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1. Introduction and Terminology. Let $\mathfrak{C}$ denote the complex plane, and $I$

be the set of non-negative integers. We write for $n\in I,$ $n\geq 1$ ,

$\Psi=\{(z_{1}, z_{2}, \cdots, z_{n}):z_{i}e\mathfrak{C}, 1\leq i\leq n\}$ , $\Gamma=\{(p_{1}, p_{2}, \cdots, p_{n}):p_{i}\in I, 1\leq i\leq n\}$ .
$\mathfrak{C}^{n}$ and $\Gamma$ are respectively Banach and metric spaces under the functions

$\Vert(z_{1}, \cdots, z_{n})\Vert=|z_{1}|+\cdots+|z_{n}|$ ; $\Vert(p_{1}, \cdots, p_{n})\Vert=p_{1}+\cdots+p_{n}$ .
We are concerned here with the space of all entire functions from C’ to $\mathfrak{C}$ under
the usual pointwise addition and scalar multiplication. For the sake of simplicity

we consider the case when $n=2$ , though our results can be easily extended to

any finite integer $n$ . Let therefore $X$ be the class of all entire functions $f$:
$\mathfrak{C}^{2}\rightarrow \mathfrak{C}$ , where

(1.1) $f(z_{1}, z_{2})=\sum_{n=0}^{\infty}\sum_{m=0}^{\infty}a_{m.n}z_{1}^{m}z_{2}^{n}$ ; $a_{m.n}\in \mathfrak{C}$ , for $m,$ $n\geq 0$ .

and assume that $X$ is equipped with the topology $T$ of uniform convergence on
compacta in $\mathfrak{C}^{2}$ . It is known that (X, $T$) is a separable locally convex metriza-

ble complete space, i.e. a separable Fr\’echet space. Our interest in this paper

is two-fold: first, to introduce on $X$ an invariant metric in terms of the deter-
mining constants $a_{m},$ . and then to show that the topology generated by this

new metric is equivalent to $T$ and also to characterise continuous linear func-

tionals on $X$; secondly to give a characterisation of proper absolute bases in $X$.
This paper may be considered as an introduction to the structural study of $X$.

2. Topology on $X$. Let for each $f\in X$, define

$\Vert f\Vert=\sup\{|a_{0.0}|;|a_{m},,|^{1/tm+n)}, m, n\geq 0, m+n\neq 0\}$

Then $\Vert f\Vert$ is a total paranorm or F-norm on $X$. We now prove
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Los Angeles for his very valuable comments about the material of this paper.
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Theorem 2.1. (X, $\Vert f\Vert$ ) is a complete metrizable, non-locally bounded sPace,
i.e. a non-normable Fr\’echet space, where the invariant metric on $X$ is given by
$\Vert f-g\Vert;f,$ $g\in X$.

Proof. It is sufficient to show that for each Cauchy sequence $\{f_{p}\}$ in $X$,
there corresponds a unique $f\in X$, such that $\Vert f_{p}-f\Vert\rightarrow 0$ as $ p\rightarrow\infty$ . So, let $\epsilon>0$

be given. There exists $Q=Q(\epsilon)$ , such that
$|a_{0^{p}0}^{t)}-a_{0^{q}0}^{t)}|,$ $|a_{m,n}^{t_{p)}}-a_{m.n}^{1)}q|^{1/(m+\hslash)}<\epsilon$ , for $p,$ $q\geq Q;m,$ $n\geq 0,$ $m+n\neq 0$ ,

where

$f_{p}(z_{1}, z_{2})=\sum_{n=0}^{\infty}\sum_{m=0}^{\infty}a_{m,nZ_{1}^{m}Z_{2}^{n}}^{(p)}$ .
Therefore

(2.1) $a_{m,n}^{1_{p})}\rightarrow a_{m}.,$ , say, as $ p\rightarrow\infty$ , for $m,$ $n\geq 0$ .
Now for $m+n\neq 0,$ $m,$ $n\geq 0$

$|a_{m.n}|^{1/1m+n)}\leq|a_{m}^{t_{p})},-a_{m.n}|^{1/(m+nI}+|a_{m.n}^{()}p|^{1/(’ n+1}$

But for any fixed $p$ , and therefore for $P=Q$ , we have
$|a_{m,n}^{1p)}|^{1/tm+’)}\rightarrow 0$ as $\Vert(m, n)\Vert\rightarrow\infty$ .

