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1. Introduction.

Let $D:|z|<1$ be the open unit disk. A holomorphic function $f$ in $D$ is
normal if and only if

$\frac{|f^{\prime}(z)|}{1+|f(z)|^{2}}=O\frac{1}{1-|z|}[9]$ .

Bagemihl and Seidel have pointed out several classes of functions that are normal
[1]. Bounded functions, functions having a finite Dirichlet integral, and uni-
valent functions are all normal. Lappan has studied normal functions and found
that they do not form a linear space [61, and he found it of interest to consider
the linear subspace of uniformly normal functions [71 and [81. Pommerenke has
also studied this subspace and has called it the class of Bloch functions [10],

also see Hayman [51. A holomorphic function $f$ in $D$ is a uniformly normal-
Bloch function if and only if $|f^{\prime}(z)|=O(1/(1-|z|))$ .

In this paper we investigate coefficients of uniformly normal-Bloch functions.
Also, several classes of normal functions are shown to be uniformly normal.
We find that holomorphic functions with finite Dirichlet integrals and Hadamard
gap series with bounded coefficients are Bloch functions. Finally, certain frac-
tional integrals of Bloch functions are shown to be Bloch functions. We will
use the terms uniformly normal and Bloch interchangeably.

2. Preliminaries.

Hayman has noted that the coefficients of any uniformly normal-Bloch func-
tion are bounded [5]. We give an example of a non-normal holomorphic func-
tion with bounded coefficients. Theorem 1 is due to Hayman but our proof is
different.

Theorem 1. Let $f(z)=\sum_{n=0}^{\infty}a_{n}z^{n}$ be unifomly normal, then for each $n,$ $[a_{\hslash}|\leqq M$.
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Proof. From Cauchy’s formula we obtain

$|a_{n}|=|\frac{1}{2\pi in}\int_{0}^{2\pi}\frac{f^{\prime}(re^{\theta})d\theta}{r^{n-1}e^{\mathfrak{i}tn-1)\theta}}|\leqq n^{-1}(1-r)^{-1}r^{-n+1}C$ , where $|f^{\prime}(z)|\leqq\frac{C}{1-|z|}$ .
The minimum value is achieved for $r=1-(1/n)$ and we obtain $|a_{n}|\leqq(1-(1/n))^{-n+1}$

$C\leqq eC$ , for $n\geqq 2$ . We choose $M=\max\{|a_{0}|, |a_{1}|, eC\}$ and the theorem is proved.

The function $ f(z)=\sum_{n=0}^{\infty}z^{2}\#$ is uniformly normal and $\lim_{n\rightarrow}\sup_{\infty}|a_{n}|=1$ .
Pommerenke has shown that if the Bloch function $f(z)=\sum_{n=0}^{\infty}a_{n}z^{n}$ has radial

limits almost everywhere, then $|a_{n}|\rightarrow 0[10]$ . This is not sufficient for a function

to be uniformly normal. For fixed $\beta,$ $0<\beta<1$ , the function $f(z)=(1-z)^{-\beta}=\sum_{n=0}^{\infty}a_{n}z^{n}$

is normal, but not uniformly normal. It is known that $a_{n}=(1/\Gamma(\beta))n^{\beta-1}(1+o(1))$ ,
where $\Gamma$ is the Gamma function, and hence $|a_{n}|\rightarrow 0$ . We conclude this section
by exhibiting a non-normal function with bounded coefficients.

Example 1. There exists a holomorPhic function with bounded coefficients
which is not normal.

Proof. The function $g(z)=\log(1-z)=\sum_{n=1}^{\infty}(1/n)z^{n}$ is uniformly normal and un-
bounded. By a theorem of LaPpan [6, Theorem 3, p. 190], there exists a Blaschke

product $B(z)=\sum_{n=0}^{\infty}b_{n}z^{n}$ such that $f(z)=g(z)B(z)$ is not normal. $B(z)$ is an $H^{2}$ func-

tion, hence $\sum_{n=0}^{\infty}|b_{n}|^{2}<\infty$ . We have $f(z)=\sum_{=0}^{\infty}a_{n}z^{n}=\sum_{n=1}^{\infty}(1/n)z^{n}\sum_{n=0}^{\infty}b_{n}z^{*}$ , and hence for

each $n$

$|a_{n}|=|\sum_{k=1}\frac{1}{k}b_{n-k}|\leqq\{\sum_{k=1}(\frac{1}{k})^{2}\}^{1/2}\{\sum_{k=0}^{n-1}|b_{k}|^{2}\}^{1/2}\leqq M$ .

In the following we will restrict our attention to coefficients of uniformly
normal holomophic functions.

3. The Main Results.

We establish sufficient conditions for a holomorphic function to be uniformly
normal-Bloch. Then we investigate the necessary conditions.

