THE STONE-ČECH COMPACTIFICATION OF A BASICALLY DISCONNECTED SPACE

By

H. BANILOWER

(Received June 24, 1971)

1. Introduction. We prove the following result:

Theorem. Let S be a locally compact Hausdorff space that is basically disconnected but not countably compact. Then

(a) $\beta S - S$ contains c pairwise disjoint nonempty clopen sets, and

(b) $\beta S - S$ is not basically disconnected.

This generalizes the well-known result that (a) and (b) hold when S is the space of integers (cf. [3, 6S, 6W]).

2. Background. Let S be a completely regular space.

A subset of S that is both open and closed is *clopen*.

A set of the form $\{p \in S : f(p) \neq 0\}$ for some continuous scalar-valued function f on S is a cozero set of S. Note that a countable union of cozero (clopen) sets is a cozero set [3, 1.14].

S is basically disconnected if the closure of every cozero set is open. See [3] and [5] for properties of basically disconnected spaces. It is proven in the latter reference that they are characterized by the following condition:

$\operatorname{cl}(U \cap V) = \operatorname{cl} U \cap \operatorname{cl} V$.

for every cozero set U and every open set V.

c denotes the cardinality of the continuum, and N the positive integers.

3. Proof of the Theorem. Let S satisfy the hypothesis. Since S is not countably compact it has some closed denumerable discrete subspace $\{p_n\}_{n \in N}$. Since S is locally compact and has a base of clopen sets, we can choose a sequence $\{V_n\}_{n \in N}$ of pairwise disjoint compact open subsets of S such that $p_n \in V_m$ for all $n \in N$.

For each subset A of N, we define

 $A' = (\beta S - S) \cap \operatorname{cl}_{\beta S} \bigcup_{n \in \mathcal{A}} V_n .$

H. BANILOWER

We claim that the following hold for every $A, B \subset N$.

- (1) A' is clopen in $\beta S-S$.
- $(2) \quad (A \cup B)' = A' \cup B'.$

(3) $A' \neq \phi$ if and only if A is infinite.

- (4) If $A \subset B$ then $A' \subset B'$.
- (5) If $A \cap B = \phi$ then $A' \cap B' = \phi$.
- (6) $A' \subset B'$ if and only if A-B is finite.
- (7) A'=B' if and only if $(A-B)\cup(B-A)$ is finite.
- (8) $A' \cap B' = \phi$ if and only if $A \cap B$ is finite

(1) follows from the fact that $\bigcup_{n \in A} V_n$ is a cozero set of the basically disconnected space βS and (2) is trivial.

To prove (3), suppose A is infinite. Then $\{p_n\}_{n \in A}$ is infinite, and since it is also discrete and closed in S,

$$(\beta S-S)\cap \operatorname{cl}_{\beta S} \{p_n\}_{n\in A}$$

is a nonempty subset of A'.

Conversely if A is finite, then

$$\operatorname{cl}_{\beta S} \bigcup_{n \in A} V_n = \bigcup_{n \in A} V_n \subset S$$
,

so $A' = \phi$.

(4) is trivial and (5) holds since disjoint cozero sets of βS have disjoint closures.

To prove (6), suppose A-B is finite. Then $(A-B)'=\phi$ by (3). Since $(A\cup B)'=B'\cup (A-B)'$ by (2), we have $A'\subset (A\cup B)'=B'$.

Conversely, if A-B is infinite, then $\phi \neq (A-B)' \subset A'$. Since $(A-B)' \cap B' = \phi$ by (5), it follows that A' is not a subset of B'.

(7) follows directly from (6).

To prove (8), suppose $F=A \cap B$ is finite. Then A'=(A-F)' and B'=(B-F)'by (7). But $(A-F)' \cap (B-F)'=\phi$ by (5). Hence A' and B' are disjoint.

Conversely, if $A \cap B$ is infinite, then $(A \cap B)'$ is a nonempty subset of $A' \cap B'$ by (3).

Now, if \mathfrak{F} is any family of c infinite subsets of N, the intersection of any two of which is finite (see, e.g., [3, 6Q]), then $\{A' : A \in \mathfrak{F}\}$ satisfies the requirements of (a).

To prove (b), choose a strictly increasing sequence $\{A'_n\}$ and let C be an arbitrary clopen subset of $\beta S - S$ containing $\bigcup_{n=1}^{\infty} A'_n$. Since βS has a base of

clopen sets, there exists a clopen subset G of βS such that $C = (\beta S - S) \cap G$ (c.f. [4, p. 75, Lemma 2]). Let $E = G \cap S$. Then E is clopen in S and since S is open and dense in βS , is follows that

$$C = (\beta S - S) \cap \operatorname{cl}_{\beta S} E .$$

Let $M = \{k \in N : p_k \in E\}$, and for each subset B of M, define

$$B'' = (\beta S - S) \cap \operatorname{cl}_{\beta S} \bigcup_{k \in B} (V_k \cap E) .$$

We claim the following hold for every $B \subset M$.

- (i) $B^{\prime\prime} = B^{\prime} \cap C$.
- (ii) B'' is clopen in C.
- (iii) If $B' \subset C$ then B' = B''.

