ON A CLASS OF NONASSOCIATIVE ALGEBRAS

By

HIROSHI ASANO

(Received January 21, 1972)

1. Introduction. Let \mathfrak{A} be a nonassociative algebra over a field. For every x, y in \mathfrak{A} , we put

$$D(x, y) = [L(x), L(y)] + [L(x), R(y)] + [R(x), R(y)],$$

where L(x) or R(x) is the left or right multiplication of \mathfrak{A} ; $y \to xy$, $y \to yx$, respectively. Now we define a *more generalized standard algebra* to be a non-associative algebra \mathfrak{A} in which the following conditions are satisfied;

$$(1) D(x, x) = 0,$$

(2) D(x, yz) + D(y, zx) + D(z, xy) = 0,

(3) D(x, y) is a derivation of \mathfrak{A}

for all x, y, z in \mathfrak{A} . Clearly every Lie algebra is a more generalized standard algebra. In **3**, we prove that every generalized standard algebra, defined in [5], satisfies these conditions, and that any more generalized standard algebra is a noncommutative Jordan algebra. Hence, every Jordan or alternative algebra is also a more generalized standard algebra. In **2**, we give a lemma for use in **3**. Using this lemma, we remark that the axioms in the definition of generalized standard algebras in [5] are not independent. In **4**, we prove that \mathfrak{A}^- is a general Lie triple system (resp. Malcev algebra) if \mathfrak{A} is a more generalized standard (resp. generalized standard) algebra, where \mathfrak{A}^- is the algebra obtained by defining a new product [x, y] = xy - yx in the same vector space as \mathfrak{A} .

Throughout this paper, we assume that the characteristic of the base field is not 2. And we use the following notations;

$$[x, y] = xy - yx, \quad x \cdot y = \frac{1}{2} (xy + yx), \quad (x, y, z) = (xy)z - x(yz),$$
$$H(x, y, z) = (x, y, z) + (y, z, x) + (z, x, y).$$

2. Generalized standard algebras. In [5], Schafer has defined a generalized standard algebra to be a nonassociative algebra \mathfrak{A} in which the following conditions are satisfied;

- (3) D(x, y) is a derivation of \mathfrak{A} ,
- (4) (x, y, x)=0, i.e. \mathfrak{A} is flexible,

(5) H(x, y, z)x = H(x, y, xz),

$$(6) \qquad (x, w, yz) + (y, w, xz) + (z, w, xy) = [x, (y, z, w)] + (x, y, [w, z])$$

for all x, y, z, w in \mathfrak{A} .

Lemma 1. Let A be a nonassociative algebra, in which (4) and (6) are satisfied. Then the following identities are also satisfied;

(7)
$$(x, y, [z, w]) = -(y, x, [z, w]),$$

(8)
$$(x, y, [z, w]) = -(x, [z, w], y),$$

$$[9] \qquad [x, (y, z, w)] = [x, (z, w, y)] = [x, (w, y, z)],$$

(10) [x, (y, x, z)] = (x, y, [x, z]),

(11)
$$(x, y, [x, z]) = -(x, [y, x], z)$$

for all x, y, z, w in A.

Proof. Already (7) and (8) have been proved in [5] and [3], respectively. On the other hand, (9) and (10) have intrisically appeared in [3]. In fact, the following identities have been given there;

(12)
$$[x, (y, z, z)]=0$$
,

(13)
$$(x, y, [x, z]) = [x, (x, z, y)].$$

Hence (9) is a direct result of (4) and the identity obtained by linearization of (12), where (10) is a direct result of (9) and (13). Now it remains only to prove (11). It is known that the identity

(14)
$$(xy, z, w) + (x, y, zw) = x(y, z, w) + (x, y, z)w + (x, yz, w)$$

is satisfied for all x, y, z, w in any nonassociative algebra. Interchange x (resp. y) and w (resp. z) in (14), and summarize to obtain

(15)
$$([x, y], z, w) + (x, y, [z, w]) = (x, [y, z], w) + [x, (y, z, w)] + [(x, y, z), w].$$

Setting w=z in (15), and using (7) and (12), we have that

(x, [y, z], z) + [(x, y, z), z] = 0,

which is equivalent to

(16)

$$(z, [y, z], x) = -[z, (y, z, x)]$$

144

Hence (10) and (16) imply (11).

Now we are in a position to answer a question left to be open in [5].

Proposition 1. Let \mathfrak{A} be a nonassociative algebra in which (4) and (6) are satisfied. Then (5) is always satisfied in \mathfrak{A} .

Proof. Using (4) and (14), we see that

$$H(x, y, z)x = (xy, z, x) - x(y, z, x) + (y, z, x)x + (z, x, yx) - (z, xy, x)$$

and

$$H(x, y, xz) = (x, yx, z) + x(y, x, z) - (xy, x, z) + (yx, z, x) + (y, x, zx) - (y, x, z)x + (xz, x, y)$$

It follows that

$$H(x, y, z)x - H(x, y, xz) = ([x, y], z, x) + [(y, z, x), x] + (z, x, [y, x]) + (x, [x, y], z) - [x, (y, x, z)] - (y, x, [z, x])$$

Using Lemma 1, we see that the right hand side of this identity vanishes, which completes the proof.

