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1. Introduction. Let $\mathfrak{U}$ be a nonassociative algebra over a field. For every
$x,$ $y$ in $\mathfrak{U}$ , we Put

$D(x, y)=[L(x), L(y)]+[L(x), R(y)]+[R(x), R(y)]$ ,

where $L(x)$ or $R(x)$ is the left or right multiplication of $\mathfrak{U};y\rightarrow xy,$ $y\rightarrow yx$ , re-
spectively. Now we define a more generalized standard algebra to be a non.
associative algebra $\mathfrak{U}$ in which the following conditions are satisfied;

(1) $D(x, x)=0$ ,

(2) $D(x, yz)+D(y, zx)+D(z, xy)=0$ ,

(3) $D(x, y)$ is a derivation of $\mathfrak{U}$

for all $x,$ $y,$ $z$ in $\mathfrak{U}$ . Clearly every Lie algebra is a more generalized standard
algebra. In 3, we Prove that every generalized standard algebra, defined in [5],

satisfies these conditions, and that any more generalized standard algebra is a
noncommutative Jordan algebra. Hence, every Jordan or alternative algebra is
also a more generalized standard algebra. In 2, we give a lemma for use in 3.
Using this lemma, we remark that the axioms in the definition of generalized
standard algebras in [51 are not independent. In 4, we prove that $\mathfrak{U}^{-}$ is a general
Lie triple system (resp. Malcev algebra) if $\mathfrak{U}$ is a more generalized standard (resp.
generalized standard) algebra, where $\mathfrak{A}^{-}$ is the algebra obtained by defining a
new product $[x, y]=xy-yx$ in the same vector space as $\mathfrak{U}$ .

Throughout this paper, we assume that the characteristic of the base field is
not 2. And we use the following notations;

$[x, y]=xy-\gamma x$ , $x\cdot y=\frac{1}{2}(xy+yx)$ , $(x, y, z)=(xy)z-x(yz)$ ,

$H(x, y, z)=(x, y, z)+(y, z, x)+(z, x, y)$ .
2. Generalized standard algebras. In [5], Schafer has defined a generalized

standard algebra to be a nonassociative algebra $\mathfrak{U}$ in which the following condi-
tions are satisfied;
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(3) $D(x, y)$ is a derivation of $\mathfrak{U}$ ,

(4) $(x, y, x)=0$ , i.e. $\mathfrak{U}$ is flexible,

(5) $H(x, y, z)x=H(x, y, xz)$ ,

(6) $(x, w, yz)+(y, w, xz)+(z, w, xy)=[x, (y, z, w)]+(x,y, [w, z])$

for an $x,$ $y,$ $z,$ $w$ in Ut.

Lemma 1. Let ut be a nonassociative algebra, in which (4) and (6) are satisfied.
Then the $follow\dot{t}ng$ identities are also satisfied;

(7) $(x,y, [z, w])=-(y, x, [z, w])$ ,

(8) $(x, y, [z, w])=-(x, [z, w],y)$ ,

(9) $[x, (y, z, w)]=[x, (z, w, y)]=[x, (w, y, z)]$ ,

(10) $[x, (y, x, z)]=(x, y, [x, z])$ ,

(11) $(x, y_{*}[x, z])=-(x, [y, x], z)$

for all $x,$ $y,$ $z,$ $w$ in $\mathfrak{U}$ .
Proof. Already (7) and (8) have been proved in [5] and [3], respectively. On

the other hand, (9) and (10) have intrisically appeared in [31. In fact, the following

identities have been given there;

(12) $[x, (y, z, z)]=0$ ,

(13) $(x, y, [x_{*}z])=[x, (x, z, y)]$ .
Hence (9) is a direct result of (4) and the identity obtained by linearization of
(12), where (10) is a direct result of (9) and (13). Now it remains only to prove
(11). It is known that the identity

