A METHOD FOR SOLVING NON-HOMOGENEOUS INTEGRAL EQUATIONS WITH NON-SYMMETRIC KERNELS HAVING WEAK SINGULARITIES

By
C. Y. Chan

(Received April 28, 1971)

1. Introduction. Kreìn [3] gave a new method for solving an integral equation of the second kind by deriving a representation formula for the solution. Recently under the assumption of existence of a unique solution, Kagiwada, Kalaba and Schumitzky [1] gave a better representation formula for the solution $y(t, x)$ of the integral equation:

$$
y(t, x)-\int_{0}^{x} k(t, u) y(u, x) d u=g(t) \quad \text { for } \quad 0 \leqq t \leqq x
$$

where x is sufficiently small, $g(t)$ and $k(t, u)$ are continuous, and $k(t, u)$ is symmetric.

In this work, we consider in a Hilbert space framework a non-homogeneous integral equation of the second kind having a non-symmetric real kernel, which is allowed to have a weak singularity [5, p. 49]. We use the technique due to Schmidt [6] to symmetrize the integral operator. We show that this process does not affect the original solution. In the construction of orthogonal elements, we use the Gram-Schmidt process. Because the operator is symmetric, this gives rise to a three term recurrence formula, which in turn leads to a system of formulae of simple algebraic form for the approximate solution. The method used is genuinely constructive since we begin the construction with a known element. As the operator after symmetrization is completely continuous and self-adjoint, it follows from Karush [2] that the approximate solution, which is the solution of the corresponding finite dimensional problem, tends to the original solution faster than any geometrical progression.
2. Symmetrization. Consider the Hilbert space $L_{2}(\Omega)$ of all equivalence classes of Lebesgue square integrable real-valued functions in a bounded open connected set Ω of the n-dimensional Euclidean space. Let $M(p, q)$, where p and q are any two points in Ω, be a non-symmetric real kernel having a weak
singularity. Our purpose is to find the solution y in $L_{2}(\Omega)$ of the equation

$$
y(p)-\mu \int_{\Omega} M(p, q) y(q) d q=g(p),
$$

where μ is a given real constant, and g is a given element in $L_{2}(\Omega)$. Let us denote this equation by

$$
\begin{equation*}
(I-\mu M) y=g \tag{2.1}
\end{equation*}
$$

where I is the identity operator.
Let $M^{*}(p, q)=M(q, p)$, and also let M^{*} be the operator corresponding to $M^{*}(p, q)$. From (2.1),

$$
\left(M^{*}-\mu M^{*} M\right) y=M^{*} g .
$$

Multiplying this by $-\mu$ and adding to (2.1), we have

$$
\begin{equation*}
\left(I-\mu\left(M+M^{*}-\mu M^{*} M\right)\right) y=\left(I-\mu M^{*}\right) g \tag{2.2}
\end{equation*}
$$

whose kernel is now symmetric.
Theorem 1. If (2.1) has a unique solution in $L_{2}(\Omega)$, then $\left(I-\mu M^{*}\right) g$ is not the zero element of $L_{2}(\Omega)$, and both (2.1) and (2.2) have the same solution.

Proof. Let $z=(I-\mu M) y$. Then (2.2) becomes

$$
\begin{equation*}
\left(I-\mu M^{*}\right) z=\left(I-\mu M^{*}\right) g . \tag{2.3}
\end{equation*}
$$

Let us assume that $\left(I-\mu M^{*}\right) g$ is the zero element of $L_{2}(\Omega)$. Since the solution of (2.1) satisfies (2.3), it follows that $\left(I-\mu M^{*}\right) z=0$ has a non-trivial solution $z=g$. As Fredholm theorems hold for linear integral equations with weak singularities [4, pp. 59-65], we have by Fredholm theorem that its transpose $(I-\mu M) z=0$ has the same number of non-trivial solutions, contradicting by Fredholm alternative that (2.1) has a unique solution. Thus $\left(I-\mu M^{*}\right) g$ is not the zero element.

To prove (2.1) and (2.2) have the same solution, it is sufficient to show that (2.2) has a unique solution. Now if z is the unique solution of (2.3), then it follows from the assumption that (2.1) has a unique solution that y is the unique solution of (2.2). Therefore it is sufficient to prove that (2.3) has a unique solution. We prove this by contradiction. Let us assume that (2.3) has two distinct solutions z_{1} and z_{2}. Then their difference $z_{1}-z_{2}$ is a non-trivial solution of the homogeneous equation $\left(I-\mu M^{*}\right) z=0$. As before, we obtain a contradiction. Hence (2.1) and (2.2) have the same solution.
3. Approximate solution. Since we are interested in finding the solution of (2.1), it is natural to assume that (2.1) has a unique solution. From the theory of linear integral equations with weak singularities, the operator $K \equiv$ $\mu\left(M+M^{*}-\mu M^{*} M\right)$ is completely continuous [5, pp. 50-53]. Obviously K is selfadjoint. Let $f \equiv\left(I-\mu M^{*}\right) g$. f is known since μ, g and M^{*} are known. (2.2) becomes

