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1. Introduction. Let % be a nonassociative algebra over a field. For every
x, ¥y in A, we put

D(x, y)=[L(x), L(»)]+[L(x), R(YI+R(x), R(] ,

where L(x) or R(x) is the left or right multiplication of %; y— xy, y— yx, re-
spectively. Now we define a more generalized standard algebra to be a non-
associative algebra % in which the following conditions are satisfied;

(1) D(x, x)=0,
(2) D(x, y2)+D(y, zx)+D(2, xy)=0 ,
(3) D(x, y) is a derivation of %

for all x, y, z in A. Clearly every Lie algebra is a more generalized standard
algebra. In 3, we prove that every generalized standard algebra, defined in [5],
satisfies these conditions, and that any more generalized standard algebra is a
noncommutative Jordan algebra. Hence, every Jordan or alternative algebra is
also a more generalized standard algebra. In 2, we give a lemma for use in 3.
Using this lemma, we remark that the axioms in the definition of generalized
standard algebras in [5] are not independent. In 4, we prove that U~ is a general
Lie triple system (resp. Malcev algebra) if % is a more generalized standard (resp.
generalized standard) algebra, where %~ is the algebra obtained by defining a
new product [x, yY]=xy—yx in the same vector space as .

Throughout this paper, wé assume that the characteristic of the base field is

not 2. And we use the following notations;
[x, Y]l=xy—yx , x-y=%(xy+yx) , (x5, 2=(xy)z—x(y2) ,

H(x,y, z)=(x,y, 2)+(y,z,x)+(z, %,y .

2. Generalized standard algebras. In‘ [5], Schafer has defined a generalized
standard algebra to be a nonassociative algebra % in which the following condi-
tions are satisfied;
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(3) D(x, y) is a derivation of ¥,

(4) (%,y, £)=0, i.e. A is flexible,

(5) H(x,y,2)x=H(x, y, x2) ,

(6) (x, w, y2)+(y, w, 22)+(2, w, xy)=lx, (3, z, w)]+ (%, y, [w, 2])

for all x, y, z, w in .

Lemma 1. Let A be a nonassociative algebra, in which (4) and (6) are satisfied.
Then the following identities are also satisfied;

(7) (x, 3, [z, w)=—(y, x, [z, w]) ,

(8) (%, 5, [z, w)=—(x, [z, w], ) ,

(9) [x, (3, 2, w)]=lx, (z, w, )]=lx, w, 3, 2)] ,
(10) [x, (3, %, 2)]=(x, ¥, [x, 2]) ,

(11) (x, 3, [x, 2D=—(x, [y, ], 2)

for all x, v, z, w in A,

Proof. Already (7) and (8) have been proved in [5] and [3], respectively. On
the other hand, (9) and have intrisically appeared in [3]. In fact, the following
identities have been given there;

(12) - %, (,2,2]=0,
(13) : (%, 3, [x, 2D=Ix, (x, 2,5)] .

Hence (9) is a direct result of (4) and the identity obtained by linearization of
(12), where is a direct result of (9) and [(13). Now it remains only to prove
(11). It is known that the identity

(14) (xy, z, w)+(x, y, 2w)=x(y, 2, w)+(x, y, Jw+(x, ¥z, w)

is satisfied for all x, y, 2z, w in any nonassociative algebra. Interchange x (resp.
y) and w (resp. 2) in [(14), and summarize to obtain '

(15  (x,3], z, w)+(x, 9, [z, w)=(x, [y, 2], w)+Ix, (, 2, W) +[(x, ¥, 2), w] .
Setting w=z in (15), and using (7) and [12), we have that

(x, [y, 2], 2+[(x, 9, 2), 2]=0,
which is equivalent to

(16) (2,1, 2], x)=—I[2, (y, 2, 2)] .
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Hence and imply [(11).

Now we are in a position to answer a question left to be open in [5].

Proposition 1. Let A be a nonassociative algebra in which (4) and (6) are
satisfied. Then (5) is always satisfied in N.