(14) $(xy, z, w)+(x,y, zw)=x(y, z, w)+(x,y, z)w+(x,yz, w)$

is satisfied for all $x,$ $y,$ $z_{*}w$ in any nonassociative algebra. Interchange $x$ (resp.

y) and $w$ (resp. $z$) in (14), and summarize to obtain

(15) $([x, y], z, w)+(x, y, [z, w])=(x, [y, z], w)+[x, (y, z, w)]+[(x, y, z), w]$ .
Setting $w=z$ in (15), and using (7) and (12), we have that

$(x, [y, z], z)+[(x, y, z), z]=0$ ,

which is equivalent to

(16) $(z, [y, z], x)=-[z. (y, z, x)]$ .
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Hence (10) and (16) imply (11).

Now we are in a position to answer a question left to be open in [5].

Proposition 1. Let $\mathfrak{U}$ be a nonassociative algebra in which (4) and (6) are
satisfied. Then (5) is always satisfied in $\mathfrak{U}$ .

Proof. Using (4) and (14), we see that

$H(x,y, z)x=(xy, z, x)-x(y, z, x)+(y, z, x)x+(z, x,yx)-(z, xy, x)$

and
$H(x, y, xz)=(x,yx, z)+x(y, x, z)-(xy, x, z)+(yx, z, x)+(y, x, zx)$

$-(y, x, z)x+(xz, x, y)$ .
It follows that

$H(x,y, z)x-H(x, y, xz)=([x, y], z, x)+[(y, z, x), x]+(z, x, [y, x])$

$+(x, [x,y], z)-[x, (y, x, z)]-(y, x, [z, x])$ .
Using Lemma 1, we see that the right hand side of this identity vanishes, which
completes the proof.

3. More generalized standard algebras. Hereafter we denote by $\sum$ the
cyclic sum with respect to the three elements $x,$ $y$ and $z$ ; for example, $\Sigma(x, w, yz)$

$=(x, w,yz)+(y, w, zx)+(z, w, xy)$ .
Lemma 2. In every generalized standard algebra $\mathfrak{U}$ the following identities

are satisfied;

(17) $\Sigma(x, w,yz)=[w, (z,y, x)]$ ,

(18) $\Sigma(x, w, [y, z])=2[w, (z, y, x)]$ ,

(19) $\sum(x, w,y\cdot z)=0$ ,

(20) $\Sigma(x\cdot y, z, w)=\Sigma(x, y\cdot z, w)$

for all $x,$ $y,$ $z,$ $w$ in $\mathfrak{U}$ .
Proof. Linearizing of (10), we have

(21) $[x, (y, w, z)]+[w, (y, x, z)]=(x, y, [w, z])+(w, y, [x, z])$ .
By (4), (6), (9) and (21), we see that

$\Sigma(x, w, yz)=[x, (y, z, w)]+(x, y, [w, z])+(y, w, [z, x])$

$=-[x, (y, w, z)]+(x, y, [w, z])+(w, y, [x, z])$

$=[w, (y, x, z)]=[w, (z, y, x)]$ .
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The identities (18) and (19) are direct results of (4), (9) and (17). To verify (20),

we rewrite (14) as
$(xy, z, w)-(x, yz, w)=(x, y, z)w+x(y, z, w)+(zw, y, x)$

$=(x, y, z)w+x(y, z, w)+z(w, y, x)+(z, wy, x)$

$+(z, w, y)x-(z, w, yx)$ .
It follows that

$\Sigma(xy, z, w)-\Sigma(x, yz, w)=H(x, y, z)w+\Sigma(z, wy, x)$

$+\Sigma(z, w,y)x-\Sigma(z, w, yx)$ .
Interchange $x$ and $y$ , and summarize to obtain

$\Sigma(x\cdot y, z, w)-\Sigma(x, y\cdot z, w)=-\sum(z, w, x\cdot y)$ .
Hence (19) implies(20).

