# THE STONE-ČECH COMPACTIFICATION OF A BASICALLY DISCONNECTED SPACE 

By
H. Banilower
(Received June 24, 1971)

1. Introduction. We prove the following result:

Theorem. Let $S$ be a locally compact Hausdorff space that is basically disconnected but not countably compact. Then
(a) $\beta S-S$ contains c pairwise disjoint nonempty clopen sets, and
(b) $\beta S-S$ is not basically disconnected.

This generalizes the well-known result that (a) and (b) hold when $S$ is the space of integers (cf. [3, 6S, 6W]).
2. Background. Let $S$ be a completely regular space.

A subset of $S$ that is both open and closed is clopen.
A set of the form $\{p \in S: f(p) \neq 0\}$ for some continuous scalar-valued function $f$ on $S$ is a cozero set of $S$. Note that a countable union of cozero (clopen) sets. is a cozero set [3, 1.14].
$S$ is basically disconnected if the closure of every cozero set is open. See [3] and [5] for properties of basically disconnected spaces. It is proven in the latter reference that they are characterized by the following condition:

$$
\mathrm{cl}(U \cap V)=\operatorname{cl} U \cap \mathrm{cl} V .
$$

for every cozero set $U$ and every open set $V$.
$c$ denotes the cardinality of the continuum, and $N$ the positive integers.
3. Proof of the Theorem. Let $S$ satisfy the hypothesis. Since $S$ is not countably compact it has some closed denumerable discrete subspace $\left\{\boldsymbol{p}_{n}\right\}_{n \in N_{-}}$ Since $S$ is locally compact and has a base of clopen sets, we can choose a sequence $\left\{V_{n}\right\}_{n \in N}$ of pairwise disjoint compact open subsets of $S$ such that $p_{n} \in V_{n}$ for all $n \in N$.

For each subset $A$ of $N$, we define

$$
A^{\prime}=(\beta S-S) \cap \operatorname{cl}_{\beta S} \bigcup_{n \in A} V_{n} .
$$

We claim that the following hold for every $A, B \subset N$.
(1) $A^{\prime}$ is clopen in $\beta S-S$.
(2) $(A \cup B)^{\prime}=A^{\prime} \cup B^{\prime}$.
(3) $A^{\prime} \neq \phi$ if and only if $A$ is infinite.
(4) If $A \subset B$ then $A^{\prime} \subset B^{\prime}$.
(5) If $A \cap B=\phi$ then $A^{\prime} \cap B^{\prime}=\phi$.
(6) $A^{\prime} \subset B^{\prime}$ if and only if $A-B$ is finite.
(7) $A^{\prime}=B^{\prime}$ if and only if $(A-B) \cup(B-A)$ is finite.
(8) $A^{\prime} \cap B^{\prime}=\phi$ if and only if $A \cap B$ is finite
(1) follows from the fact that $\bigcup_{n \in A} V_{n}$ is a cozero set of the basically disconnected space $\beta S$ and (2) is trivial.

To prove (3), suppose $A$ is infinite. Then $\left\{\boldsymbol{p}_{n}\right\}_{n \in A}$ is infinite, and since it is also discrete and closed in $S$,

$$
(\beta S-S) \cap \operatorname{cl}_{\beta S}\left\{p_{n}\right\}_{n \in A}
$$

is a nonempty subset of $A^{\prime}$.
Conversely if $A$ is finite, then

$$
\operatorname{cl}_{\beta S} \bigcup_{n \in A} V_{n}=\bigcup_{n \in A} V_{n} \subset S,
$$

so $A^{\prime}=\phi$.
(4) is trivial and (5) holds since disjoint cozero sets of $\beta S$ have disjoint closures.

To prove (6), suppose $A-B$ is finite. Then $(A-B)^{\prime}=\phi$ by (3). Since $(A \cup B)^{\prime}=B^{\prime} \cup(A-B)^{\prime}$ by (2), we have $A^{\prime} \subset(A \cup B)^{\prime}=B^{\prime}$.