Therefore

$\lim_{||(m,,)||\rightarrow\infty}|a_{n,n}|^{1/tm+’)}=0$ .
Hence the function $f:\mathfrak{C}^{2}\rightarrow \mathfrak{C}$ given by

$f(z_{1}, z_{2})=\sum_{n=0}^{\infty}\sum_{m=0}^{\infty}a_{m},,z_{1}^{m}z_{2}^{n}$

is a member of $X$. Moreover, from (2.1), $\Vert f_{p}-f\Vert\rightarrow 0$ as $ p\rightarrow\infty$ .
To complete the proof, we do here something more than what we are

required to do. Indeed, we show that $T$ is equivalent to the topology $T^{*}$

generated by $\Vert f\Vert$ on $X$. Let $f_{p}\rightarrow f$ in $T^{*}$ . Let now $\epsilon>0,$ $\eta>0;R_{1},$ $R_{2}>0$ be
taken arbitrarily, such that

$\eta R_{1},$ $\eta R_{2}<1$ : $\eta+\eta^{2}R_{1}R_{2}/\{(1-\eta R_{1})(1-\eta R_{2})\}<\epsilon$ .
Now for $p\geq Q=Q(\eta)$

$|a_{0^{p}0^{I}}^{(}-a_{0.0}|<\eta$ , $|a_{m}^{1p)},.-a_{m}.,|<\eta^{m+}$’ ; $m,$ $n\geq 0$ , $m+n\neq 0$ .
Tnen for $|z_{1}|\leq R_{1},$ $|z_{2}|\leq R_{2}$
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$|f_{p}(z_{1}, z_{2})-f(z_{1}, z_{2})|<\eta+\sum_{=0}^{\infty}\sum_{m=0}^{\infty}(\eta R_{1})^{m}(\eta R_{2})$

$=\eta+\frac{\eta R_{1}}{1-\eta R_{1}}\frac{\eta R_{2}}{1-\eta R_{2}}<\epsilon$ , for all $p\geq Q$ .

Hence $T\subset T^{*}$ . On the other hand suppose now $f_{p}\rightarrow f$ in $T$. Then in particular
$a_{\mathfrak{v}^{p}0}^{t)}\rightarrow a_{0.0}$ . Choose $\epsilon>0$ . We may find $R_{1},$ $R_{2}$ , such that $R_{1},$ $ R_{2}\geq 1/\epsilon$ . There
exists $Q=Q(\epsilon, R_{1}, R_{2})$ such that

$|a_{0.0}^{t_{P})}-a_{0,0}|<\epsilon$ , $p\geq Q$

$|f_{p}(z_{1}, z_{2})-f(z_{1}, z_{2})|\leq 1$ , $p\geq Q,$ $|z_{1}|\leq R_{1},$ $|z_{2}|\leq R_{2}$ .
Using Cauchy’s inequality for two variables, one finds

$|a_{m,n}^{1p)}-a_{m},,$ $|R_{1}^{m}R_{2}\leq M(R_{1}, R_{2}:f_{p}-f)\leq 1$ , $p\geq Q$ ,

where

$M(R_{1}, R_{2}, g)=\max_{|z_{1}|\leq R_{1},|z_{2}|\leq R_{2}}|g(z_{1}, z_{2})|$
, $g\in X$ .

Therefore, for $m+n\neq 0$

$|a_{n}^{(p\mathfrak{l}},-a_{m.n}|^{1/(m+’)}\leq\frac{1}{R_{1}^{m/tm_{+})}R_{2}^{n/tm+I}}\leq\frac{1}{R}\leq\epsilon$ , $p\geq Q$ ,

where $R=\max(R_{1}, R_{2})\geq\epsilon^{-1}$ . Thus $T^{*}\subset T\Rightarrow T=T^{*}$ .
Returning to the last assertion of the theorem, consider $G$ to be an arbitrary

neighbourhood of $O\in X$. Then for $\epsilon>0$ and $n\in I,$ $n\geq 1$ , we have

$\{f:feX, P_{n}(f)<\epsilon\}\subset G$ ,

$p_{*}(f)=\max_{|z_{1}|\leq’.|z_{2}|\leq}|f(z_{1}, z_{2})|$ .

