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Introduction. Halfer [11 uses the notion of neighbourhoods to introduce the
definition of removable discontinuity of functions in topologicol spaces. He shows
that a function having at worst a removable discontinuity is $\omega ntinuous$ under
certain conditions. Pervin and Levine [21 define removable discontinuity of func-
tions with the help of convergent sequences. They have noted that if the domain
space is first axiom, then the two definitions are equivalent. They have also
proved certain results implying continuity of functions having at worst a remo-
vable discontinuity. In this Paper, we attempt to extend the notion of removable
$disntinuity$ to ordinary discontinuity of functions in topological spaces. In
section $A$ , along with certain other results, we prove some theorems implying
continuity of functions having at worst ordinary discontinuity. In section $B$ , we
prove two $threms$ on the continuity of functions under certain general conditions.

All spaces under our consideration are at least Hausdorff spaces. By $f;X\rightarrow Y$

we mean a single-valued mapping of $X$ into Y. A function $f:X\rightarrow Y$ will be said
to be connected if and only if the image of every connected set of $X$ is connected
in $Y[2]$ and $f$ will be said to have closed point inverse if for each $yeY,$ $f^{-1}(y)$

is a closed subset of $X[1]$ . The terms maPping and function are synonymous.
The rest of the terminology is standard. We use the notation $Cl$ $A$ for closure of $A$ .

Section A

Definition A [1]. A function $f:X\rightarrow Y$ has at worst a removable discontinuity
at $peX$ if there exists a point $yeY$ such that for each $neighbourhdV$ of $Y$,

there is a neighbourhood $U$ of $p$ such that $f(U-[P])\subset V$.
Definition 1. A function $f:X\rightarrow Y$ has at worst an ordinary discontinuity at

$peX$, if there exists a set $S$ , say, consisting of the finite number of points
$y_{1},$ $y_{2},$ $y_{8},$ $\cdots,y_{r\iota}$ of $Y$ such that for every open neighbourhood $V_{\alpha}$ of $y_{\alpha},$ $\alpha=1,2,$ $\cdots,$ $n$

and every open $neighbourhdV$ of $pf(V)\cap V_{\alpha}\neq\phi,$ $\alpha=1,2,$ $\cdots,$ $n$ there exists an
open neighbourhood $U$ of $p$ such that
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$f(U-[P])\subset\bigcup_{\alpha=1,l,\hslash}\ldots,[V_{\alpha}]$ .
Remark 1. If $f$ has a removable discontinuity at $peX$, then it has an

ordinary discontinuity there but not conversely.

Theorem 1. Let $f$ be a connected maPping of a locally connected $sPaceX$

into Y. Then $f$ is continuous at $p$ if and only if $f$ has at worst an ordinary
discontinuity there.

Proof. Let $f$ have at worst an ordinary discontinuity at $p$ and let $S$ consist
of the points $y_{1},$ $y_{2},$ $y_{\theta},$ $\cdots,y_{n}$ . If Possible, let $f$ be not continuous at $p$ . Then
there exists at least one $y_{i}$ which is different from $f(p)$ . Since $Y$ is Hausdorff,
there exist disioint open $neighbourhdsV,$ $V_{1},$ $V_{2},$

$\cdots,$
$V_{n}$ of $f(p),$ $y_{1},y_{2},$ $\cdots,y_{\hslash}$

respectively. And since $f$ has an ordinary discontinuity at $p$ , there exists an
open $neighburhdU$ of $p$ such that

$f(U)\subset V\cup V_{1}\cup V_{2}\cup\cdots\cup V_{n}$ .
Since $X$ is locally connected, there exists a connected open set $C$ such that
$peC\subset U$. Therefore $f(C)\subset V\cup V_{1}\cup V_{2}\cup\cdots\cup V_{n}$ which is a contradiction, since
$f(C)$ is connected. Hence $f$ is continuous at $p$ . The necessary part is clear.
This proves the theorem.