3. More generalized standard algebras. Hereafter we denote by \sum the cyclic sum with respect to the three elements x, y and z; for example, $\sum (x, w, yz) = (x, w, yz) + (y, w, zx) + (z, w, xy)$.

Lemma 2. In every generalized standard algebra \mathfrak{A} the following identities are satisfied;

- (17) $\sum (x, w, yz) = [w, (z, y, x)],$
- (18) $\sum (x, w, [y, z]) = 2[w, (z, y, x)],$
- (19) $\sum (x, w, y \cdot z) = 0,$

(20)
$$\sum (x \cdot y, z, w) = \sum (x, y \cdot z, w)$$

for all x, y, z, w in A.

. . . .

Proof. Linearizing of (10), we have

(21)
$$[x, (y, w, z)] + [w, (y, x, z)] = (x, y, [w, z]) + (w, y, [x, z]).$$

By (4), (6), (9) and (21), we see that

$$\sum (x, w, yz) = [x, (y, z, w)] + (x, y, [w, z]) + (y, w, [z, x])$$

= -[x, (y, w, z)] + (x, y, [w, z]) + (w, y, [x, z])
= [w, (y, x, z)] = [w, (z, y, x)].

HIROSHI ASANO

The identities (18) and (19) are direct results of (4), (9) and (17). To verify (20), we rewrite (14) as

$$(xy, z, w) - (x, yz, w) = (x, y, z)w + x(y, z, w) + (zw, y, x)$$

= (x, y, z)w + x(y, z, w) + z(w, y, x) + (z, wy, x)
+ (z, w, y)x - (z, w, yx) .

It follows that

$$\sum (xy, z, w) - \sum (x, yz, w) = H(x, y, z)w + \sum (z, wy, x)$$
$$+ \sum (z, w, y)x - \sum (z, w, yx) .$$

Interchange x and y, and summarize to obtain

 $\sum (x \cdot y, z, w) - \sum (x, y \cdot z, w) = -\sum (z, w, x \cdot y) .$

Hence (19) implies (20).

Proposition 2. Every generalized standard algebra is a more generalized standard algebra.

Proof. Since (x, y, x)=0 is equivalent to D(x, x)=0, it is sufficient to prove (2). In every flexible algebra, the following identities are satisfied;

(22)
$$D(x, y)w = [[x, y], w] + 2(w, y, x) + 2(y, x, w) - (x, w, y)$$

and

(23)
$$\sum [x, yz] = H(z, y, x) .$$

Using these identities with (19) and (20), we see that

 $\sum D(x, y \cdot z)w = \sum [[x, y \cdot z], w] - 2 \sum (x, y \cdot z, w) + 2 \sum (x \cdot y, z, w) - \sum (x, w, y \cdot z) = 0$, since H(z, y, x) = -H(y, z, x). Similarly, using (22), (23), (18) and Lemma 1, we see that

$$\sum D(x, [y, z])w = \sum [[x, [y, z]], w] + 2 \sum (w, [y, z], x) + 2 \sum ([y, z], x, w) - \sum (x, w, [y, z]) = 2[H(z, y, x), w] + 3 \sum (x, w, [y, z]) = 6[(z, y, x), w] + 6 [w, (z, y, x)] = 0.$$

Hence we see that $2 \sum D(x, yz) = 2 \sum D(x, y \cdot z) + \sum D(x, [y, z]) = 0$, which completes the proof.

Corollary. Let \mathfrak{A} be either a Jordan algebra or an alternative algebra. Then \mathfrak{A} is a more generalized standard algebra.

Proposition 3. Every more generalized standard algebra over a field of

characteristic prime to 6 is a noncommutative Jordan algebra.

Proof. Clearly (1) implies the flexibility of an algebra. Putting x=y=z in (2), we have $D(x^2, x)=0$, equivalently

(24)
$$2(w, x, x^2) + 2(x, x^2, w) = (x^2, w, x)$$

by (22). On the other hand, we have that

(25)
$$(w, x, x^2) + (x, x^2, w) = (x, w, x^2)$$
.

In fact, using (14) and the flexibility, we see that $(w, x, x^2) + (x, x^2, w) = (w, x, x^2)$ $-(w, x^2, x) = (w, x, x)x - (wx, x, x) = (x, x, wx) - (x, x, w)x = -(x^2, w, x) = (x, w, x^2)$. Now (24) and (25) imply $(x^2, w, x) = 0$, which completes the proof.

A nonassociative algebra \mathfrak{A} is called to be *simple* if it has no non-trivial ideal and $A^2 \neq \{0\}$.

Proposition 4. Every simple anti-commutative more generalized standard algebra is a Lie algebra.

Proof. Since D(x, y) = [L(x), L(y)] is a derivation, we have [[L(x), L(y)], L(z)] = L((x, z, y)), hence L(H(x, z, y)) = 0. This implies

(26)
$$H(x, z, y) = 0$$

In fact, since $\mathfrak{B} = \{x \in \mathfrak{A} | L(x) = 0\}$ is an ideal, it must be $\{0\}$ by the assumption of simplicity. By anti-commutativity, (26) implies the Jacobi's identity.