Define $f_{p}\in X$, such that

$f_{p}(z_{1}, z_{2})=\frac{\epsilon}{2}(\frac{z_{1}}{n})^{p}(\frac{z_{2}}{n})^{p}$ , $peI$ ,

and set $\epsilon_{p}=2^{-2p},$ $p\in I$. Since $\max_{|ae_{1}|,|z_{2}|\leq 2n}|\epsilon_{p}f_{p}(z_{1}, z_{2})|=\epsilon/2>\epsilon/4$
, one concludes that

$\epsilon_{p}f_{p}\not\in\{f:f\in X,p_{2n}(f)<\epsilon/4\}$ and so $\epsilon_{p}f_{p}\# 0$ as $ p\rightarrow\infty$ . Therefore no neighbour-
hood $G$ of $O\in X$ is bounded with respect to $T$ and therefore with respect $T^{*}$ .
The proof of the result is now complete.

Cotinuous Linear Functionals on $X$. We now proceed to characterize con-
tinuous linear functionals on $X$ in a most simple and effective manner. In the
discussion that follows, we will make use of
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Lemma 2.1. Consider the sequence $\{a_{n}., : m, n\geq 0\}$ from $I^{2}$ into $\mathfrak{C}$ , satisfying

the condition

$\lim_{||m,,||\rightarrow\infty}|a_{n*}.,|^{1/tm+n})=0$ .

Then

$\sum_{=0}^{\infty}\sum_{m=0}^{\infty}c_{m}.,a_{m,n}$

converges if and only if $\{|c_{0,0}|;|c_{m}.,|^{1/tm+’)}, m, n\geq 0, m+n\neq 0\}$ is bounded.

Proof. Assume first of all that there is a positive constant $M$, such that
$|c_{0.0}|\leq M,$ $|c_{m}.,|\leq M^{m+}’;m,$ $n\geq 0,$ $m+n\neq 0$ . From the hypothesis on $\{a_{m}.,\}$ , we
find an integer $N$, such that

$|a_{m,n}|\leq[\frac{1}{2M}]^{m+n}$ , for $\Vert(m, n)\Vert\geq N$ ,

$\Rightarrow|a_{m}.,c_{m},,|\leq 2^{-m-}’$ , $\Vert(m, n)\Vert\geq N$ .
Therefore $\sum_{=0}^{\infty}\sum_{r\iota=0}^{\infty}|c_{m.n}a_{m,n}|$ converges and the sufficiency of the lemma follows.

To prove the necessity, assume that the series in question is convergent but

$\{|c_{0,0}|, |c_{n,n}|^{1/(’ n+n)} , m, n\geq 0, m+n\neq 0\}$

is unbounded. Then in general there exist increasing sequences $\{m_{k}\},$ $\{n_{\ell}\}\subset I$.
such that

$|c_{m_{k\cdot\sim l}}|\geq(k+l)^{n_{k}+n_{l}}$

Define

$a_{m,n}=0$ if $m\neq m_{k}$ , $n\neq n_{i}$

$a_{n}.,$ $=(k+l)^{-m-f}$ if $m=m_{k},$ $n=n_{\ell}$ .
Then

$\lim_{||(m,,)||\rightarrow\infty}|a_{m.n}|^{1/tn+n)}=0$ ;

moreover
$|a_{m_{k\cdot i}},c_{m_{k^{n}l}},|\geq 1$ , $k,$ $l\geq 1$ .

Therefore $|a_{m}.,c_{m.n}|\neq 0$ as $\Vert(m, n)\Vert\rightarrow\infty$ . Hence $\Sigma\Sigma a_{m,n}c_{m}.$ , does not converge
and this contradiction completes the proof of the lemma.

One may now completes the proof of
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Theorem 2.2. Let us consider $X$ equiPped with either $T$ or $T^{*}$ . Then every
continuous linear functional $\phi$ on $X$ is of the form

(2.2) $\phi(f)=\sum_{*=0}^{\infty}\sum_{m=0}^{\infty}a_{m.n}c_{m,n}$ , $f(z_{1}, z_{2})=\sum_{n=0}^{\infty}\sum_{m=0}^{\infty}a_{m.n}z_{1}^{m}z^{n}$ ,

where

(2.3) $\{|c_{0.0}|;|c_{m,n}|^{1/tm+n)}, m, n\geq 0, m+n\neq 0\}$ is bounded.

Moreover, if any double sequence $\{c_{m},. : m, n\geq 0\}$ satisfies (2.2), then the mapping
$\phi:X\rightarrow \mathfrak{C}$ whose value at any $f\in X$ is given by (2.1), represents a continuous linear
functional on $X$.