Theorem 2. Let $X$ be regular and $f$ be a closed function with closed point
inverses and let $f$ have at worst an ordinary discontinuity at $pe$ X. Then $f$ is
continuous at $p$ .

Proof. If $p$ is isolated in $X$, the result is immediately true. Let, therefore,
$p$ be non-isolated. If possible, let $f$ be not continuous at $p$ and $S$ consist of the
points $y_{1},y_{2},$ $\cdots,y_{n}$ where at least one $y_{i}$ is different from $f(p)$ . We may, however,
clearly suPpose that $f(p)\neq y_{i}$ for $i=1,2,$ $\cdots,$ $n$ . Since point inverses are closed,
$f^{-1}(y_{i})$ are closed sets in $X$. Again since $X$ is regular and $p\not\in f^{-\iota}(y:)$ , there
exist open $neighMurhdsU_{i}$ of $p$ such that $ f^{-1}(y_{i})\cap ClU_{i}=\phi$ . Let $\bigcap_{i=1.2,.n}..,U_{i}=U$

Therefore $peU$ and since

$ClU=Cl\{\bigcap_{i=1,l,n}\ldots,U_{\ell}\}\subset\bigcap_{i=1,2.n}\ldots,ClU_{i}$ ,

we have
$ ClU\cap\{\bigcup_{i=1,2}\ldots, f^{-1}(y_{i})\}=\phi$ .

Since $f$ is closed, $f(ClU)$ is closed and since $y_{i}\not\in f(ClU)$ , there exist open neighbour-
$hdsV_{i}$ of $y_{i}$ such that $ V_{i}\cap f(ClU)=\phi$ . Therefore $t_{i=1}.\cup\ldots..V_{i}$} $\cap\{f(ClU)\}=\phi$ . Since
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$f$ has an ordinary discontinuity at $p$ , there exists an open neighbourhood $W$ of $p$

such that

$f(W-[p])\subset\bigcup_{l=1.2,\cdot n}...V_{\ell}$ .

As $p$ is non.isolated, $(U\cap W)-p\neq\phi$ . Again

$\phi\neq f(W-[P])\cap f(ClU)\subset\{\bigcup_{i=1,2.n}\ldots.V_{1}\}\cap f(ClU)=\phi$ ,

which is a $ntradiction$ . Henoe $f$ is continuous at $p$ .
Definition $B[2]$ . Let $f$ be a maPping of $X$ into Y. For every point $p$ in $X$

let the set of limit points of $f$ at $P$ denoted by $L(f;P)$ be the set of all points $p*$

in $Y$ for which there exists a sequence $p_{n}$ of points in $X$ such that

$\lim p_{n}=p$ and $\lim f(p_{n})=p*$

Pervin and Levine [2] show that $L(f;p)$ is a closed and connected set provided
that $f,$ $X$ and $Y$ satisfy certain conditions.

Definition 2. Let $f$ be a mapping of $X$ into Y. Then for every point $PeX$
the set $D(f;p)nsists$ of points $y_{\alpha},$ $\alpha e$ $I$ where $I$ is an index set and $y_{\alpha}eY$, if
and only if for every open neighbourhood $V_{\alpha}$ of $y_{a}$ and for every open neighbour-
$hdU$ of $p,$ $ f(U)\cap V_{\alpha}\neq\phi$ .

Remark 2. It is clear that $D(f;p)$ always contains $f(P)$ .
Theorem 3. Let $f$ be a maPping of the first axiom $sPaceX$ into the sequenti-

ally $comPactsPace$ Y. Then $f$ is continuous at $p$ if and only if $D(f;p)$ consists
only of $f(P)$ .