Theorem 2. The following are sufficient conditions for $f(z)=\sum_{n=0}^{\infty}a_{n}z$
’ to be

uniformly normal.
(i) If there exists a fixed integer $J,$ $J\geqq 0$ , and $\sum_{k=J}^{n}k^{J}|a_{k}|\leqq Cn^{J}$ for all $n$ .
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(ii) $\sum_{n=1}^{\infty}n|a_{n}|^{2}<\infty$ .
(iii) If there exists an $\alpha>1$ and a subsequence $\{n_{j}\}$ for which $n_{j+1}>an_{j}$ , and

$\iota f$ for each $n_{j},$ $|a_{n_{j}}|\leqq M$, then $f(z)=\sum_{\dot{g}=0}^{\infty}a_{n_{j}}z^{n_{j}}$ is uniformly normal.

Proof for (i). Titchmarsh has shown [11, p. 225] that if $g(z)=\sum_{n=0}^{\infty}c_{l}z^{n}$ is holo $\cdot$

morphic in $D$ and if for each $n,\sum_{k=J}^{n}|c_{k}|\leqq Mn$ , then $|g(z)|\leqq M/(1-|z|)$ . For $J=1$ ,

we set $g(z)=f^{\prime}(z)$ and the proof is immediate. For $J>1$ it is easy to verify that
$|f^{[J]}(z)|\leqq C/(1-|z|)^{J}$ and the result follows by successive integration.

Proof for (I\ddagger ). Let $\sum_{n=1}^{\infty}n|a_{n}|^{2}=M$. From the Cauchy-Schwarz inequality we
obtain

$\sum_{k\Rightarrow 1}^{n}k|a_{k}|\leqq\{\sum_{k=1}^{\iota}k\}^{1/2}\{\sum_{k=1}^{\iota}k|a_{k}|^{2}\}^{1/2}\leqq M^{1/2}n$ ,

and the proof follows from part (i), with $J=1$ .
Proof for (iii). Let $n$ be a positive integer and let $k_{j}(j=0,1, \cdots, J)$ be the

$k_{j}$ which are less than or equal to $n$ . Then we have $\sum_{k_{j}\leq\alpha}k_{j}|a_{k_{j}}|=\sum_{j=0}^{J}k_{j}|a_{k_{j}}|$

$\leqq M(\alpha^{-J}+\alpha^{-J+1}+\cdots+1)k_{J}\leqq M(\alpha/\alpha-1)n$ , and the proof of the theorem is complete.

Remark. If $\int_{0}^{2n}\int_{0}^{1}|f(re^{i\theta})|^{2}rdrd\theta=\pi\sum_{n=1}^{\infty}n|a_{n}|^{2}<\infty$ , then $f$ is said to have a

finite Dirichlet integral. We remark that holomorphic functions with finite
Dirichlet integrals are uniformly normal. The functions of (iii) are called Hada $\cdot$

mard gap series. We remark that Hadamard gap series with bounded coefficients
are Bloch functions.

We now investigate necessary conditions for the coefficients of uniformly
normal holomorphic functions. The first result shows when the sufficient con-
dition of theorem 2 is a necessary condition.

Theorem 3. Let $f(z)=\sum_{=0}^{\infty}a_{n}z^{n}$ be uniformly normal. If for each $n,$ $a\leqq\arg(a,)$

$\leqq a+\pi/2$ , then $\sum_{k=1}k|a_{k}|\leqq Cn$ , for all $n$ .

Proof. We may assume that $a=0$ . Since $f$ is uniformly normal we have

$|\sum_{k=1}^{\infty}ka_{k}z^{k-1}|=|f^{\prime}(z)|\leqq C/(1-|z|)$ , and $|\sum_{k=1}^{\infty}k\overline{a}_{k}z^{k-1}|=|\overline{f^{\prime}(\overline{z})}|\leqq C/(1-|z|)$ , and we obtain

$|,\sum_{k\sim 1}^{\infty}k{\rm Re} a_{k}z^{k-1}|\leqq C/(1-|z|)$ , where $0\leqq{\rm Re} a_{k}$ . A similar result holds for ${\rm Im} a_{k}$ and
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we obtain $|\sum_{k=1}^{\infty}k|a_{k}|z^{k-1}|\leqq 2C/(1-|z|)$ . Hardy and Littlewood have shown [4,

Theorem 96, p. 155], [11, p. 226] that if $g(z)=\sum_{n=0}^{\infty}c_{n}z^{n}$ and $|g(z)|\leqq K/(1-|z|)$ , where

$0\leqq c.$ , then for each $n,\sum_{k=0}^{n}c_{k}\leqq Kn$ . We set $f^{\prime}(z)=g(z)$ and the proof is immediate.

