ON A CLASS OF NONASSOCIATIVE ALGEBRAS

By

Hiroshi Asano

(Received January 21, 1972)

1. Introduction. Let \mathfrak{A} be a nonassociative algebra over a field. For every x, y in \mathfrak{U}, we put

$$
D(x, y)=[L(x), L(y)]+[L(x), R(y)]+[R(x), R(y)],
$$

where $L(x)$ or $R(x)$ is the left or right multiplication of $\mathfrak{A} ; y \rightarrow x y, y \rightarrow y x$, respectively. Now we define a more generalized standard algebra to be a nonassociative algebra \mathfrak{A} in which the following conditions are satisfied;

$$
\begin{gather*}
D(x, x)=0 \tag{1}\\
D(x, y z)+D(y, z x)+D(z, x y)=0, \tag{2}\\
D(x, y) \text { is a derivation of } \mathfrak{U} \tag{3}
\end{gather*}
$$

for all x, y, z in \mathfrak{N}. Clearly every Lie algebra is a more generalized standard algebra. In 3, we prove that every generalized standard algebra, defined in [5], satisfies these conditions, and that any more generalized standard algebra is a noncommutative Jordan algebra. Hence, every Jordan or alternative algebra is also a more generalized standard algebra. In 2, we give a lemma for use in 3. Using this lemma, we remark that the axioms in the definition of generalized standard algebras in [5] are not independent. In 4, we prove that \mathscr{M}^{-}is a general Lie triple system (resp. Malcev algebra) if \mathfrak{A} is a more generalized standard (resp. generalized standard) algebra, where \mathfrak{A}^{-}is the algebra obtained by defining a new product $[x, y]=x y-y x$ in the same vector space as \because.

Throughout this paper, we assume that the characteristic of the base field is not 2. And we use the following notations;

$$
\begin{gathered}
{[x, y]=x y-y x, \quad x \cdot y=\frac{1}{2}(x y+y x), \quad(x, y, z)=(x y) z-x(y z),} \\
H(x, y, z)=(x, y, z)+(y, z, x)+(z, x, y) .
\end{gathered}
$$

2. Generalized standard algebras. In [5], Schafer has defined a generalized standard algebra to be a nonassociative algebra \mathfrak{X} in which the following conditions are satisfied;

$$
\begin{equation*}
D(x, y) \text { is a derivation of } \mathfrak{\vartheta}, \tag{3}
\end{equation*}
$$

$$
\begin{gather*}
(x, y, x)=0, \text { i.e. } \mathfrak{U} \text { is flexible, } \tag{4}\\
H(x, y, z) x=H(x, y, x z), \tag{5}\\
(x, w, y z)+(y, w, x z)+(z, w, x y)=[x,(y, z, w)]+(x, y,[w, z]) \tag{6}
\end{gather*}
$$

for all x, y, z, w in \mathfrak{X}.
Lemma 1. Let \mathfrak{N} be a nonassociative algebra, in which (4) and (6) are satisfied. Then the following identities are also satisfied;

$$
\begin{align*}
& (x, y,[z, w])=-(y, x,[z, w]), \tag{7}\\
& (x, y,[z, w])=-(x,[z, w], y), \tag{8}
\end{align*}
$$

$$
\begin{equation*}
[x,(y, z, w)]=[x,(z, w, y)]=[x,(w, y, z)] \tag{9}
\end{equation*}
$$

$$
\begin{equation*}
[x,(y, x, z)]=(x, y,[x, z]), \tag{10}
\end{equation*}
$$

$$
\begin{equation*}
\left(x, y_{2}[x, z]\right)=-(x,[y, x], z) \tag{11}
\end{equation*}
$$

for all x, y, z, w in \mathfrak{N}.
Proof. Already (7) and (8) have been proved in [5] and [3], respectively. On the other hand, (9) and (10) have intrisically appeared in [3]. In fact, the following identities have been given there;

$$
\begin{gather*}
{[x,(y, z, z)]=0,} \tag{12}\\
(x, y,[x, z])=[x,(x, z, y)] . \tag{13}
\end{gather*}
$$