Proposition 2. Every generalized standard algebra is a more generalized
standard algebra.

Proof. Since $(x, y, x)=0$ is equivalent to $D(x, x)=0$ , it is sufficient to prove
(2). In every flexible algebra, the following identities are satisfied;

(22) $D(x, y)w=[[x, y],$ $w$] $+2(w, y, x)+2(y, x, w)-(x, w, y)$

and

(23) $\sum[x,yz]=H(z, y, x)$ .
Using these identities with (19) and (20), we see that

$\Sigma D(x, y\cdot z)w=\Sigma[[x, y\cdot z],$ $w$] $-2\Sigma(x, y\cdot z, w)+2\Sigma(x\cdot y, z, w)-\Sigma(x, w, y\cdot z)=0$ ,

since $H(z, y, x)=-H(y, z, x)$ . Similarly, using (22), (23), (18) and Lemma 1, we
see that

$\Sigma D(x, [y, z])w=\Sigma[[x, [y, z]], w]+2\Sigma(w, [y, z], x)+2\Sigma([y, z], x, w)$

$-\Sigma(x, w, [y, z])$

$=2[H(z, y, x), w]+3\Sigma(x, w, [y, z])$

$=6[(z,y, x), w]+6[w, (z, y, x)]=0$ .
Hence we see that 2 $\sum D(x, yz)=2\sum D(x, y\cdot z)+\sum D(x, [y, z])=0$ , which completes

the proof.

Corollary. Let $\mathfrak{U}$ be either a Jordan algebra or an alternative algebra. Then
$\mathfrak{U}$ is a more generalized standard algebra.

Proposition 3. Every more generalized standard algebra over a field of
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characteristic prime to 6 is a noncommutative Jordan algebra.

Proof. Clearly (1) implies the flexibility of an algebra. Putting $x=y=z$ in
(2), we have $D(x^{2}, x)=0$ , equivalently

(24) $2(w, x, x^{2})+2(x, x^{2}, w)=(x^{2}, w, x)$

by (22). On the other hand, we have that

(25) $(w, x, x^{2})+(x, x^{2}, w)=(x, w, x^{2})$ .
In fact, using (14) and the flexibility, we see that $(w, x, x^{2})+(x, x^{2}, w)=(w, x, x^{2})$

$-(w, x^{2}, x)=(w, x, x)x-(wx, x, x)=(x, x, wx)-(x, x, w)x=-(x^{2}, w, x)=(x, w, x^{2})$ .
Now (24) and (25) imply $(x^{2}, w, x)=0$ , which completes the $prf$ .

A nonassociative algebra $\mathfrak{U}$ is called to be simple if it has no non-trivial ideal
and $A^{2}\neq\{0\}$ .

$Prop_{O8}it\ddagger on4$. Every simple anti-commutative more generalized standard
algebra is a Lie algebra.

Proof. Since $D(x, y)=[L(x), L(y)]$ is a derivation, we have $[[L(x), L(y)], L(z)]$

$=L((x, z, y))$ , hence $L(H(x, z, y))=0$ . This implies

(26) $H(x, z, y)=0$ .
In fact, since $\mathfrak{B}=\{xe\mathfrak{U}|L(x)=0\}$ is an ideal, it must be $\{0\}$ by the assumption of
simplicity. By anti-commutativity, (26) implies the Jacobi’s identity.

Now assume that $\mathfrak{U}$ is a not anti-commuatative simple algebra of finite di-
mension. In case the characteristic of base field is $0$ , it is known that the al-
gebra $\mathfrak{A}^{+}$ , in which multiplioetion is defined by $x\cdot y$ , is a simple Jordan algebra
(see Block [21). Hence $\mathfrak{U}$ is a Jordan, quasi-associative or quadratic algebra (see

Albert [11).

