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1. Introduction and Terminology. It has been an endevour of many a
mathematician in the past decade to generalise results on bases in Banach spaces
to the more general setting of Fr\’echet spaces. When these results on general-
isations and their proofs are set it terms of semi-norms which generate the
topology of the Fr\’echet space in question, it is then our view that they are
easily comparable with their counterparts in Banach spaces. Arsove [1] in 1958
initiated such a study and got certain interesting results on bases in a Fr\’echet
space (stated and proved in terms of semi-norms) whose counter parts in a
Banach space were already known in terms of the norm of the Banach space.
Our aim in this note is similar.

We throughout assume, unless contrary stated, that $X$ over the field $K$

stands for a Fr\’echet space in the Bourbaki terminology and we may assume
without loss of generality that its topology $T$ is generated by a family $F$ of
semi-norms on $X$, such that $F$ is closed under maxima of finite subsets of $F$.

A sequence $\{x_{n}\}$ in $X$ is called a base if to each $x\in X$, there corresponds a
unique sequence of scalars $\{\alpha_{n}\}$ such that

(1.1) $\sum_{i=1}^{n}\alpha_{i}x_{i}\rightarrow x$ in $T$, as $ n\rightarrow\infty$ .

The mappings $x_{i}^{\prime}$ : $X\rightarrow K,$ $x_{i}^{J}(x)=\alpha_{i}$ , where $\alpha_{i}’ s$ are as (1.1), are continuous linear
functionals ([2], p. 453) and further

(1.2) $x_{i}^{\prime}(x_{j})=\left\{\begin{array}{ll}1 , & if i=j\\0, & if i\neq j\end{array}\right.$

Thus the system $\{x_{n}, x_{n}^{\prime}\}$ forms a biorthogonal system. If $\{x_{n}, x^{\prime}\}$ is a biortho-
gonal system, where $\{x.\}cX$ and $\{x_{n}^{\prime}\}\subset X^{\prime}$ , the topological dual of $X$, we define
then the operators $U_{n}$ : $X\rightarrow X$ by the relations

(1.3) $U_{*}(x)=\sum_{i\sim 1}x_{\ell}^{\prime}(x)x_{i}$ , $n\geq 1$ ,
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and call them expansion operators.
If $A\subset X$, we write $Sp\{A\}$ for the space generated by $A$ . If $\overline{Sp}\{A\}$ , the

closure of $sp\{A\}$ equals $X$, we say that $A$ is total in $X$. We now recall a result
to be used in our work:

Theorem 1.1. Let $\{x_{n}\}\subset X$, such that $\overline{Sp}\{x_{n}\}=X$, and $x,$ $\neq 0$ , for $n=1,2,$ $\cdots$ .
Then $\{x_{n}\}$ is a base in $X$ if and only if for each given $p\in F$, there correspOnds a
$q\in F$ and a constant $M>0$ , such that

$p(\sum_{i=1}^{m}\alpha_{i}x_{i})\leq Mq(\sum_{i=1}^{n}\alpha_{i}x_{i})$ ,

for each pair of integers $m,$ $n;m\leq n$ and arbitrary scalars $\alpha_{1},$ $\cdots,$ $\alpha_{n}$ .
For proof see [4] and for a completely different proof see [3].

2. For the sake of completeness and demonstration we state the following
result whose proof runs in the setting of semi-norms which generate the topology
of a given $X$.

Theorem 2.1. Let $\{x_{n}, x_{n}^{\prime}\}$ be a biorthogonal system in a given X. Then $\{x_{n}\}$

is a base for $\overline{sp}\{x_{n}\}$ if and only if $\{U_{n}\}$ is equicontinuous.

Proof. Sufficiency. By hypothesis, to a given $q\in F$, there exists a $q\in F$

and a constant $M>0$ , such that

$P(U_{n}(x))\leq Mq(x)$ , for each $x\in X$ , $n\geq 1$ .
Let $x\in\overline{Sp}\{x_{n}\}$ and $\epsilon>0$ . Suppose

$r=\max(p, q)$ .
Then there is a $y\in SP(x_{1}, \cdots, x_{m})$ , such that $ r(x-y)<\epsilon$ . Observe that $U.(y)=y$ ,
for $n\geq m$ . Hence

$p(x-U_{n}(x))\leq p(x-y)+p(U_{n}(x-y))$ , $n\geq m$ ,
$\Rightarrow P(x-U_{n}(x))<r(x-y)+Mq(x-y)<\epsilon+M\epsilon$ , $n\geq m$ .