Proof. First, assume that $\phi\in X^{\prime}$ , the topological dual of $X$ and that

$\phi(\delta_{n,n})=c_{\pi\iota},,$ , $m,$ $n\geq 0$ ,

where $\delta_{m.n}(z_{1}, z_{2})=z_{1}^{m}z_{2}^{n}$ . Let

$f(z_{1}, z_{2})=\sum_{n=0}^{\infty}\sum_{m=0}^{\infty}a_{m.n}zi^{n}z_{2}^{n}$ ; $f_{m}.,(z_{1}, z_{2})=\sum_{\ell=0}^{n}\sum_{k=0}^{m}a_{k,\ell}z_{1}^{k}z_{2}^{\ell}$ .
Then $f_{m,n}\rightarrow f$ as $\Vert(m, n)\Vert\rightarrow\infty$ uniformly on compacta in $\mathfrak{C}^{2}$ and therefore

$\lim_{||(m,)||\rightarrow\infty}\phi(f_{m.n})=\phi(f)$ ;

moreover

$\phi(f_{m.n})=\sum_{i=0}^{l}\sum_{k=0}^{m}a_{k.\ell}c_{k,\ell}$ ; $m,$ $n\geq 0$ .
Hence

$\phi(f)=\sum_{n=0}^{\infty}\sum_{m=0}^{\infty}a_{m},,c_{m.n}$ .
Since

$\lim_{||(n,n)||\rightarrow\infty}|a_{m,n}|^{1/tm+,)}=0$ ,

we find that $\{c_{m.n} : m, n\geq 0\}$ satisfies (2.3).

To prove the other part of the theorem, let $\phi$ be as mentioned in the
hypothesis. In view of lemma 2.1, $\phi$ is well defined on $X$ and is a linear func-
tional on $X$. To prove continuity of $\phi$ , let $f_{p}\rightarrow 0$ in (X, $T$) as $ p\rightarrow\infty$ , where
$f_{p}\in X$. $p\geq 1$ , and

$f_{p}(z_{1}, z_{2})=\sum_{n=0}^{\infty}\sum_{n=0}^{\infty}a_{*}^{()},z_{1}^{m}z^{n}p$ $P\in I,$ $P\geq 1$ .
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Suppose

$M=\sup\{|c_{0.0}|;|c_{rn.n}|^{1/tn+’)} , m, n\geq 0, m+n\neq 0\}$ .
Let $\epsilon>0$ be chosen so that $\epsilon M<1$ . Then there exists $Q=Q(\epsilon)$ , such that

$|a_{0^{p}0}^{t)}|,$ $|a_{l*,n}^{1p^{1}}|^{1/tm+’)}<e$ , $p\geq Q$ ; $m,$ $n\geq 0,$ $m+n\neq 0$ .
Now

$|\phi(f_{p})|<\epsilon M+\sum_{m+}^{\infty}\sum_{mn=0=0,n\neq 0}^{\infty}|a_{m}^{(p^{1}},,$ $,$

$c_{m.n}|$ ; for $p\geq Q$

$<\epsilon M+\sum_{n+}^{\infty}\sum_{mn=0=0,n\neq 0}^{\infty}(\epsilon M)^{m+n}$
; for $p\geq Q$

$\rightarrow 0$ as $\epsilon\rightarrow 0$ .
Therefore $\phi$ is continuous and the proof of the result is complete.

3. Bases in $X$. The sequence { $z_{1}^{m}z_{2}^{n}$ : $m,$ $n\in I;z_{1},$ $z_{2}\in \mathfrak{C}$ and are fixed} plays

a significant role in determining uniquely the representation of $f(z_{1}, z_{2})$ where
$f\in X$; one is apparantly tempted therefore to think of $\{\delta_{m},, : m, n\geq 0\},$ $\delta_{m},,(z_{1},z_{2})=$

$z_{1}^{m}z_{2}^{n}$ as a Hamel base for $X$. However, this is not true, since the function
$f\in X,$ $f(z_{1}, z_{2})=e^{z_{1}+\iota_{2}}$ cannot be represented as a finite linear combination of
$\{\delta_{m}.. : m, n\geq 0\}$ . In fact, $\{\delta_{m,n}\}$ is a base in the sense of the definition that
follows hereafter.

