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Many known results on the existence of fixed or periodic points of self-maps
of a metric space are simple consequences of the following lemma:

Lemma. Let (X, $d$) be a metric $sPace$ and let $f:X\rightarrow X$ be a continuous maP-
ping, and consider $\phi.(x, y)=d(f^{n}(x),f^{n}(y))$ . If

(1) there exist $x_{0},$ $y_{0}$ with $f^{n_{i}}(x_{0})\rightarrow u,$ $f^{n_{i}}(y_{0})\rightarrow v$ , and
(2) $L=\lim_{n}\phi_{n}(x_{0}, y_{0})$ exists,

then $\phi_{m}(u, v)=L$ for each $m\geq 0$ .
Proof. For each $m\geq 0,$ $f^{m}$ is continuous; also $\lim_{i}\phi_{n_{i}+m}(x_{0}, y_{0})=L$ . Hence

$L=\lim_{\ell}d(f^{n_{i}+m}(x_{0}),f^{n_{t}+m}(y_{0}))=d(f^{m}(u),f^{rn}(v))$ .
We now give simple $prfs$ of two theorems of Edelstein.

Theorem [1, p. 74]. If $f:X\rightarrow X$ is contractive $(0<d(x, y)\Rightarrow d(f(x),f(y))$

$<d(x, y))$ and if there exists $x_{0}$ with $f^{n_{i}}(x_{0})\rightarrow u$ , then $u$ is the unique fixed Point
of $f$.

Proof. Since $f$ is contractive, $\{\phi_{n}(x_{0},f(x_{0}))\}$ is nonincreasing, so that $L=$

$\lim_{n}\phi_{n}(x_{0},f(x_{0}))$ exists. By continuity of $f,$ (1) is satisfied for $x_{0}$ and $y_{0}=f(x_{0})$ .
Hence for each $m\geq 0,$ $d(f^{m}(u),f^{m+1}(u))=L$ . If $u$ is not a fixed point, then $L=$

$d(f(u),f^{2}(u))<d(u,f(u))=L$ . The unicity is clear.

Theorem [1, p. 76]. If $f:X\rightarrow X$ is e-contractive $(0<d(x, y)<e\Rightarrow d(f(x)$ ,
$f(y))<d(x, y))$ and if $f^{n_{i}}(x_{0})\rightarrow u$ , then $u$ is a periodic Point of $f$.

Proof. Choose $N$ such that $ d(f’ N(x_{0}),f^{n}N+1(x_{0}))<\epsilon$ and let $k=n_{N+1}-n_{N}$ .
For $l\geq n_{N},$ $\phi_{l+1}(x_{0},f^{k}(x_{0}))\geq\phi_{1}(x_{0},f^{k}(x_{0}))$ since $f$ is $\epsilon$ -contractive. Hence $L=\lim_{l}$

$\phi_{l}(x_{0},f^{k}(x_{0}))$ exists and $ L<\epsilon$ . By $ntinuity$ of $f,$ (1) is satisfied for $x_{0}$ and $y_{0}=$

$f^{k}(x_{0})$ . Hence for each $m\geq 0,$ $ d(f^{m}(u),f^{m+k}(u))=L<\epsilon$ . If $f^{k}(u)\neq u$ , then $L=d(f(u)$ ,
$f^{k+1}(u))<d(u,f^{k}(u))=L$ , a $ntradiction$ .
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