To prove (i), note that

$$\operatorname{cl}_{\beta S} \bigcup_{k \in B} (V_k \cap E) = \operatorname{cl}_{\beta S} E \cap \operatorname{cl}_{\beta S} \bigcup_{k \in B} V_k$$
,

since E is open and $\bigcup_{k \in B} V_k$ is a cozero set of the basically disconnected space βS .

(ii) and (iii) follow immediately from (i).

We also need the following.

(iv) If $A \subset N$ and $A' \subset C$ then $A' = (A \cap M)' = (A \cap M)''$.

To prove this, suppose $D=A-(A\cap M)$ were infinite. Then $p_k \notin E$ for all $k \in D$. Therefore,

$$\phi = \operatorname{cl}_{\beta S} E \cap \operatorname{cl}_{\beta S} (S - E) \supset \operatorname{cl}_{\beta S} E \cap \operatorname{cl}_{\beta S} \{ p_k \}_{k \in D} ,$$

so C and $cl_{\beta S} \{p_k\}_{k \in D}$ are disjoint. But $\{p_k\}_{k \in D}$ is infinite, discrete, and closed in S. Since βS is compact,

$$(\beta S - S) \cap \operatorname{cl}_{\beta S} \{ p_k \}_{k \in D}$$

is a nonempty subset of A', and hence of C. This contradiction proves that $A' = (A \cap M)'$. The remainder of (iv) now follows from (iii).

It is now easily verified that for every $A, B \subset M$, the properties (1) through (8) hold if A' and B' are everywhere replaced by A'' and B''.

We next let $B_n = A_n \cap M$ for every *n*. It follows from (iv) that $B''_n = A'_n$. Therefore, $\{B''_n\}$ is strictly increasing, M'' is a clopen subset of $\beta S - S$, and

$$\bigcup_{n=1}^{\infty} B_n^{\prime\prime} \subset M^{\prime\prime} \subset C .$$

H. BANILOWER

It follows from (4) and (2) that for each *n* there exists $t_n \in B_n - \bigcup_{k=1}^{n-1} B_k$. Letting $F = M - \{t_n\}_{n \in N}$, we have $F'' \subset M'' \subset C$. Hence $\bigcup_{n=1}^{\infty} B'_n \subset F''$ and $F'' \neq M''$. Now, $\operatorname{cl}_{\beta S-S} \bigcup_{n=1}^{\infty} A'_n = \operatorname{cl}_{\beta S-S} \bigcup_{n=1}^{\infty} B''_n \subset F''$, and it follows that $C \neq \operatorname{cl} \bigcup_{n=1}^{\infty} A'_n$. Since *C* is an arbitrary clopen subset of $\beta S - S$ containing $\bigcup_{n=1}^{\infty} A'_n$, $\operatorname{cl}_{\beta S-S} \bigcup_{n=1}^{\infty} A'_n$ is not open in $\beta S - S$. (b) now follows since $\bigcup_{n=1}^{\infty} A'_n$ is a cozero set of $\beta S - S$.

4. Remarks.

1. Since extremally disconnected spaces are basically disconnected, the word "basically" may be replaced anywhere in the statement of the theorem by "extremally" and a true statement will result.

2. If S were not pseudocompact, we could have avoided the use of double primes since the V_n could then be chosen so that $\bigcup_{n=1}^{\infty} V_n$ is closed in S. It can be shown that if $S = \beta N - (\beta M - M)$, where M is any denumerable discrete subspace of $\beta N - N$, then S is a pseudocompact space satisfying our hypothesis.

3. It is shown in [2, Remark 3.2] that $\beta S-S$ is not basically disconnected whenever S is a locally compact realcompact space that is not compact. The space S in the above remark in not realcompact.

4. Since a retract of a basically disconnected space is basically disconnected, $\beta S - S$ is not a retract of βS for every space S satisfying our hypothesis. This is a special case of a result of W. W. Comfort [1, Theorem 2.7].

5. It follows from a result of *H.P. Rosenthal* [6] that if *S* is locally compact and basically disconnected, then $\beta S - S$ contains an uncountable number of nonempty pairwise disjoint clopen sets. Hence conclusion (a) follows from (b) if the continuum hypothesis is assumed.

REFERENCES

- [1] W.W. Comfort: Retractions and other continuous maps from βX onto $\beta X X$, Trans. Amer. Math. Soc. 114 (1965), 1-9.
- [2] N. J. Fine and L. Gillman: Extension of continuous functions in βN , Bull. Amer. Math. Soc. 66 (1960), 376-381.
- [3] L. Gillman and M. Jerison: Rings of continuous functions, D. Van Nostrand, Princeton, N. J., 1960.
- [4] P.R. Halmos: Lectures on Boolean Algebras, D. Van Nostrand, Princeton, N.J., 1963.
- [5] L. Murphy: Basically disconnected spaces, M.S. Thesis, L.S.U., Baton Rouge, La., 1967.
- [6] H. P. Rosenthal: On relatively disjoint families of measures, with some applications to Banach space theory, Studia Math. 37 (1970), 13-36.

Department of Mathematics Baruch College of CUNY 17 Lexington Ave. New York NY 10010, U.S.A.

36