Corollary. If $F(z)=\sum_{n=0}^{\infty}|a_{t}|z^{n}$ is uniformly normal, then $f(z)=\sum_{n=0}^{\infty}a_{n}z^{n}$ is $uni$.

formly normal.
The following example shows that the restrictions on the coefficients in

theorem 3 were necessary.

Example 2. Let $1<p<3/2$ . The holomorPhic function $f(z)=\sum_{n=1}^{\infty}n^{p-2}e^{i(2p-2In}z^{\iota}$

is uniformly normal and $\sum_{k=1}^{\infty}k|a_{k}|=\sum_{k=1}^{n}k^{p-1}\approx Cn^{p}$ .

Proof. Hardy [3] has shown that if $F(z)=\sum_{=1}^{\infty}n^{-\beta}e^{i\alpha n}z^{n}$ , where $0<\alpha<1$ , then

$F$ is unbounded if $1-\beta-S\alpha>0$ , and $|F(z)|=O(1/((1-|z|)^{1-\beta-t1/2)\alpha}))$ . For $F(z)$

$=\sum_{n=1}^{\infty}n^{p-1}e^{:(2p-2)n}z^{n}$ we obtain $|F(z)|=O(1/(1-|z|))$ . Setting $F(z)=zf^{\prime}(z)$ it follows

that $f$ is uniformly normal and the proof is complete.

Theorem 4. Let $f(z)=\sum_{n=0}^{\infty}a_{n}z^{n}$ be a Bloch function. Then for each fixed
integer $P\geqq 0$ we have $\sum_{k=p}^{n}k^{P}|a_{k}|\leqq Cn^{P+1/2}$ , for all $n$ .

Proof. Hardy has shown [3], [2, Lemma 1, p. 45] that if $g(z)=\sum_{n=0}^{\infty}c_{n}z^{n}$ is

holomorphic in $D$ and $|g(z)|=O(1/((1-|z|)^{\alpha})),$ $a>0$ , then for $-\infty<\gamma<\alpha+*$ ,

$\sum_{=1}^{\infty}n^{-\gamma}|c,.||z|^{n}=o(\frac{1}{(1-|z|)^{\alpha-\gamma+1/2}})$ .

We set $f^{\prime}(z)=g(z),$ $a=1,$ $\gamma=-P+1$ and obtain $\sum_{n\approx 1}^{\infty}n^{P}|a_{n}||z|^{n-1}=O(1/(1-|z|)^{P+1/2})$ .
Estimating $1/(1-|z|)^{P+1/2}$ we obtain

$\sum_{n=1}^{\infty}n^{P}|a_{n}||z|^{n}\leqq C\sum_{n=0}^{\infty}n^{P-1/2}|z|^{n}$ .
Titchmarsh has shown [11, p. 224] that the above inequality implies that $\sum_{k=1}k^{P}|a_{k}|$

$\leqq Cn^{P+1/3}$ , and the theorem is proved.
We now consider fractional integrals of uniformly normal-Bloch functions.
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Let $\beta>0$ and $f(z)=\sum_{=0}^{\infty}a_{n}z^{n}$ be holomorphic in $D$ , the fractional integral of $f$ of

order $\beta$ is $f_{[\beta]}(z)=\sum_{*=0}^{\infty}(n!/\Gamma(n+1+\beta))a_{n}z^{n}$ .

Theorem 5. Let $f(z)=\sum_{n=0}^{\infty}a,z$ be uniformly normal. Then,

i) If $\beta\geqq*$ , then $f_{[\beta]}$ is uniformly normal, and
ii) If $\beta>0$ , and if for each $n,$ $\alpha\leqq\arg(a_{n})\leqq\alpha+\pi/2$ , then $f_{[\beta]}$ is uniformly normal.

Proof. $f_{[\beta]}^{\prime}(z)=\sum_{n=0}^{\infty}(n!/\Gamma(n+1+\beta))na_{n}z^{n-1}$ .
For $n\geqq 1$ an elementary calculation shows that $n!/\Gamma(n+1+\beta)\leqq Mn^{-1/2}$ . From

Hardy’s result [3], $|f^{\prime}(z)|=O(1/(1-|z|))$ implies that $\sum_{n=1}^{\infty}n^{-1/2}n|a_{n}||z|^{n-1}=O(1/(1-|z|))$ .
It follows that $|f_{[\beta]}^{\prime}(z)|=O(1/(1-|z|))$ and the first part is proved. The proof of
the second part follows from theorem 3.

Fractional derivatives are defined similarly to fractional integrals. We

remark that no fractional derivative of $f(z)=\sum_{n=0}^{\infty}z^{2}$

“ is uniformly normal.
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