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1. Introduction. Krein gave a new method for solving an integral
equation of the second kind by deriving a representation formula for the solu-
tion. Recently under the assumption of existence of a unique solution, Kagiwada,
Kalaba and Schumitzky gave a better representation formula for the solution
y(t, x) of the integral equation:

y(t, x)— So k(t, u)y(u, x)du=g(t) for O0=t==x,

where x is sufficiently small, g(¢) and k(¢, ») are continuous, and k(¢, %) is sym-
metric.

In this work, we consider in a Hilbert space framework a non-homogeneous
integral equation of the second kind having a non-symmetric real kernel, which
is allowed to have a weak singularity [5, p. 49]. We use the technique due to
Schmidt [6] to symmetrize the integral operator. We show that this process
does not affect the original solution. In the construction of orthogonal elements,
we use the Gram-Schmidt process. Because the operator is symmetric, this
gives rise to a three term recurrence formula, which in turn leads to a system
of formulae of simple algebraic form for the approximate solution. The method
used is genuinely constructive since we begin the construction with a known
element. As the operator after symmetrization is completely continuous and
self-adjoint, it follows from Karush [2] that the approximate solution, which is
the solution of the corresponding finite dimensional problem, tends to the original
solution faster than any geometrical progression.

2, Symmetrization. Consider the Hilbert space Ly(2) of all equivalence
classes of Lebesgue square integrable real-valued functions in a bounded open
connected set 2 of the n-dimensional Euclidean space. Let M(p, q), where p and
g are any two points in 2, be a non-symmetric real kernel having a weak
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singularity. Our purpose is to find the solution y in L.(2) of the equation

yo—u| Mp, 05@dg=9(h),

where ¢ is a given real constant, and g is a given element in L,(2). Let us
denote this equation by

@.1) (I—pM)y=g,

where I is the identity operator.
Let M*(p, 9)=M(q, p), and also let M* be the operator corresponding to
M*(p,q). From [2.1),

(M*—pM*M)y=M*g .
Multiplying this by —g and adding to [2.I), we have
(2.2) (I—p(M+M*—pM*M))y=I~pM*)g
whose kernel is now symmetric.

Theorem 1. If (2.1) has a unique solution in L,(2), then (I—pM™*)g is not the
zero element of L,(Q), and both (2.1) and (2.2) have the same solution.

Proof. Let z=(I—pM)y. Then becomes
(2.3) (I—pM*)z=I—pM™)g .

Let us assume that (J—pM™)g is the zero element of L,(2). Since the solu-
tion of satisfies [(2.3), it follows that (J—uM?™)z=0 has a non-trivial solution
z=g. As Fredholm theorems hold for linear integral equations with weak
singularities [4, pp. 59-65], we have by Fredholm theorem that its transpose
(I—pM)z=0 has the same number of non-trivial solutions, contradicting by
Fredholm alternative that has a unique solution. Thus (/—gM™)g is not
the zero element.

To prove and have the same solution, it is sufficient to show that
(2.2) has a unique solution. Now if z is the unique solution of [2.3), then it
follows from the assumption that [2.I) has a unique solution that y is the unique
solution of [2.2). Therefore it is sufficient to prove that has a unique
solution. We prove this by contradiction. Let us assume that has two
distinct solutions z, and z,. Then their difference z;,—2z, is a non-trivial solution
of the homogeneous equation (I—uM™*)z=0. As before, we obtain a contradiction.
Hence [2.1) and [(2.2] have the same solution.
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3. Approximate solution. Since we are interested in finding the solution
of [2.1), it is natural to assume that has a unique solution. From the
theory of linear integral equations with weak singularities, the operator K=
w(M+M*—uM*M) is completely continuous [5, pp. 50-53]. Obviously K is self-
adjoint. Let f=(I—pM™*)g. f is known since z,g and M* are known.
becomes

(3.1 I—K)y=f.

Let x,=f, and (, ) be the inner product. We use the Gram-Schmidt process
to construct the sequence {xy, x;, %, ---} of orthogonal elements. It follows from
the Principle of Mathematical Induction that

Xe1=(K—ap]) % — Br—1%5-1
where

o= By X2)
(%x, %1)
By = (K, ) (6 %)
(Xr-1) Xk—1)  (Xr—1, Xp-1)

B-1=0, x.,=0, and £=0,1,2, ---.

Let us assume that an infinite sequence {x,} can be constructed (since if the
contrary held, then the following method would terminate with an exact solu-
tion). Also let H, denote the subspace spanned by {x,, xi, Xz, +**, ¥x-1}, L be the
linear manifold generated by {x., X1, X2, **+, %y, -}, and H denote L and its
ideal elements. It is easy to see that H and its orthogonal complement are
invariant for K. Thus K is decomposed into two independent parts: one on
H and the other on its orthogonal complement. Since H is closed, it follows
that H can be regarded as a Hilbert space. Thus the study of K is reduced to
its study on the invariant subspaces.

On the subspace H,, let us construct a linear operator K, by

xk+1=(K,,—akI)xk—ﬁk_1xk_1 for k=0, 1, 2, ey, n—2 )
0=(Kn_an—1I)xn-1_.B‘n—exn—z .
In the equation

(3.2) (I— Kn)y n =f ’

the domain of definition of I— K, is the intersection of the domain of definition
of I and that of K,, therefore y, e H, and hence can be written in the form
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n—1

3.3 Y= X CiX
k=0

where ¢y, ¢, Cs, *++, Cs—; are constants to be determined. Substitufing into

and equating coefficients of the x.’s, we have the ¢;’s determined by the
system of equations:

Co—C1fo—Corrg=1,
_Ck—1+(1—ak)ck—f9kck+1=0 for k=17 2, 3, tty n—1 ’

and ¢,=0. Thus y, can be constructed.
The author would like to express his gratitude to Professor J. L. Howland
and Professor G. F. D. Duff for their suggestions.
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