SEQUENTIAL CONDITIONS FOR FIXED AND PERIODIC POINTS

By

JACK BRYANT, L. F. GUSEMAN, JR. and B. CHARLES PETERS

(Received September 28, 1971)

Many known results on the existence of fixed or periodic points of self-maps of a metric space are simple consequences of the following lemma:

Lemma. Let (X, d) be a metric space and let $f: X \to X$ be a continuous mapping, and consider $\phi_n(x, y) = d(f^n(x), f^n(y))$. If

(1) there exist x_0, y_0 with $f^{n_i}(x_0) \rightarrow u, f^{n_i}(y_0) \rightarrow v$, and

(2) $L = \lim_{n \to \infty} \phi_n(x_0, y_0)$ exists,

then $\phi_m(u, v) = L$ for each $m \ge 0$.

Proof. For each $m \ge 0$, f^m is continuous; also $\lim_{x \to 0} \phi_{n_i+m}(x_0, y_0) = L$. Hence

 $L = \lim_{i \to i} d(f^{n_i + m}(x_0), f^{n_i + m}(y_0)) = d(f^{m}(u), f^{m}(v)) .$

We now give simple proofs of two theorems of *Edelstein*.

Theorem [1, p. 74]. If $f: X \to X$ is contractive $(0 < d(x, y) \Longrightarrow d(f(x), f(y)) < d(x, y))$ and if there exists x_0 with $f^{n_i}(x_0) \to u$, then u is the unique fixed point of f.

Proof. Since f is contractive, $\{\phi_n(x_0, f(x_0))\}$ is nonincreasing, so that $L = \lim_n \phi_n(x_0, f(x_0))$ exists. By continuity of f, (1) is satisfied for x_0 and $y_0 = f(x_0)$. Hence for each $m \ge 0$, $d(f^m(u), f^{m+1}(u)) = L$. If u is not a fixed point, then $L = d(f(u), f^2(u)) < d(u, f(u)) = L$. The unicity is clear.

Theorem [1, p. 76]. If $f: X \to X$ is ε -contractive $(0 < d(x, y) < \varepsilon \Longrightarrow d(f(x), f(y)) < d(x, y))$ and if $f^{n_i}(x_0) \to u$, then u is a periodic point of f.

Proof. Choose N such that $d(f^{n_N}(x_0), f^{n_N+1}(x_0)) < \varepsilon$ and let $k=n_{N+1}-n_N$. For $l \ge n_N$, $\phi_{l+1}(x_0, f^k(x_0)) \ge \phi_l(x_0, f^k(x_0))$ since f is ε -contractive. Hence $L=\lim u$ $\phi_l(x_0, f^k(x_0))$ exists and $L < \varepsilon$. By continuity of f, (1) is satisfied for x_0 and $y_0 = f^k(x_0)$. Hence for each $m \ge 0$, $d(f^m(u), f^{m+k}(u)) = L < \varepsilon$. If $f^k(u) \ne u$, then $L = d(f(u), f^{k+1}(u)) < d(u, f^k(u)) = L$, a contradiction.

JACK BRYANT, L.F. GUSEMAN, JR. and B. CHARLES PETERS

REFERENCES

 M. Edelstein, On fixed and periodic points under contractive mappings, J. London Math. Soc. 37 (1962), 74-79.

> Department of Mathematics Texas A & M University College of Science College Station, Texas 77843 U.S.A.