Hence (9) is a direct result of (4) and the identity obtained by linearization of (12), where (10) is a direct result of (9) and (13). Now it remains only to prove (11). It is known that the identity

$$
\begin{equation*}
(x y, z, w)+(x, y, z w)=x(y, z, w)+(x, y, z) w+(x, y z, w) \tag{14}
\end{equation*}
$$

is satisfied for all x, y, z, w in any nonassociative algebra. Interchange x (resp. y) and w (resp. z) in (14), and summarize to obtain

$$
\begin{equation*}
([x, y], z, w)+(x, y,[z, w])=(x,[y, z], w)+[x,(y, z, w)]+[(x, y, z), w] \tag{15}
\end{equation*}
$$

Setting $w=z$ in (15), and using (7) and (12), we have that

$$
(x,[y, z], z)+[(x, y, z), z]=0,
$$

which is equivalent to

$$
\begin{equation*}
(z,[y, z], x)=-[z,(y, z, x)] \tag{16}
\end{equation*}
$$

Hence (10) and (16) imply (11).
Now we are in a position to answer a question left to be open in [5].
Proposition 1. Let \mathfrak{A} be a nonassociative algebra in which (4) and (6) are satisfied. Then (5) is always satisfied in \mathfrak{A}.

Proof. Using (4) and (14), we see that

$$
H(x, y, z) x=(x y, z, x)-x(y, z, x)+(y, z, x) x+(z, x, y x)-(z, x y, x)
$$

and

$$
\begin{aligned}
H(x, y, x z)= & (x, y x, z)+x(y, x, z)-(x y, x, z)+(y x, z, x)+(y, x, z x) \\
& -(y, x, z) x+(x z, x, y) .
\end{aligned}
$$

It follows that

$$
\begin{aligned}
H(x, y, z) x-H(x, y, x z)= & ([x, y], z, x)+[(y, z, x), x]+(z, x,[y, x]) \\
& +(x,[x, y], z)-[x,(y, x, z)]-(y, x,[z, x]) .
\end{aligned}
$$

Using Lemma 1, we see that the right hand side of this identity vanishes, which completes the proof.
3. More generalized standard algebras. Hereafter we denote by Σ the cyclic sum with respect to the three elements x, y and z; for example, $\Sigma(x, w, y z)$ $=(x, w, y z)+(y, w, z x)+(z, w, x y)$.

Lemma 2. In every generalized standard algebra \mathfrak{A} the following identities are satisfied;

$$
\begin{gather*}
\Sigma(x, w, y z)=[w,(z, y, x)] \tag{17}\\
\Sigma(x, w,[y, z])=2[w,(z, y, x)] \tag{18}\\
\Sigma(x, w, y \cdot z)=0, \tag{19}\\
\Sigma(x \cdot y, z, w)=\Sigma(x, y \cdot z, w) \tag{20}
\end{gather*}
$$

for all x, y, z, w in \mathfrak{N}.
Proof. Linearizing of (10), we have

$$
\begin{equation*}
[x,(y, w, z)]+[w,(y, x, z)]=(x, y,[w, z])+(w, y,[x, z]) . \tag{21}
\end{equation*}
$$

By (4), (6), (9) and (21), we see that

$$
\begin{aligned}
\Sigma(x, w, y z) & =[x,(y, z, w)]+(x, y,[w, z])+(y, w,[z, x]) \\
& =-[x,(y, w, z)]+(x, y,[w, z])+(w, y,[x, z]) \\
& =[w,(y, x, z)]=[w,(z, y, x)] .
\end{aligned}
$$

The identities (18) and (19) are direct results of (4), (9) and (17). To verify (20), we rewrite (14) as

$$
\begin{aligned}
(x y, z, w)-(x, y z, w)= & (x, y, z) w+x(y, z, w)+(z w, y, x) \\
= & (x, y, z) w+x(y, z, w)+z(w, y, x)+(z, w y, x) \\
& +(z, w, y) x-(z, w, y x)
\end{aligned}
$$

It follows that

$$
\begin{aligned}
\Sigma(x y, z, w)-\Sigma(x, y z, w)= & H(x, y, z) w+\sum(z, w y, x) \\
& +\Sigma(z, w, y) x-\sum(z, w, y x) .
\end{aligned}
$$

Interchange x and y, and summarize to obtain

$$
\Sigma(x \cdot y, z, w)-\sum(x, y \cdot z, w)=-\sum(z, w, x \cdot y)
$$

Hence (19) implies (20).
Proposition 2. Every generalized standard algebra is a more generalized standard algebra.

