameters in $S(X)$ and $C$ , we
may find a closed neighborhood $M$ of $K$ in $S(X)$ for which ($M-K$, Bd $M$) $\approx$

$(Y\times[0,1),$ $Y\times O$) and Bd $M$ is bicollared in $S(X)$ .
More precisely let the cones $p^{*}x,$ $X^{*}q$ and $($Bd $C)^{*}v=C$ be represented as

quotient spaces of $x\times[-1,0],$ $X\times[0,1]$ and (Bd $C$) $\times[0,1]$ , respectively, with
quotient maps $g_{i},$ $i=1,2,3$ , so that $g_{1}(X\times-1)=p,$ $g_{2}(X\times 1)=q$ and $g_{3}((BdC)\times 1)=v$ .
Then we may choose $M$ to be the set $ g_{1}(X\times[-1, -*])\cup p^{*}g_{3}((BdC)\times[*, 1])^{*}q\cup$

$g_{2}(X\times[*, 1])$ and it is fairly clear that Bd $M\approx\partial[(X-g_{3}((BdC)\times(*, 1]))\times I]\approx Y$.
Now $Z=S^{n}/K$ suspends to $S^{n+1}[1]$ . Let $f:S^{n}\rightarrow Z$ be the natural quotient

map so that $f(K)=k$ . It may be seen that $f(M)\approx Y^{*}k$ is a neighborhood of $k$ in
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$Z$. Accordingly $S(f(M))$ is a neighborhood of $k$ in $S(Z)\approx S^{n+1}$ . Since $S(f(M)),$ $k$) $\approx$

\langle $S(Y^{*}k),$ $k$) $\approx(S(Y)^{*}k, k)$ , then by Theorem 4 of [6] $S(S(Y))\approx S^{n+1}$ .
Now assume $\pi_{1}(Y)=0$ and $n\neq 4$ . If $n<4,$ $X$ and $Y$ are spheres. If $n\geq 5$

Int $M$ is contractible and l-connected at infinity hence Int $M\approx R^{n}[9]$ . From
Lemma 3 of [8] it now follows that $S(BdM)\approx S(Y)\approx S^{n}$ . Thus $S^{n}\approx S(X)/K=$

$RS(X, v)$ .
CorolIary. Let $X$ be a polyhedron which suspends to an $n$-sphere and $v$ be a

vertex of X. If $L$ is a lst-derived link of $v$ in $X,$ $SS$(2($X$-Int $(L^{*}v))$ ) $\approx S^{n+1}$ .
Proof. For then $L$ is bicollared in $X$ and we may simply apply the theorem.
Turning for a moment to the category of PL manifolds we derive a very

simple characterization of cellular subpolyhedra in manifolds of sufficiently high
dimension.

Theorem 5. Let $K$ be a subpolyhedron interior to the $PL$ n-manifold $M$ with
$n\geq 6$ . If $N$ is a closed $2nd$-derived neighborhood of $KrnM,$ $K$ is cellular in $M$

if and only if $N$ is a $PL$ n-cell.

Proof. $N$ is a closed mapping cylinder from $\partial N$ over $K$. Consequently if
$N\cong\Gamma,$ $K$ is cellular by Theorem 6 of [6].

Assume that $K$ is cellular in $M$. The Theorem quoted in the first case tells
us that Int $N\approx R^{n}$ and the PL manifold $\partial N\sim S^{n-1}$ . An application of Smale’s
Generalized Poincare Theorem [10] allows us to assert that $ N\cong\Gamma$ .

4. An elementary suspension theorem and some questions.
Our next result is so basic that it has undoubtedly been noticed by others;

nevertheless it can be used in establishing certain fundamental Properties of
manifolds. Rather than give any applications, of which some will be clear to
the reader, we are more interested in raising some questions about possible
generalizations.

Theorem 6. Let $X$ and $Y$ be compact connected spaces for which $ X\times R^{1}\approx$

$Y\times R^{1}$ . Then $S(X)\approx S(Y)$ .
Proof. Let $h:X\times R^{1}\approx Y\times R^{1}=Z$ and $X_{\ell}=X\times t,$ $Y_{\ell}=Y\chi t$ . By the compact-

ness of $X$ there exist real numbers $t_{1}<t_{2}$ so $h(X_{0})\subseteq Y\times(t_{1}, t_{2})$ . Let $U_{1}=$

$h(X\times(-\infty, 0)),$ $U_{2}=h(X\times(0, \infty)),$ $K_{1}=Y\times(-\infty, t_{1}$ ] and $ K_{2}=Y\times[t_{2}, \infty$ ). Obviously
$K_{1}\cup K_{2}\subseteq Z-h(X_{0})$ .

Each connected set $K_{i}$ lies in one open set $U_{j},$ $i,$ $j=1,2$ . Assume that both
$K_{1}andK_{2}1ieinU_{i}$ where $(i, j)$ isapermutation of $(1, 2)$ . $ThenIntK_{1}\cup IntK_{2}\approx U_{i}$
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which means that Cl $U_{j}(\approx X\times[0, \infty))\subseteq Y\times[t_{1}, t_{2}]=Z-(IntK_{1}\cup IntK_{2})$ . This
indicates that Cl $U_{j}$ is compact, which is absurd. Hence $K_{1}\subseteq U_{i}$ and $K_{2}\subseteq U_{j}$ .
Necessarily then the one point compactification of $K_{1}$ compactifies Cl $U_{\ell}$ ;
similarly for $K_{2}$ and Cl $U_{j}$ . Now the conclusion easily follows.

Questions. Theorem 6, like Theorem 1, is somewhat unsatisfactory in that
it only deals with single suspensions, that is joins with $S^{0}$ . An interesting
generalization would be found if one could place nonobvious conditions on $X$ and
$Y$ so that $X\times R^{k}\approx Y\times R^{k}$ would imply that $X^{*}S^{k-1}\approx Y^{*}S^{k-1}$ . An obvious condi-
tion of this sort would be to demand that $OC(X)\times R^{k-1}\approx OC(Y)\times R^{k-1}$ . This may
be seen by again applying Noguchi’s Lemmas 3 and 4 of [4] and the facts that
$R^{k-1}=OC(S^{k-2})$ and if $Z$ is compact then $C(Z)/Z\approx S(Z)$ .

From the Application in section 2 it may be seen that for certain pairs
(X, $B$) Theorems 1 and 3 are sufficient to imply that $X^{*}S^{k}\approx\Gamma^{+k+1}$ . Still this
method is not adequate to deal with a pair (X, $B$) as in Theorem 1 with $B\sim S^{n-1}$ .
One might still hope to develope combinatorial methods which would cope with
this case.
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