Now assume that \mathfrak{A} is a not anti-commutative simple algebra of finite dimension. In case the characteristic of base field is 0, it is known that the algebra \mathfrak{A}^+ , in which multiplication is defined by $x \cdot y$, is a simple Jordan algebra (see Block [2]). Hence \mathfrak{A} is a Jordan, quasi-associative or quadratic algebra (see Albert [1]).

4. Algebras \mathfrak{A}^- . In [6], Yamaguti has defined a general Lie triple system as a generalization of a Lie triple system, used in differential geometry and Jordan algebras. Now, we give an equivalent definition for our convenience. A general Lie triple system is an anti-commutative algebra \mathfrak{A} with a bilinear mapping; $(x, y) \to T(x, y)$, of $\mathfrak{A} \times \mathfrak{A}$ into the derivation algebra of \mathfrak{A} , satisfying the following conditions;

(1) I(x, x) = 0,

- (ii) $\sum T(x, y)z = \sum (xy)z,$
- (iii) $\sum T(xy, z)=0,$

HIROSHI ASANO

(iv) [T(x, y), T(z, w)] = T(T(x, y)z, w) + T(z, T(x, y)w)

for all x, y, z, w in \mathfrak{A} .

Now let \mathfrak{A} be a more generalized standard algebra. Putting T(x, y)=2D(y, x), we can easily prove the following

Proposition 5. Let \mathfrak{A} be a more generalized standard algebra. Then, the algebra \mathfrak{A}^- is a general Lie triple system.

An anti-commutative algebra \mathfrak{A} is called to be a *Malcev algebra* if the following identity is satisfied;

(27)
$$(xy)(xz) = ((xy)z)x + ((yz)x)x + ((zx)x)y$$

for all x, y, z in \mathfrak{A} . We note that (27) is equivalent to

(28)
$$(x, y, z)x = (y, x, zx)$$
.

Proposition 6. Let \mathfrak{A} be a generalized standard algebra. Then the algebra \mathfrak{A}^- is a Malcev algebra.

Proof. By $(x, y, z)^-$, we denote the associator of x, y, z in \mathfrak{A}^- ; i.e. $(x, y, z)^-$ =[[x, y], z]-[x, [y, z]]. Then we see that $(x, y, z)^-=2H(x, y, z)+[y, [z, x]]$ in any flexible algebra. It follows that \mathfrak{A}^- is a Malcev algebra if and only if the identity [H(x, y, z), x]=H(y, x, [z, x]) is satisfied for all x, y, z in \mathfrak{A} . In a generalized standard algebra, it follows from Lemma 1 that [H(x, y, z), x]-H(y, x, [z, x])=3[(z, x, y), x]-3(y, x, [z, x])=3[x, (y, x, z)]-3(x, y, [x, z])=0. Hence \mathfrak{A}^- is a Malcev algebra.

Let \mathfrak{A} be a more generalized standard algebra. By \mathscr{D} , we denote the subspace spanned by all D(x, y) in the derivation algebra $\mathscr{D}(\mathfrak{A})$ of \mathfrak{A} . The space \mathscr{D} is a subalgebra of $\mathscr{D}(\mathfrak{A})$, hence of the derivation algebra $\mathscr{D}(\mathfrak{A}^{-})$ of \mathfrak{A}^{-} . Then the direct sum $\mathscr{L} = \mathfrak{A} + \mathscr{D}$ forms a Lie algebra with respect to the new blacket operation [,]* defined as follows;

$$[x+D, y+E]^* = [x, y] + D(y) - E(x) + [D, E] + 2D(y, x)$$

for all x, y in \mathfrak{A} and all D, E in \mathfrak{D} . Although it is not difficult to verify directly the Jacobi's identity, it is also obtained from a theorem for general Lie triple systems (see [6]). This implies

Proposition 7. Every more generalized standard algebra is a reductive Lie admissible algebra in the sence of Sagle [4].

REFERENCES

[1] A.A. Albert, Power-associative rings, Trans. Amer. Math. Soc. U.S.A., 64 (1948),

552-593.

- [2] R. E. Block, Determination of A⁺ for the simple flexible algebras, Proc. Nat. Acad. Sci. U.S.A., 61 (1968), 394-397.
- [3] E. Kleinfeld, M. H. Kleinfeld, and F. Kosier, A generalization of commutative and alternative rings, Canad. J. Math., 22 (1970), 348-362.
- [4] A.A. Sagle, On reductive Lie admissible algebras, Canad. J. Math., 23 (1971), 325-331.
- [5] R.D. Schafer, Generalized standard algebras, J. Algebra, 12 (1969), 386-417.
- [6] K. Yamaguti, On the Lie triple system and its generalization, J. Sci. Hiroshima Univ. Ser. A, 21 (1958), 155-160.

Department of Mathematics, Yokohama City University, 4646 Mutsuura-cho, Kanazawa-ku, Yokohama 237, Japan.