Proof. Since $(x, y, x)=0$ is equivalent to $D(x, x)=0$, it is sufficient to prove (2). In every flexible algebra, the following identities are satisfied;

$$
\begin{equation*}
D(x, y) w=[[x, y], w]+2(w, y, x)+2(y, x, w)-(x, w, y) \tag{22}
\end{equation*}
$$

and

$$
\begin{equation*}
\Sigma[x, y z]=H(z, y, x) . \tag{23}
\end{equation*}
$$

Using these identities with (19) and (20), we see that

$$
\Sigma D(x, y \cdot z) w=\Sigma[[x, y \cdot z], w]-2 \Sigma(x, y \cdot z, w)+2 \Sigma(x \cdot y, z, w)-\Sigma(x, w, y \cdot z)=0
$$ since $H(z, y, x)=-H(y, z, x)$. Similarly, using (22), (23), (18) and Lemma 1, we see that

$$
\begin{aligned}
\Sigma D(x,[y, z]) w= & \Sigma[[x,[y, z]], w]+2 \sum(w,[y, z], x)+2 \Sigma([y, z], x, w) \\
& -\Sigma(x, w,[y, z]) \\
= & 2[H(z, y, x), w]+3 \sum(x, w,[y, z]) \\
= & 6[(z, y, x), w]+6[w,(z, y, x)]=0
\end{aligned}
$$

Hence we see that $2 \sum D(x, y z)=2 \sum D(x, y \cdot z)+\sum D(x,[y, z])=0$, which completes the proof.

Corollary. Let \mathfrak{N} be either a Jordan algebra or an alternative algebra. Then \mathfrak{A} is a more generalized standard algebra.

Proposition 3. Every more generalized standard algebra over a field of
characteristic prime to 6 is a noncommutative Jordan algebra.
Proof. Clearly (1) implies the flexibility of an algebra. Putting $x=y=z$ in (2), we have $D\left(x^{2}, x\right)=0$, equivalently

$$
\begin{equation*}
2\left(w, x, x^{2}\right)+2\left(x, x^{2}, w\right)=\left(x^{2}, w, x\right) \tag{24}
\end{equation*}
$$

by (22). On the other hand, we have that

$$
\begin{equation*}
\left(w, x, x^{2}\right)+\left(x, x^{2}, w\right)=\left(x, w, x^{2}\right) . \tag{25}
\end{equation*}
$$

In fact, using (14) and the flexibility, we see that $\left(w, x, x^{2}\right)+\left(x, x^{2}, w\right)=\left(w, x, x^{2}\right)$ $-\left(w, x^{2}, x\right)=(w, x, x) x-(w x, x, x)=(x, x, w x)-(x, x, w) x=-\left(x^{2}, w, x\right)=\left(x, w, x^{2}\right)$. Now (24) and (25) imply ($\left.x^{2}, w, x\right)=0$, which completes the proof.

A nonassociative algebra \mathfrak{A} is called to be simple if it has no non-trivial ideal and $A^{2} \neq\{0\}$.

Proposition 4. Every simple anti-commutative more generalized standard algebra is a Lie algebra.

Proof. Since $D(x, y)=[L(x), L(y)]$ is a derivation, we have $[[L(x), L(y)], L(z)]$ $=L((x, z, y))$, hence $L(H(x, z, y))=0$. This implies

$$
\begin{equation*}
H(x, z, y)=0 \tag{26}
\end{equation*}
$$

In fact, since $\mathfrak{B}=\{x \in \mathfrak{X} \mid L(x)=0\}$ is an ideal, it must be $\{0\}$ by the assumption of simplicity. By anti-commutativity, (26) implies the Jacobi's identity.

Now assume that \mathfrak{A} is a not anti-commuatative simple algebra of finite dimension. In case the characteristic of base field is 0 , it is known that the algebra \mathfrak{Y}^{+}, in which multiplication is defined by $x \cdot y$, is a simple Jordan algebra (see Block [2]). Hence $\mathfrak{\Omega}$ is a Jordan, quasi-associative or quadratic algebra (see Albert [1]).
4. Algebras \mathfrak{A}^{-}-. In [6], Yamaguti has defined a general Lie triple system as a generalization of a Lie triple system, used in differential geometry and Jordan algebras. Now, we give an equivalent definition for our convenience. A general Lie triple system is an anti-commutative algebra \mathfrak{A} with a bilinear mapping; $(x, y) \rightarrow T(x, y)$, of $\mathfrak{A} \times \mathfrak{A}$ into the derivation algebra of \mathfrak{N}, satisfying the following conditions;
(i)
(ii)
(iii)

$$
\begin{gathered}
T(x, x)=0 \\
\Sigma T(x, y) z=\sum(x y) z \\
\sum T(x y, z)=0
\end{gathered}
$$

