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1. Introduction. Krern [3] gave a new method for solving an integral

equation of the second kind by deriving a representation formula for the solu-

tion. Recently under the assumption of existence of a unique solution, Kagiwada,

Kalaba and Schumitzky [1] gave, a better representation formula for the solution
$y(t, x)$ of the integral equation:

$y(t, x)-\int_{0}^{l}k(t, u)y(u, x)du=g(t)$ for $0\leqq t\leqq x$ ,

where $x$ is sufficiently small, $g(t)$ and $k(t, u)$ are continuous, and $k(t, u)$ is sym-

metric.
In this work, we consider in a Hilbert space framework a non-homogeneous

integral equation of the second kind having a non-symmetric real kernel, which

is allowed to have a weak singularity [5, p. 49]. We use the technique due to

Schmidt [6] to symmetrize the integral operator. We show that this process

does not affect the original solution. In the construction of orthogonal elements,

we use the Gram-Schmidt process. Because the operator is symmetric, this

gives rise to a three term recurrence formula, which in tum leads to a system

of formulae of simple algebraic form for the approximate solution. The method

used is genuinely constructive since we begin the construction with a known
element. As the operator after symmetrization is completely continuous and
self-adjoint, it follows from Karush [2] that the approximate solution, which is

the solution of the corresponding finite dimensional problem, tends to the original

solution faster than any geometrical progression.

2. Symmetrization. Consider the Hilbert space $L_{2}(\Omega)$ of all equivalence

classes of Lebesgue square integrable real-valued functions in a bounded open

connected set $\Omega$ of the n-dimensional Euclidean space. Let $M(Pq)$ , where $p$ and
$q$ are any two points in $\Omega$ , be a non-symmetric real kernel having a weak
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singularity. Our purpose is to find the solution $y$ in $L_{2}(\Omega)$ of the equation

$y(p)-\mu\int_{\Omega}M(Pq)y(q)dq=g(P)$ ,

where $\mu$ is a given real constant, and $g$ is a given element in $L_{2}(\Omega)$ . Let us
denote this equation by

(2.1) $(I-\mu M)y=g$ ,

where $I$ is the identity operator.
Let $M^{*}(p, q)=M(q, p)$ , and also let $M^{*}$ be the operator corresponding to

$M^{*}(p, q)$ . From (2.1),

$(M^{*}-\mu M^{*}M)y=M^{*}g$ .
Multiplying this by $-\mu$ and adding to (2.1), we have

(2.2) $(I-\mu(M+M^{*}-\mu M^{*}M))y=(I-\mu M^{*})g$

whose kernel is now symmetric.

Theorem 1. If (2.1) has a unique solution in $L_{2}(\Omega)$ , then $(I-\mu M^{*})g$ is not the
zero element of $L_{2}(\Omega)$ , and both (2.1) and (2.2) have the same solution.

Proof. Let $z=(I-\mu M)y$ . Then (2.2) becomes

(2.3) $(I-\mu M^{*})z=(I-\mu M^{*})g$ .
Let us assume that $(I-\mu M^{*})g$ is the zero element of $L_{2}(\Omega)$ . Since the solu-

tion of (2.1) satisfies (2.3), it follows that $(I-\mu M^{*})z=0$ has a non-trivial solution
$z=g$ . As Fredholm theorems hold for linear integral equations with weak
singularities [4, pp. 59-65], we have by Fredholm theorem that its transpose
$(I-\mu M)z=0$ has the same number of non-trivial solutions, contradicting by
Fredholm alternative that (2.1) has a unique solution. Thus $(I-\mu M^{*})g$ is not
the zero element.