Conversely, if $A-B$ is infinite, then $\phi \neq(A-B)^{\prime} \subset A^{\prime}$. Since $(A-B)^{\prime} \cap B^{\prime}=\phi$ by (5), it follows that $A^{\prime}$ is not a subset of $B^{\prime}$.
(7) follows directly from (6).

To prove (8), suppose $F=A \cap B$ is finite. Then $A^{\prime}=(A-F)^{\prime}$ and $B^{\prime}=(B-F)^{\prime}$ by (7). But $(A-F)^{\prime} \cap(B-F)^{\prime}=\phi$ by (5). Hence $A^{\prime}$ and $B^{\prime}$ are disjoint.

Conversely, if $A \cap B$ is infinite, then $(A \cap B)^{\prime}$ is a nonempty subset of $A^{\prime} \cap B^{\prime}$ by (3).

Now, if $\mathfrak{F}$ is any family of $c$ infinite subsets of $N$, the intersection of any two of which is finite (see, e.g., [3, 6Q]), then $\left\{A^{\prime}: A \in \mathfrak{F}\right\}$ satisfies the requirements of (a).

To prove (b), choose a strictly increasing sequence $\left\{A_{n}^{\prime}\right\}$ and let $C$ be an arbitrary clopen subset of $\beta S-S$ containing $\bigcup_{n=1}^{\infty} A_{n}^{\prime}$. Since $\beta S$ has a base of
clopen sets, there exists a clopen subset $G$ of $\beta S$ such that $C=(\beta S-S) \cap G$ (c.f. [4, p. 75, Lemma 2]). Let $E=G \cap S$. Then $E$ is clopen in $S$ and since $S$ is open and dense in $\beta S$, is follows that

$$
C=(\beta S-S) \cap \operatorname{cl}_{\beta S} E .
$$

Let $M=\left\{k \in N: p_{k} \in E\right\}$, and for each subset $B$ of $M$, define

$$
B^{\prime \prime}=(\beta S-S) \cap \operatorname{cl}_{\beta S} \bigcup_{k \in B}\left(V_{k} \cap E\right) .
$$

We claim the following hold for every $B \subset M$.
(i) $B^{\prime \prime}=B^{\prime} \cap C$.
(ii) $B^{\prime \prime}$ is clopen in $C$.
(iii) If $B^{\prime} \subset C$ then $B^{\prime}=B^{\prime \prime}$.

To prove (i), note that

$$
\operatorname{cl}_{\beta S} \bigcup_{k \in B}\left(V_{k} \cap E\right)=\operatorname{cl}_{\beta S} E \cap \operatorname{cl}_{\beta S} \bigcup_{k \in B} V_{k},
$$

since $E$ is open and $\bigcup_{k \in B} V_{k}$ is a cozero set of the basically disconnected space $\beta S$.
(ii) and (iii) follow immediately from (i).

We also need the following.
(iv) If $A \subset N$ and $A^{\prime} \subset C$ then $A^{\prime}=(A \cap M)^{\prime}=(A \cap M)^{\prime \prime}$.

To prove this, suppose $D=A-(A \cap M)$ were infinite. Then $p_{k} \notin E$ for all $k \in D$. Therefore,

$$
\phi=\operatorname{cl}_{\beta S} E \cap \operatorname{cl}_{\beta S}(S-E) \supset \operatorname{cl}_{\beta S} E \cap \operatorname{cl}_{\beta S}\left\{\boldsymbol{p}_{k}\right\}_{k \in D},
$$

so $C$ and $\operatorname{cl}_{\beta S}\left\{\boldsymbol{p}_{k}\right\}_{k \in D}$ are disjoint. But $\left\{\boldsymbol{p}_{k}\right\}_{k \in D}$ is infinite, discrete, and closed in $S$. Since $\beta S$ is compact,

$$
(\beta S-S) \cap \operatorname{cl}_{\beta S}\left\{p_{k}\right\}_{k \in D}
$$

is a nonempty subset of $A^{\prime}$, and hence of $C$. This contradiction proves that $A^{\prime}=(A \cap M)^{\prime}$. The remainder of (iv) now follows from (iii).

It is now easily verified that for every $A, B \subset M$, the properties (1) through (8) hold if $A^{\prime}$ and $B^{\prime}$ are everywhere replaced by $A^{\prime \prime}$ and $B^{\prime \prime}$.