Proof. Using (4) and [(14), we see that

H(x,y, 2)x=(xy, z, x)—x(y, 2, x)+ (3, z, x)x+(2, %, yx)—(2, ¥, x)
and

H(x,y, x2)=(x, yx, 2)+x(3, x, 2)—(xy, %, 2)+(yx, z, £)+ (9, x, 2%)
“(3’, X, z)x+(xz, X, J’) .

It follows that

H(x,y, 2)x—H(x, y, x2)=([x, ¥}, 2, )+ (9, 2, %), 2]1+(z, z, [, *])
+(x, [x, y]’ z)-—[x, (J’, X, 2)]—(}’, X, [Z, x]) .

Using Lemma 1, we see that the right hand side of this identity vanishes, which
completes the proof.

3. More generalized standard algebras. Hereafter we denote by > the
cyclic sum with respect to the three elements x, ¥ and z; for example, 3 (x, w, y2)
=(x, w, y2)+(y, w, 22)+(2, w, xy) .

Lemma 2. In every generalized standard algebra W the following identities
are satisfied;

1n 2 (%, w, y2)=[w, (2,3, 2)] ,
(18) 2 (x,w, [y, 2D)=2lw, (2, 5, x)] ,
(19) 2 (x,w,y-2)=0,

(20) 2 (x-y,z,w)= 3 (x,y-2, w)

Jor all x, vy, z, w in A.

Proof. Linearizing of [10), we have
1) [, (9, w, D]+[w, (3, x, Dl=(x, , [w, 2D+ @, y, [x, 2]) .
By (4), (6), (9) and [21), we see that

2 (%, w, y2)=l[x, (3, 2, w)]+(x, 3, [w, 2D+ (y, w, [z, 2])
=—[x, (5, w, 2]+ (x, y, [w, 2D+ (w, v, [*, 2])
=[w, (y, x, 2]=[w, (2,5, »)] .
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The identities and are direct results of (4), (9) and [A7). To verify [(20),
we rewrite as

(xy, 2, w)—(x, yz, w)=(x, y, w—+x(y, z, w)+ (2w, y, x)
=(x,y, dw+2(y, 2z, w)+ 2w, y, x)+(z, wy, x)
+(z, w, y)x— (2, w, yx) .
It follows that

2 (xy, z,w)— X (x, y2, w)=H(x, y, 2w+ X (2, wy, x)
+ 2z, w, y)x— X (2, w, yx) .

Interchange x and y, and summarize to obtain
Xy, z,w—X(x,y2,w)="3X(2w,xY) .
Hence implies (20).

Proposition 2. Every generalized standard algebra is a more generalized
standard algebra.

Proof. Since (x,y, x)=0 is equivalent to D(x, x)=0, it is sufficient to prove
(2). In every flexible algebra, the following identities are satisfied;

(22) D(x, yyw=[lx, y], w]+2(w, y, x)+2(y, x, w)—(x, w, )
and
(23) 2%, yz]l=H(z, y, x) .

Using these identities with and [20), we see that
X D(x,y-dw=3X[[x,y-2}, wl—2 2 (x,y-2, w)+2 X (%9, 2, w)— Z (x, w, y-2)=0,
since H(z,y, x)=—H(y, 2z, x). Similarly, using (22), (23), (18) and Lemma 1, we

see that

3 D(x, [y, 2hw= X [[x, [y, 2]], w]+2 X (w, [y, 2], x)+2 X ([, 2], x, w)
— 2 (x,w, [y, 2D
=2[H(z, y, %), w]+3 X (x, w, [y, 2])
=6[(z, ¥, x), w]+6 [w, (2, y, x)]=0 .

Hence we see that 23 D(x, y2)=2 X D(x, y-2)+ 3 D(x, [y, z])=0, which completes
the proof.

Corollary. Let W be either a Jordan algebra or an alternative algebra. Then
W is a more generalized standard algebra.

Proposition 3. Every more generalized standard algebra over a field of
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characteristic prime to 6 is a noncommutative Jordan algebra.

Proof. Clearly (1) implies the flexibility of an algebra. Putting x=y=z in
(2), we have D(x%, x)=0, equivalently

(24) 2w, x, x1)+2(x, x*, w)=(x2, w, x)
by [22). On the other hand, we have that
(25) (w, x, x)+(x, 2%, w)=(x, w, x?) .