Definition 3.1. A sequence $\{\alpha_{m}., : m, n\geq 0\}\subset(X, T)$ is said to be a base for
$X$, if for each $f\in X$, there exists a unique sequence $\{a_{m,n} : m, n\geq 0\}\subset \mathfrak{C}$ , such that

$f=\lim_{||(’ n.,\iota)||\rightarrow\infty}\sum_{\dot{g}=0}^{l}\sum_{k=0}^{m}a_{j,k}\alpha_{j.k}$ (in $T$),

or

$f=\sum_{n=0}^{\infty}\sum_{m=0}^{\infty}a_{m,n}\alpha_{m.n}$ ,

where the convergence of this double series is with respect to the topology of
of uniform convergence on compacta in $\mathfrak{C}^{2}$ . The members $a_{n},$ . are called the
base functions.

In view of this definition we find that $\{\delta_{m.n}\}$ is a base for $X$ and moreover,

for this base, the base functions satisfy the following condition:

(3.1) $\lim_{||(m.n)||\rightarrow\infty}|a_{m,n}|^{1/tm+n)}=0$ .

However, for all bases in $X$, the corresponding coefficients do not necessarily
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satisfy (3.1). For instance, consider $\{\alpha_{m.n}\}$ , where $\alpha_{m.n}(z_{1}, z_{2})=zi^{n}z_{2}^{\iota}/((m+n)/2)!$

Then by properly scaling the coefficients in the representation (1.1) of any $f\in X$,
we find that $\{\alpha_{m,n}\}$ is a base. Now

$e^{zz}12=\sum_{m-n=0}^{\infty}\alpha_{m,n}(z_{1}, z_{2})$

and so $a_{n.n}=1$ , for all $m=n\geq 0,$ $a.,n=0$ for $m\neq n$ . Thus

$\lim_{||(n,n)||\rightarrow\infty}|a_{n.n}|^{1/(m+’)}=1$ ,

and our assertion follows.

Deflnition 3.2. A sequence $\{\alpha_{m}.’ : m, n\geq 0\}\subset(X, T)$ will be called an absolute

base for $X$, if each $f\in X$ can be uniquely expressed as $\sum_{n=0}^{\infty}\sum_{n=0}^{\infty}a_{m.n}\alpha_{m,n}$ , where

this double series is absolutely convergent on compacta in $\mathfrak{C}^{2}$ .
Deflnition 3.3. A sequence $\{\alpha_{m}, : m, n\geq 0\}\subset(X, T)$ is called a ProPer base

for $X$ if

(i) $\{\alpha_{m.n}\}$ is an absolute base for $X$, and
(ii) for any sequence $\{a_{m.\hslash} : m, n\geq 0\}\subset \mathfrak{C}$ , the series $\sum_{n=0}^{\infty}\sum_{r\cdot\approx 0}^{\infty}a_{n},,.\alpha_{m.n}$ converges

absolutely on compacta in $\mathfrak{C}^{2}$ if and only if

$\lim_{||(n.n)||\rightarrow\infty}|a_{m,n}|^{1/(m+\hslash\}}=0$ .
Let now for $f\in X$ and $R_{1},$ $R_{2}>0$

$\Vert f;R_{1},$ $R_{2}\Vert=\sum_{\approx 0}^{\infty}\sum_{n=0}^{\infty}|a_{m,n}|R_{1}^{n}R_{l}^{\hslash}$ .
From Cauchy’s inequality we have

$M(R_{1}, R_{2};f)\leq\Vert f;R_{1},$ $R_{2}\Vert\leq M(2R_{1},2R_{2};f)\sum_{n=0}^{\infty}\sum_{m=0}^{\infty}2^{-m-}’=4M(2R_{1},2R_{2};f)$ .
Therefore the topology $T_{1}$ generated by the family $\{\Vert f:R_{1}, R_{2}\Vert : R_{1}, R_{2}>0\}$ is
equivalent to $T$.