We next let $B_{n}=A_{n} \cap M$ for every $n$. It follows from (iv) that $B_{n}^{\prime \prime}=A_{n}^{\prime}$. Therefore, $\left\{B_{n}^{\prime \prime}\right\}$ is strictly increasing, $M^{\prime \prime}$ is a clopen subset of $\beta S-S$, and

$$
\bigcup_{n=1}^{\infty} B_{n}^{\prime \prime} \subset M^{\prime \prime} \subset C .
$$

It follows from (4) and (2) that for each $n$ there exists $t_{n} \in B_{n}-\bigcup_{k=1}^{n-1} B_{k}$. Letting $F=M-\left\{t_{n}\right\}_{n \in N}$, we have $F^{\prime \prime} \subset M^{\prime \prime} \subset C$. Hence $\bigcup_{n=1}^{\infty} B_{n}^{\prime \prime} \subset F^{\prime \prime}$ and $F^{\prime \prime \prime} \neq M^{\prime \prime}$. Now, $\mathrm{cl}_{\beta S-S} \bigcup_{n=1}^{\infty} A_{n}^{\prime}=\mathrm{cl}_{\beta S-S} \bigcup_{n=1}^{\infty} B_{n}^{\prime \prime} \subset F^{\prime \prime}$, and it follows that $C \neq \mathrm{cl}_{n=1}^{\infty} A_{n}^{\prime}$. Since $C$ is an arbitrary clopen subset of $\beta S-S$ containing $\bigcup_{n=1}^{\infty} A_{n}^{\prime}, \operatorname{cl}_{\beta S-S}^{n=1} \bigcup_{n=1}^{\infty} A_{n}^{\prime}$ is not open in $\beta S-S$. (b) now follows since $\bigcup_{n=1}^{\infty} A_{n}^{\prime}$ is a cozero set of $\beta S-S$.

## 4. Remarks.

1. Since extremally disconnected spaces are basically disconnected, the word "basically" may be replaced anywhere in the statement of the theorem by "extremally" and a true statement will result.
2. If $S$ were not pseudocompact, we could have avoided the use of double primes since the $V_{n}$ could then be chosen so that $\bigcup_{n=1}^{\infty} V_{n}$ is closed in $S$. It can be shown that if $S=\beta N-(\beta M-M)$, where $M$ is any denumerable discrete subspace of $\beta N-N$, then $S$ is a pseudocompact space satisfying our hypothesis.
3. It is shown in [2, Remark 3.2] that $\beta S-S$ is not basically disconnected whenever $S$ is a locally compact realcompact space that is not compact. The space $S$ in the above remark in not realcompact.
4. Since a retract of a basically disconnected space is basically disconnected, $\beta S-S$ is not a retract of $\beta S$ for every space $S$ satisfying our hypothesis. This is a special case of a result of $W . W$. Comfort [1, Theorem 2.7].
5. It follows from a result of H.P. Rosenthal [6] that if $S$ is locally compact and basically disconnected, then $\beta S-S$ contains an uncountable number of nonempty pairwise disjoint clopen sets. Hence conclusion (a) follows from (b) if the continuum hypothesis is assumed.

## REFERENCES

[1] W.W. Comfort: Retractions and other continuous maps from $\beta X$ onto $\beta X-X$, Trans. Amer. Math. Soc. 114 (1965), 1-9.
[2] N. J. Fine and L. Gillman: Extension of continuous functions in $\beta N$, Bull. Amer. Math. Soc. 66 (1960), 376-381.
[3] L. Gillman and M. Jerison: Rings of continuous functions, D. Van Nostrand, Princeton, N. J., 1960.
[4] P. R. Halmos: Lectures on Boolean Algebras, D. Van Nostrand, Princeton, N. J., 1963.
[5] L. Murphy: Basically disconnected spaces, M. S. Thesis, L. S. U., Baton Rouge, La., 1967.
[6] H. P. Rosenthal: On relatively disjoint families of measures, with some applications to Banach space theory, Studia Math. 37 (1970), 13-36.