In fact, using and the flexibility, we see that (w, x, x4+ (x, 2%, w)=(w, x, x?)
—(w, 22, x) = (w, x, X)x—(wx, %, x) = (x, x, wx)—(x, %, wW)x = — (22, w, x) = (x, w, x2).
Now and imply (x%, w, x)=0, which completes the proof.

A nonassociative algebra U is called to be simple if it has no non-trivial ideal
and A?=+{0}.

Proposition 4. Every simple anti-commutative more generalized standard
algebra is a Lie algebra.

Proof. Since D(x, y)=[L(x), L(y)] is a derivation, we hé.ve [[L(x), L(»)], L(2)]
=L((x, 2z, ¥)), hence L(H(x, z,y))=0. This implies

(26) H(x, z,9)=0.

In fact, since B={xeA|L(x)=0} is an ideal, it must be {0} by the assumption of
simplicity. By anti-commutativity, implies the Jacobi’s identity.

Now assume that % is a not anti-commuatative simple algebra of finite di-
mension. In case the characteristic of base field is 0, it is known that the al-
gebra A, in which multiplication is defined by x-y, is a simple Jordan algebra
(see Block [2]). Hence N is a Jordan, quasi-associative or quadratic algebra (see
Albert [1]).

4. Algebras A~. In [6], Yamaguti has defined a general Lie triple system
as a generalization of a Lie triple system, used in differential geometry and Jordan
algebras. Now, we give an equivalent definition for our convenience. A general
Lie triple system is an anti-commutative algebra A with a bilinear mapping;
(%,9) > T(x,y), of AXA into the derivation algebra of N, satisfying the following
conditions;

(i) T(x, x)=0,

(ii) 2 T(x, y)z= X (xy)z,

(iii) > T(xy, 2)=0,
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(iv) [T(x, ), Tz, w)]=T(T(x, y)z, w)+ T(z, T(x, y)w)
for all x, ¥, 2z, w in AU,

Now let % be a more generalized standard algebra. Putting T(x, y)=2D(y, x),
we can easily prove the following

Proposition 5. Let W be a more generalized standard algebra. Then, the
algebra N~ is a general Lie triple system.

An anti-commutative algebra % is called to be a Malcev algebra if the following
identity is satisfied;

27 (xy)(x2) =((xy)2) 2+ ((y2) %) x+ ((2x) %)y
for all x, ¥, zin A. We note that is equivalent to
(28) (%,9,x=(3, x, 2%) .

Proposition 6. Let N be a generalized standard algebra. Then the algebra
A~ is a Malcev algebra.

Proof. By (x,y,2)~, we denote the associator of x, y, z in A~; i.e. (x,5,2)~
=[[x, 51, 21—[x, [, 21]. Then we see that (x,y, 2)~=2H(x, y, 2)+[y,[2, #]] in any
flexible algebra. It follows that %~ is a Malcev algebra if and only if the identity
[H(x,y, 2), x1=H(y, x, [2, x]) is satisfied for all x,, zin A. In a generalized standard
algebra, it follows from that [H(x, y, 2), x]—H(y, x, [z, x)=3l(z, %, ), x]—
3(y, x, [z, x1)=3lx, (¥, %, 2]—3(%, , [x, 2)=0. Hence A~ is a Malcev algebra.

Let 2 be a more generalized standard algebra. By &, we denote the sub-
space spanned by all D(x,y) in the derivation algebra Z'(¥) of A. The space 2
is a subalgebra of =Z(N), hence of the derivation algebra Z(A~) of A~. Then
the direct sum . =U+ <> forms a Lie algebra with respect to the new blacket
operation [, J* defined as follows;

[x+D, y+ EY*=[x, y1+ D(y)—E(x)+[D, E1+2D(y, )

for all x, ¥ in A and all D, Ein &. Although it is not difficult to verify directly
the Jacobi’s identity, it is also obtained from a theorem for general Lie triple
systems (see [6). This implies

Proposition 7. Every more generalized standard algebra is a reductive Lie ad-
missible algebra in the sence of Sagle [4].
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