Since $\epsilon>0$ and $p\in F$ are arbitrary it follows that

$U.(x)\rightarrow x$ in $\overline{sp}\{x_{n}\}$ as $ n\rightarrow\infty$ .
If, however,

$x=\lim_{\iota\rightarrow*}\sum_{\ell=1}^{n}\alpha_{i}x_{i}$ ,

then
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$\lim_{n\rightarrow\infty}\sum_{i=1}^{n}(x_{i}^{\prime}(x)-\alpha_{i})x_{t}=0$ .
But each $x_{\dot{f}}^{\prime}$ is continuous and so from the preceding relation $\alpha_{j}=x_{\dot{f}}^{\prime}(x);j\geq 1$ .

For the necessity, we observe that $U_{n}(x)\rightarrow x$ as $ n\rightarrow\infty$ in $\overline{Sp}\{x_{n}\}$ . Apply
now the well-known result of Banach-Steinhans ([2], p. 464) to conclude the
equicontinuity of $\{U_{n}\}$ .

3. Monotone Bases. A base $\{x_{n}\}$ in $X$ will be called monotone if for a given
$p\in F$, there exists a $q\in F$, such that

(3.1) $P(U_{n}(x))\leq q(U_{\iota+1}(x))$ , for each $x\in X$ , $n\geq 1$ .
We have then

Theorem 3.1. A base $\{x_{n}\}$ in $X$ is monotone if and only if to each $p\in F$, there
is a $q\in F$, such that

(3.2) $p(U, (x))\leq q(x)$ , for each $x\in X$ , $n\geq 1$ .
Proof. Let (3.2) be satisfied. Suppose $\{x_{n}\}$ is not monotone. Then for a

given $peF$, there exists an $x_{0}\in X$ and some $N\geq 1$ , such that

$p(U_{N}(x_{0}))>q(U_{N+1}(x_{0}))$ , for all $q\in F$ .
Now

$\frac{p(U_{N}(U_{N+1}(x_{0})))}{q(U_{N+1}(x_{0}))}=\frac{p(U_{N}(x_{0}))}{q(U_{N+1}(x_{0}))}>1$

and if $y=U_{N+1}(x_{0})$ , then

$p(U_{N}(y))>q(y)$ , for all $q\in F$ .
This contradicts (3.2) and the one-hand conclusion follows.

To prove the necessity of the theorem, let us first of all observe on account
of Banach-Steinhans theorem that $\{U_{n}\}$ is equicontinuous. Take now $p\in F$.
Then there is a $q_{1}\in F$, such that

(3.3) $p(U_{n}(x))\leq Mq_{1}(x)$ , for each $x\in X$ , $n\geq 1$ .
Moreover, $\{x_{n}\}$ is monotone and so there a $q\in F$, such that

(3.4) $p(U_{n}(x))\leq q(U_{n+1}(x))$ , for each $x\in X$ , $n\geq 1$ .
Choose $r=\max(q, q_{1})$ , then replacing $x$ by $U_{n+1}(x)$ in (3.3) we get

$P(U_{n}(x))\leq Mr(U_{n+1}(x))$ , each $x\in X$ , $n\geq 1$ ,
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and also from (3.4)

$p(U.(x))\leq r(U_{+1}(x))$ , each $x\in X$ , $n\geq 1$ .
Consequently

$p(U.(x))\leq\min(1, M)r(U_{n+1}(x))$ , each $x\in X$ , $n\geq 1$ ,

and this completes the proof of the result.