(iv)

$$
[T(x, y), T(z, w)]=T(T(x, y) z, w)+T(z, T(x, y) w)
$$

for all x, y, z, w in \mathfrak{N}.
Now let \mathfrak{A} be a more generalized standard algebra. Putting $T(x, y)=2 D(y, x)$, we can easily prove the following

Proposition 5. Let \mathfrak{A} be a more generalized standard algebra. Then, the algebra \mathfrak{A}^{-}is a general Lie triple system.

An anti-commutative algebra \mathfrak{N} is called to be a Malcev algebra if the following identity is satisfied;

$$
\begin{equation*}
(x y)(x z)=((x y) z) x+((y z) x) x+((z x) x) y \tag{27}
\end{equation*}
$$

for all x, y, z in \mathfrak{N}. We note that (27) is equivalent to

$$
\begin{equation*}
(x, y, z) x=(y, x, z x) \tag{28}
\end{equation*}
$$

Proposition 6. Let \mathfrak{A} be a generalized standard algebra. Then the algebra $\mathfrak{\mathfrak { Q }}-$ is a Malcev algebra.

Proof. By $(x, y, z)^{-}$, we denote the associator of x, y, z in \mathfrak{A}^{-}; i.e. $(x, y, z)^{-}$ $=[[x, y], z]-[x,[y, z]]$. Then we see that $(x, y, z)^{-}=2 H(x, y, z)+[y,[z, x]]$ in any flexible algebra. It follows that \mathfrak{A}^{-}is a Malcev algebra if and only if the identity $[H(x, y, z), x]=H(y, x,[z, x])$ is satisfied for all x, y, z in \mathfrak{N}. In a generalized standard algebra, it follows from Lemma 1 that $[H(x, y, z), x]-H(y, x,[z, x])=3[(z, x, y), x]$ $3(y, x,[z, x])=3[x,(y, x, z)]-3(x, y,[x, z])=0$. Hence $\mathfrak{X}-$ is a Malcev algebra.

Let \mathfrak{H} be a more generalized standard algebra. By \mathscr{D}, we denote the subspace spanned by all $D(x, y)$ in the derivation algebra $\mathscr{D}(\mathfrak{X})$ of \mathfrak{A}. The space \mathscr{D} is a subalgebra of $\mathscr{D}(\mathfrak{Y})$, hence of the derivation algebra $\mathscr{D}\left(\mathfrak{H}^{-}\right)$of \mathfrak{A}^{-}. Then the direct sum $\mathscr{L}=\mathfrak{Y}+\mathscr{D}$ forms a Lie algebra with respect to the new blacket operation [,]* defined as follows;

$$
[x+D, y+E]^{*}=[x, y]+D(y)-E(x)+[D, E]+2 D(y, x)
$$

for all x, y in \mathfrak{U} and all D, E in \mathscr{D}. Although it is not difficult to verify directly the Jacobi's identity, it is also obtained from a theorem for general Lie triple systems (see [6]). This implies
Proposition 7. Every more generalized standard algebra is a reductive Lie admissible algebra in the sence of Sagle [4].

REFERENCES

[1] A. A. Albert, Power-associative rings, Trans. Amer. Math. Soc. U.S.A., 64 (1948),

552-593.
[2] R.E. Block, Determination of A^{+}for the simple flexible algebras, Proc. Nat. Acad. Sci. U.S.A., 61 (1968), 394-397.
[3] E. Kleinfeld, M. H. Kleinfeld, and F. Kosier, A generalization of commutative and alternative rings, Canad. J. Math., 22 (1970), 348-362.
[4] A. A. Sagle, On reductive Lie admissible algebras, Canad. J. Math., 23 (1971), 325331.
[5] R.D. Schafer, Generalized standard algebras, J. Algebra, 12 (1969), 386-417.
[6] K. Yamaguti, On the Lie triple system and its generalization, J. Sci. Hiroshima Univ. Ser. A, 21 (1958), 155-160.

Department of Mathematics, Yokohama City University, 4646 Mutsuura-cho, Kanazawa-ku, Yokohama 237, Japan.