To prove (2.1) and (2.2) have the same solution, it is sufficient to show that
(2.2) has a unique solution. Now if $z$ is the unique solution of (2.3), then it
follows from the assumption that (2.1) has a unique solution that $y$ is the unique
solution of (2.2). Therefore it is sufficient to prove that (2.3) has a unique
solution. We prove this by contradiction. Let us assume that (2.3) has two
distinct solutions $z_{1}$ and $z_{2}$ . Then their difference $z_{1}-z_{2}$ is a non-trivial solution
of the homogeneous equation $(I-\mu M^{*})z=0$. As before, we obtain a contradiction.
Hence (2.1) and (2.2) have the same solution.
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3. Approximate solution. Since we are interested in finding the solution
of (2.1), it is natural to assume that (2.1) has a unique solution. From the
theory of linear integral equations with weak singularities, the operator $ K\equiv$

$\mu(M+M^{*}-\mu M^{*}M)$ is completely continuous [5, pp. 50-53]. Obviously $K$ is self-
adjoint. Let $f\equiv(I-\mu M^{*})g$ . $f$ is known since $\mu,$ $g$ and $M^{*}$ are known. (2.2)

becomes

(3.1) $(I-K)y=f$ .
Let $x_{0}=f$, and $(, )$ be the inner product. We use the Gram-Schmidt process

to construct the sequence $\{x_{0}, x_{1}, x_{2}, \cdots\}$ of orthogonal elements. It follows from
the Principle of Mathematical Induction that

$x_{k+1}=(K-\alpha_{k}I)x_{k}-\beta_{k-1}x_{k-1}$

where

$\alpha_{k}=\frac{(Kx_{k},x_{k})}{(x_{k},x_{k})}$ ,

$\beta_{k-1}=\frac{(Kx_{k},x_{k-1})}{(x_{k-1},x_{k-1})}=\frac{(x_{k},x_{k})}{(x_{k-1},x_{k-1})}$ ,

$\beta_{-1}=0,$ $x_{-1}=0$ , and $k=0,1,2,$ $\cdots$ .
Let us assume that an infinite sequence $\{x,\}$ can be constructed (since if the

contrary held, then the following method would terminate with an exact solu-
tion). Also let $H_{n}$ denote the subspace spanned by $\{x_{0}, x_{1}, x_{2}, \cdots, x_{n-1}\},$ $L$ be the
linear manifold generated by $\{x_{0}, x_{1}, x_{2}, \cdots, x_{n}, \cdots\}$ , and $H$ denote $L$ and its
ideal elements. It is easy to see that $H$ and its orthogonal complement are
invariant for $K$. Thus $K$ is decomposed into two independent parts: one on
$H$ and the other on its orthogonal complement. Since $H$ is closed, it follows
that $H$ can be regarded as a Hilbert space. Thus the study of $K$ is reduced to
its study on the invariant subspaces.

On the subspace $H_{n}$ , let us construct a linear operator $K_{n}$ by

$x_{k+1}=(K_{n}-\alpha_{k}I)x_{k}-\beta_{k-1}x_{k-1}$ for $k=0,1,2,$ $\cdots,$ $n-2$ ,
$0=(K_{n}-\alpha_{n-1}I)x_{n-1}-\beta_{n-2}x_{n-2}$ .

In the equation

(3.2) $(I-K_{n})y_{n}=f$ ,

the domain of definition of $I-K$. is the intersection of the domain of definition
of $I$ and that of $K_{n}$ , therefore $y,$ $\in H_{n}$ and hence can be written in the form
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(3.3) $y_{n}=\sum_{k=0}^{n-1}c_{k}x_{k}$

where $c_{0},$ $c_{1},$ $c_{2},$ $\cdots,$ $c_{n-1}$ are constants to be determined. Substituting (3.3) into
(3.2) and equating coefficients of the $x_{k}’ s$ , we have the $c_{k}’ s$ determined by the
system of equations:

$c_{0}-c_{1}\beta_{0}-c_{0}\alpha_{0}=1$ ,
$-c_{k-1}+(1-\alpha_{k})c_{k}-\beta_{k}c_{k+1}=0$ for $k=1,2,3,$ $\cdots,$ $n-1$ ,

and $c_{n}=0$ . Thus $y_{n}$ can be constructed.
The author would like to express his gratitude to Professor J. L. Howland

and Professor G. F. D. Duff for their suggestions.
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