4. Characterisation of Proper Bases. Our discussion in this direction will
require a number of intermediary results. We start with

Lemma 4.1. Let $\{\alpha_{n.n} : m, n\geq 0\}$ be a sequence of entire functions defined on
$\mathfrak{C}^{2}$ , such that $\Sigma\Sigma|a.,n|$ converges on compacta in $\mathfrak{C}^{2}$ to a function bou ded on
compacta in $\mathfrak{C}^{t}$ . Then given $\lambda>1$ ; and $R_{1},$ $R_{2}>0$, there exists an integer $N>0$,
such that $\Vert(m, n)\Vert\geq N$ implies
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$|e_{1}|=R_{1},|l|=R_{2}\max_{2}|a_{n.n}(z_{1}, z_{2})|^{1/(m+\hslash)}<\lambda$ .
Proof. Suppose the conclusion of the lemma is false. Then we may find

sequences $\{m_{k}\},$ $\{n_{\ell}\}$ , such that

$\max_{|x_{1}|=R_{1^{\prime}}|ae_{2}|=R_{2}}|\alpha_{m_{k}.n\ell}(z_{1}, z_{2})|^{1/k^{+n\ell I}}tn’>\lambda$

$\Rightarrow\max_{|z_{1}|=R_{1}.|e_{2}|=R}|a_{n_{k\cdot\sim i}}(z_{1}, z_{2})|>\lambda^{m_{k}+n\ell}\rightarrow\infty$ ,

as $\Vert(m_{k}, n_{\ell})\Vert\rightarrow\infty$ , contrary to the fact that the given series converges absolutely
on compacta in $\mathfrak{C}^{2}$ to a function bounded on compacta in $\mathfrak{C}^{2}$

Now we have

Theorem 4.1. Let $\{\alpha_{m.n} : m, n\geq 0\}\subset X$. SuppOse $m,n$ be an arbitrary sequence
contained in $\mathfrak{C}$ , such that

(4.1)
$\lim_{||(m.,)||\rightarrow\infty}|c_{m.t}|^{1/(f\hslash+n)}=0$ .

Then $\sum_{n=0}^{\infty}\sum_{m=0}^{\infty}|c_{m,n}\alpha_{m},,|$ converges to a function bounded on comPacta in $\mathfrak{C}^{g}$ if and
only if for each $R_{1},$ $R_{2}>0$ ,

(4.2) $\lim_{||t\prime*\cdot\hslash)||\rightarrow\infty}[M_{m,n}(R_{1}, R_{2})]^{1/Im+’)}<+\infty$ ,

where

$M_{f\hslash,\hslash}(R_{1}, R_{2})=M(R_{1}, R_{2};\alpha_{m.n})$ ; $m,$ $n\geq 0$ .
Proof. (Necessity). Suppose the double series be convergent absolutely

with respect to $T$, and that (4.2) is not true. Hence for some $R_{1},$ $R_{2}>0$, there
exist sequences $\{m_{k}\},$ $\{n_{\ell}\}\subset I$, such that

$ M_{m_{k},n\ell}(R_{1}, R_{2})>(k+l)^{n}k^{\prime\prime}\ell$

Define for $\lambda>1$

$c_{m.\hslash}=\left\{\begin{array}{ll}\lambda^{*\iota_{k}+n\ell}/M_{m_{k}.n\ell}(R_{1}, R_{2}), & for m=m_{k}, n=n_{i}\\0, m\neq m_{k}, n=n_{\ell} & \end{array}\right.$

Then (4.1) holds. But

$\max_{|\epsilon_{1}|=R_{1},|e_{l}|=R}|c_{n_{k\cdot,\ell}}\alpha_{m_{k\cdot,\ell}}(z_{1}, z_{2})|^{1/t+’)}m_{ki}=\lambda$ ,

and this contradicts lemma 4.1.
(Sufficiency). Let (4.2) be satisfied. Then for each $R_{1},$ $R_{2}>0$ , there exists

a constant $M(R_{1}, R_{2})$ , such that
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$M_{m},,(R_{1}, R_{2})\leq[M(R_{1}, R_{2})]^{m+}$ , $m,$ $n\geq 0$ .
Now for $|z_{1}|\leq R_{1},$ $|z_{2}|\leq R_{2}$

(4.3) $\sum_{n=0}^{\infty}\sum_{\prime\cdot=0}^{\infty}|c_{m.n}\alpha_{m.n}(z_{1}, z_{2})|\leq\sum_{=0}^{\infty}\sum_{m=0}^{\infty}|c_{m,n}|[M(R_{1}, R_{2})]^{n+\hslash}$

$<\infty$ ,

since $|c_{m,n}|<[M(R_{1}, R_{2})/2]^{m+}$ for $\Vert(m, n)\Vert\geq N$ and the second series in (4.3) can
be broken into two parts, one with $||(m, n)\Vert<N$ and the other with $\Vert(m, n)\Vert\geq N$,
the latter being obviously convergent on account of preceding arguments and
the proof of the result is complete.