4. Orthogonal Systems. We collect certain definitions in order to proceed
smoothly.

Deflnition 4.1. A sequence $\{x_{n}\}$ in a locally convex space $X$ forms an ortho-
gonal system if for each $p\in F$ there exists a $q\in F$, such that

$p(\sum_{i=1}^{m}\alpha_{i}x_{l})\leq q(\sum_{i=1}^{n}\alpha_{i}x_{i})$ ,

for each choice of integers $m,$ $n;m\leq n$ and scalars $\alpha_{1},$ $\cdots,$ $\alpha_{n}$ .
Deflnition 4.2. A sequence in a locally convex space forms a finitely ortho-

gonal system if for each $p\in F$, there is a $q\in F$, such that

$p(\sum_{t=1}^{n}\alpha_{\ell^{X_{i}}})\leq q(\sum_{i=1}^{n+1}\alpha_{i}x_{i})$ ,

for each $n\geq 1$ and arbitrary scalars $\alpha_{1},$ $\cdots,$ $\alpha_{n+1}$ .
It is clear that definition $4.1\Rightarrow definition4.2$ .
Deflnition 4.3. A Fr\’echet space $X$ will be called M-strictly simple if there

exists a countable sequence $\{X_{n} : n\geq 1\}$ of finite dimensional subspaces of $X$, such
that

(4.1) $X_{n}\subset X_{n+1}$ ; dim $(X_{n})=n$ , $n\geq 1$ ;

(4.2) $X=\overline{\bigcup_{n\geq 1}X_{n}}$ ;

(4.3) Each $X_{n}$ is the range of a projection $P_{n}$ on $X$ ;

(4.4) To each $p\in F$, there is a $q\in F$, such that

$p(P_{n}(x))\leq Mq(x)$ , for each $x\in X$ , $n\geq 1$ .
We now prove

Theorem 4.1. Let $X$ have a total orthogonal system. Then $X$ is l-strictly simPle
Proof. Since $\{x_{*}\}$ is total in $X$, therefore
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$X=\overline{Sp}\{x_{n}\}$ ;

making use of definition 4.1 and then Theorem 1.1 we conclude that $\{x_{n}\}$ is a
base for $X$. Moreover if $p\in F$, then there is a $q\in F$, such that

$P(U_{m}(x))\leq q(U_{n}(x))$ , for each $x\in X$ , $n\geq 1$ ;

and so in particular

$P(U_{m}(x))\leq q(U_{m+1}(x))$ , $m\geq 1$ , $x\in X$ .
Hence $\{x_{n}\}$ is a monotone base. Let

$X_{n}=Sp\{x_{1}, \cdots, x_{n}\}$ .
Then $X_{n}\subset X_{n+1}$ ; dim $(X_{n})=n$ . Since

$sp\{x_{n}\}=\bigcup_{n\geq 1}X_{n}$ ,

thus (4.1) and (4.2) are proved. Set now $P_{n}$ as $U_{n}$ . Then (4.3) easily follows.
To prove (4.4) we proceed as in the second part of the proof of Theorem 3.1.
This completes the proof of the theorem.

Lastly we have:

Theorem 4.2. Let $\{x_{n}\}$ be a momotone base in X. Then $\{x_{n}\}$ is a total finitely
orthogonal system in $X$.

Proof. Since $\{x_{n}\}$ is a base in $X$, therefore $\{x_{n}\}$ is total in $X$. Also $\{x_{n}\}$ is
monotone, therefore if $p\in F$, then there exists a $q\in F$, such that

$p(\sum_{i=1}^{n}x_{i}^{\prime}(x)_{X_{i}})\leq q(\sum_{l=1}^{n+1}x_{\ell}^{\prime}(x)_{X_{i}})$ , for each $x\in X$ , $n\geq 1$ .

Let $\alpha_{1},$ $\cdots,$ $\alpha_{n+1}$ be arbitrary $n+1$ scalars. Put $y=\sum_{i=1}^{n}\alpha_{i}x_{i}$ and $x=y+\alpha_{n+1}x_{n+1}$ .
But then

$x=\sum_{i=1}^{n+1}x_{i}^{\prime}(x)x_{\mathfrak{i}}$ .

Therefore

$\sum_{1=1}^{n}x_{\ell}^{J}(x)x_{\ell}=\sum_{\ell=1}^{*}\alpha_{i}x_{i}$ ; $x_{n+1}^{\prime}(x)=\alpha_{n+1}$ ,

and so the result follows.
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