Proof. Supsose that $D(f;p)$ consists only of $f(p)$ and if possible, let $f$ be
not $ntinuous$ at $p$ . Since $X$ is first axiom, there exists a monotone descending
sequence of open neighbourhoods $\{U_{\ell}\}$ forming a base at $p$ . Again since $f$ is not
continuous at $p$ , there exists an open neighbourhood $V$ of $f(P)$ such that for every
$U_{i}$ there exists at least one point $p_{i}eU_{i}$ satisfying $f(p_{i})\not\subset V$. It then folows that
the sequence $\{f(p_{i})\}$ has a subsequence $\{f(P\alpha:)\}$ which converges to $p*$ , say where
$p*\not\in V$. Again $\{p_{n}\}\rightarrow p$ . Therefore for arbitrary open $neighbourhdsV_{1}$ and $U$

of $p*$ and $P$ respectively, we have $f(p_{\alpha i})eV_{1}$ for $\alpha_{i}\geq N_{1}$ and $p_{i}eU$ for $i\geq N_{2}$ .
Hence $f(p_{\alpha i})ef(U)\cap V_{1}$ for $ i\geq N=\max$ . $(N_{1}, N_{2})$ . Therefore $ f(U)\cap V_{1}\neq\phi$ implying
that $p^{*}eD(f;p)$ which is contradictory. Consequantly $f$ is continuous at $p$ . The
necessary Part is clear. This proves the theorem.
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Theorem 4. $L(f;P)\subset D(f;p)$ .
Proof. Let $p^{*}eL(f;p)$ . Then there exists a sequence of Points $\{p_{n}\}$ in $X$

such that $\lim p_{n}=p$ and $\lim f(p_{n})=p*$ . If $V$ be any open $neighbourhd$ of $p*$ ,
$f(p_{n})eV$ for $n\geq N_{1}$ and if $U$ be any open neighbourhood of $p,$ $p_{n}eU$ for $n\geq N_{2}$ .
If $ N=\max$ . $(N_{1}, N_{2})$ , then $f(p_{n})ef(U)\cap V$ for $n\geq N$. Consequently $p^{*}eD(f;p)$ .

Theorem 5. $D(f;p)$ is a closed subset of $Y$ for a fixed point $peX$.
Proof. Let $p*$ be a limit point of $D(f;p)$ . Then every open set $O^{*}$ of $Y$

containing $P^{*}$ contains at least one point $q^{*}$ (say) of $D(f;p)$ and different from
$p*$ . Since $q^{*}eD(f;p)$ for every open neighbourhood $U$ of $p$ , we have $ f(U)\cap O^{*}\neq\phi$ .
Henoe $p^{*}eD(f;p)$ and consequently $D(f;p)$ is closed.

Theorem 6. If $f$ be a connected maPping of the locally connected first axiom
$sPaceX$ into the first axiom $comPactsPaceY$, then $D(f;p)$ is a connected subset

of Y.
The proof can be $nstructed$ in a way similar to that of theorem 3.7 [21.

Theorem 7. SuPpose that $f$ is a connected maPping of the locally connected
first axiom $sPaceX$ into the $comPact$ first axiom sPace $Y$ , then $f$ is continuous at
$p$ if and only if $D(f;p)$ is finite or denumerable.

Proof is similar to that of theorem 3.8 of [21.

Section $B$

Theorem 8. Let $f$ be an $oPen$ maPping of a first axiom $sPaceX$ onto a
sequentially $comPactsPaceY$ having the property that if $U_{1}$ and $U_{2}$ be any two
$oPen$ sets in $X$, then $ U_{1}\cap U_{2}=\phi imPliesf(U_{1})\cap f(U_{2})=\phi$ . Then $f$ is continuous.