Theorem 4.2. Let $\{\alpha_{n},, : m, n\geq 0\}\subset X$ and $\{c_{m},’ : m, n\geq 0\}$ be an arbitrary
sequence in $\mathfrak{C}$ , such that

$\sum_{n=0}^{\infty}\sum_{m=0}^{\infty}c_{m,n}\alpha_{m},$ ,

converges absolutely on compacta in $\mathfrak{C}^{2}$ to a function bounded on compacta in $\mathfrak{C}^{1}$ .
Then

(4.4) $\lim_{||(m.n)||\rightarrow\infty}|c_{m}.,|^{1/tm+’)}=0$

if and only if
(4.5)

$\lim_{R_{1},R_{2^{\rightarrow\infty}}}\{\varliminf_{||(n,)||\rightarrow\infty}[M_{m.n}(R_{1}, R_{2})]^{1/(m+’)}\}=+\infty$ .

Proof. (Necessity). Let (4.4) hold good and suppose (4.5) is not true. Then
for each $R_{1},$ $R_{2}>0$

$\varliminf_{||(’\hslash.l)||\rightarrow\infty}[M_{m}., (R_{1}, R_{2})]^{1/tm+\hslash}|<M<+\infty$ ,

since $M_{m},,(R_{1}, R_{2})$ is monotonocally increasing in $R_{1},$ $R_{2}>0$ for each fixed pair
$(m, n)$ . There exist sequences $\{m_{k}\},$ $\{n_{\ell}\}\subset I$, such that

$M_{m_{k\cdot\ell}},(R_{1}, R_{2})<M^{m_{k}+\ell}$ .
If $R_{1},$ $R_{2}>0$ are given, then this inequality yields

$|\alpha_{m_{k^{\hslash}i}}.(z_{1}, z_{2})|<M^{n_{k^{+}i}}$ , for $|z_{1}|\leq R_{1},$ $|z_{2}|\leq R_{2}$ .
Define

$C_{m.\hslash}=\left\{\begin{array}{ll}(2M)^{-1/n\ell}(m_{k}+) & m=m_{k}, n=n_{1}\\0 , & m\neq m_{k}, n\neq n_{\ell}.\end{array}\right.$

Hence the series $\Sigma\Sigma c.,.a.,$ . converges absolutely on compacta in $\mathfrak{C}^{2}$ . But
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$\varlimsup_{||(n,,)||\rightarrow\infty}|c_{m.\hslash}|^{1/Im+\hslash)}=\frac{1}{2M}\neq 0$ ,

and this contradicts (4.4).

(Sufficiency). Suppose (4.5) is true and in turn (4.4) is false, i.e.

(4.6) $\varlimsup_{||(m,n)||\rightarrow\infty}|c_{m,n}|^{1/tn*+\hslash}$

) $>\mu>0$ .

Now for $R_{1},$ $R_{2}>0$ , one finds from (4.5)

$\varliminf_{||(.\hslash)||\rightarrow\infty}[M_{m.\hslash}(R_{1}, R_{2})]^{1/(m+I}>\frac{2}{\mu}$ ,

$\Rightarrow M_{n}.,(R_{1}, R_{2})>(\frac{2}{\mu})^{m+n}$ , for all large $\Vert(m, n)\Vert$ .

Also for $m=m_{k},$ $n=n_{i},$ $.k,$ $l\in I$, we find from (4.6) that

$|c_{n_{k^{n\ell}}}.|>\mu^{m_{k}+n\ell}$ , where $\Vert(m_{k}, n_{\ell})\Vert\rightarrow\infty$ with $\Vert(k, l)\Vert$ .
Therefore

$|c_{m_{k^{\hslash\ell}}},M_{n_{k\prime}n\ell}(R_{1}, R_{2})|^{1/1m_{k}+\ell)}>2$ ,

and this contradicts lemma 4.1. The proof of the result is now complete.
Combining Theorem 4.1 and 4.2, we have the following main result of this

section.

Theorem 4.3. Let $\{\alpha_{m}, : m, n\geq 0\}$ be an absolute basis in $(T, X)$ . Then $\{\alpha_{n},\}$

is ProPer if and only if (4.2) and (4.5) hold.
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