4. Algebras $\mathfrak{A}^{-}$. In [6], Yamaguti has defined a general Lie triple system
as a generalization of a Lie triple system, used in differential geometry and Jordan
algebras. Now, we give an equivalent definition for our convenience. A general
Lie triPle system is an anti-commutative algebra $\mathfrak{A}$ with a bilinear maPping;
(X, $y$) $\rightarrow T(x, y)$ , of $\mathfrak{A}\times \mathfrak{A}$ into the derivation algebra of $\mathfrak{A}$ , satisfying the following
conditions;

(i) $T(x, x)=0$ ,
(ii) $\Sigma T(x, y)z=\Sigma(xy)z$ ,
(iii) $\Sigma T(xy, z)=0$ ,
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(iv) $[T(x, y), T(z, w)]=T(T(x, y)z,$ $w$) $+T(z, T(x, y)w)$

for all $x,$ $y,$ $z,$ $w$ in $\mathfrak{U}$ .
Now let $\mathfrak{U}$ be a more generalized standard algebra. Putting $T(x,y)=2D(y, x)$ ,

we can easily prove the following

Proposition 5. Let $\mathfrak{U}$ be a more generalized standard algebra. Then, the
algebra $\mathfrak{U}^{-}$ is a general Lie triple system.

An anti.commutative algebra $\mathfrak{U}$ is called to be a Malcev algebra if the following

identity is satisfied;

(27) $(xy)(xz)=((xy)z)x+((yz)x)x+((zx)x)y$

for all $x,$ $y,$ $z$ in $\mathfrak{U}$ . We note that (27) is equivalent to

(28) $(x,y, z)x=(y, x, zx)$ .
Proposition 6. Let $\mathfrak{U}$ be a generalized standard algebra. Then the algebra

$\mathfrak{U}^{-}$ is a Malcev algebra.

Proof. By $(x, y, z)^{-}$ , we denote the associator of $x,$ $y,$ $z$ in $\mathfrak{U}^{-}$ ; i.e. $(x,y, z)^{-}$

$=[[x,y],$ $z$] $-[x, [y, z]]$ . Then we see that $(x,y, z)^{-}=2H(x, y, z)+[y, [z, x]]$ in any

flexible algebra. It follows that $\mathfrak{U}^{-}$ is a Malcev algebra if and only if the identity
$[H(x,y, z), x]=H(y, x, [z, x])$ is satisfied for all $x,y,$ $z$ in $\mathfrak{U}$ . In a generalized standard
algebra, it follows from Lemma 1 that $[H(x, y, z), x]-H(y, x, [z, x])=3[(z, x,y), x]-$

$3(y, x, [z, x])=3[x, (y, x, z)]-3(x, y, [x, z])=0$ . Hence $\mathfrak{U}^{-}$ is a Malcev algebra.

Let $\mathfrak{U}$ be a more generalized standard algebra. By $\mathcal{D}$ , we denote the sub-
space spanned by all $D(x,y)$ in the derivation algebra $\mathcal{D}(\mathfrak{U})$ of $\mathfrak{U}$ . The space $\mathcal{D}$

is a subalgebra of $\mathcal{D}(\mathfrak{U})$ , hence of the derivation algebra $\mathcal{D}(\mathfrak{U}^{-})$ of $\mathfrak{U}^{-}$ . Then

the direct sum $\mathcal{L}=\mathfrak{A}+\mathcal{D}$ forms a Lie algebra with respect to the new blacket
operation $[, ]^{*}$ defined as follows;

$[x+D, y+E]^{*}=[x, y]+D(y)-E(x)+[D, E]+2D(y, x)$

for all $x,$ $y$ in $\mathfrak{U}$ and all $D,$ $E$ in $\mathcal{D}$. Although it is not difficult to verify directly

the Jacobi’s identity, it is also obtained from a theorem for general Lie triple

systems (see [6]). This implies

Proposition 7. Every more generalized standard algebra is a reductive Lie ad-

missible algebra in the sence of Sagle [4].
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