Proof. If possible, let $f$ be not continuous at a point $peX$. Since $X$ is first
axiom, there axists a monotone descending sequence of open sets $\{U_{i}\}$ forming a
base at $p$ . Discontinuity of the function $f$ at $p$ implies the existence of an open
set $V$ containing $f(p)$ such that for every open set $U_{i}$ there exists at least one
point $ p_{i}eU\iota$ satisfying $f(p_{i})\not\in V$. The sequence $\{p_{i}\}$ corresponding to the sequence

of open sets $\{U:\}$ converges to $p$ . Since $Y$ is sequentially compact, the sequence

of points $\{f(p_{i})\}$ has a convergent subsequence $\{f(p_{\alpha i})\}$ , say. Let $\{f(p_{\alpha i})\}$ converge

to the point $f(\beta)$ which lies outside $V$. Since $ p\neq\beta$ and $X$ is Hausdorff, there
exist two open sets $U_{1}$ and $U_{2}$ such that $peU_{1},$ $\beta$ eU2 and $ U_{1}\cap U_{2}=\phi$ . As $\{p_{\ell}\}$

converges to $p,$ $p_{i}eU_{1}$ for $i\geq N_{1}$ . Since $f(U_{2})$ is an open set containing $f(\beta)$ and
$\{f(p_{ai})\}$ converges to $f(\beta),$ $f(p_{ai})ef(U_{2})$ for $\alpha_{i}\geq N_{2}$ . Let $\max$ . $(N_{1}, N_{2})=N$. There.
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fore $f(p_{\alpha i})ef(U_{1}),$ $f(U_{2})$ for $i\geq N$. This implies that $ f(U_{1})\cap f(U_{2})\neq\phi$ which leads
to a contradiction. Hence $f$ is continuous at $p$ .

Remark 3. If the last of the given condition of the above theorem be not
satisfied, the function may fail to be continuous as shown by

Example 1. Let $X=[0,3]$ and $Y=[0,2]$ and let $f:X\rightarrow Y$ be defined as
$f(x)=x$ for $0\leq x<1$ ,

$=3-x$ for $1\leq x\leq 3$ .
Let $U_{1}=(0,1/2)$ and $U_{2}=(5/2,3)$ . Then $ U_{1}\cap U_{2}=\phi$ does not imply $ f(U_{1})\cap f(U_{2})=\phi$

and $f$ is not continuous. It is dear that the other conditions of the theorem are
satisfied.

Theorem 9. Let $f$ be a connected mapping of a first axiom space $X$ into a
sequentially compact space $Y$ and having the property that under $f$ the inverse
of every open set in $Y$ is connected in X. Then $f$ is continuous.

Proof. If possible, let $f;X\rightarrow Y$ be discontinuous at a point $peX$. As in the
previous theorem, there exists a monotone descending sequence of open set $\{U:I$

forming a base at $p$ and there exists an open set $V$ containing $f(p)$ such that
there exists at least one point $p_{i}$ belonging to $U_{\ell}$ with the property that $f(p_{:})$

does not belong to $V$. It may be noted that the sequence $\{p_{i}\}$ converges to $p$ .
Now $Y$ being sequentially compact, the sequence $\{f(p_{i})\}$ has a convergent sub-
sequence $\{f(p_{ai})\}$ , say. Let the subsequence $\{f(p_{\alpha i})\}$ converge to $q^{*}$ where $q^{*}\not\in V$.
$Y$ being Hausdorff and $q^{*}$ being different from $f(p)$ , these can be separated
strongly. Without any loss of generality we may assume that the open sets $V_{1}$

and $V$ separate them strongly. $f^{-1}(V)$ and $f^{-1}(V_{1})$ are connected subsets of $X$

where $pef^{-1}(V)$ and $f^{-1}(V_{1})$ contains all points of $\{p_{ai}\}$ except at most finite
number. The subsequence $\{p_{\alpha i}\}$ converges to the point $p$ and hence $p$ is a limit
point of the subset $f^{-1}(V_{1})$ . Thus $f^{-1}(V_{1})\cup\{p\}=A$ is connected. Putting $f^{-1}(V)=B$,
we have $A$ and $B$ are connected subsets of $X$ and since each of them contains
the point $p,$ $A\cup B$ is also connected. But $f(A\cup B)=f(A)\cup f(B)\subset V\cup V_{1}$ which is
a contradiction since $f$ is connected. Consequently is continuous at $p$ .

The author is thankful to Professor B. K. Lahiri for his helpful suggestions
in the preparation of the paper.
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