$$
\begin{equation*}
(I-K) y=f \tag{3.1}
\end{equation*}
$$

Let $x_{0}=f$, and (,) be the inner product. We use the Gram-Schmidt process to construct the sequence $\left\{x_{0}, x_{1}, x_{2}, \cdots\right\}$ of orthogonal elements. It follows from the Principle of Mathematical Induction that

$$
x_{k+1}=\left(K-\alpha_{k} I\right) x_{k}-\beta_{k-1} x_{k-1}
$$

where

$$
\begin{gathered}
\alpha_{k}=\frac{\left(K x_{k}, x_{k}\right)}{\left(x_{k}, x_{k}\right)}, \\
\beta_{k-1}=\frac{\left(K x_{k}, x_{k-1}\right)}{\left(x_{k-1}, x_{k-1}\right)}=\frac{\left(x_{k}, x_{k}\right)}{\left(x_{k-1}, x_{k-1}\right)},
\end{gathered}
$$

$\beta_{-1}=0, x_{-1}=0$, and $k=0,1,2, \cdots$.
Let us assume that an infinite sequence $\left\{x_{n}\right\}$ can be constructed (since if the contrary held, then the following method would terminate with an exact solution). Also let H_{n} denote the subspace spanned by $\left\{x_{0}, x_{1}, x_{2}, \cdots, x_{n-1}\right\}, L$ be the linear manifold generated by $\left\{x_{0}, x_{1}, x_{2}, \cdots, x_{n}, \cdots\right\}$, and H denote L and its ideal elements. It is easy to see that H and its orthogonal complement are invariant for K. Thus K is decomposed into two independent parts: one on H and the other on its orthogonal complement. Since H is closed, it follows that H can be regarded as a Hilbert space. Thus the study of K is reduced to its study on the invariant subspaces.

On the subspace H_{n}, let us construct a linear operator K_{n} by

$$
\begin{gathered}
x_{k+1}=\left(K_{n}-\alpha_{k} I\right) x_{k}-\beta_{k-1} x_{k-1} \quad \text { for } \quad k=0,1,2, \cdots, n-2, \\
0=\left(K_{n}-\alpha_{n-1} I\right) x_{n-1}-\beta_{n-2} x_{n-2} .
\end{gathered}
$$

In the equation

$$
\begin{equation*}
\left(I-K_{n}\right) y_{n}=f, \tag{3.2}
\end{equation*}
$$

the domain of definition of $I-K_{n}$ is the intersection of the domain of definition of I and that of K_{n}, therefore $y_{n} \in H_{n}$ and hence can be written in the form

$$
\begin{equation*}
y_{n}=\sum_{k=0}^{n-1} c_{k} x_{k} \tag{3.3}
\end{equation*}
$$

where $c_{0}, c_{1}, c_{2}, \cdots, c_{n-1}$ are constants to be determined. Substituting (3.3) into (3.2) and equating coefficients of the x_{k} 's, we have the c_{k} 's determined by the system of equations:

$$
\begin{aligned}
& c_{0}-c_{1} \beta_{0}-c_{0} \alpha_{0}=1, \\
& -c_{k-1}+\left(1-\alpha_{k}\right) c_{k}-\beta_{k} c_{k+1}=0 \quad \text { for } \quad k=1,2,3, \cdots, n-1,
\end{aligned}
$$

and $c_{n}=0$. Thus y_{n} can be constructed.
The author would like to express his gratitude to Professor J.L. Howland and Professor G.F.D. Duff for their suggestions.

REFERENCES

[1] H. H. Kagiwada, R. E. Kalaba and A. Schumitzky: A Representation for the solution of Fredholm integral equations, Proc. Amer. Math. Soc. 23 (1969), 37-40.
[2] W. Karush: Convergence of a method of solving linear problems, Proc. Amer. Math. Soc. 3 (1952), 839-851.
[3] M. G. Kreǐn: On a new method of solution of linear integral equations of first and second kinds, Dokl. Akad. Nauk SSSR 100 (1955), 413-416.
[4] S. G. Mikhlin: Integral equations and their applications to certain problems in mechanics, mathematical physics and technology, Pergamon Press, New York, 1957, Chap. I, pp. 59-65.
[5] S. G. Mikhlin: The problem of the minimum of a quadratic functional, Holden-Day, Inc., San Francisco, 1965, Chap. II, pp. 49-53.
[6] E. Schmidt: Entwicklung willkürlicher Funktionen nach Systemen vorgeschriebener, Diss, Göttingen (1905), $33 S=$ Math. Ann. 63 (1907), 433-476.

Department of Mathematics
The Florida State University Tallahassee, Florida 32306
U.S.A.

