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\S 1. Introduction
In 1913, $*T$. Malmquist [3] proved the following important theorem:

Theorem A. If $R(z, y(z))$ is a rationaI function of $z$ and $y(z)$ and if the equation

(1.1) $y^{\prime}(z)=R(z, y(z))$ ,

has a solution $y(z)$ single-valued in its domain of existence, then either $\gamma(z)$ is a
rationaI function or (1.1) is a Riccati equation (Equation (1.1) is said to be of
Riccati’s $tyPe$ if and only if $R(z. y(z))$ is a polynomiaI in $y(z)$ of degree $\leq 2$).

Later a $prf$ based on R. $Nevan^{\prime}inna’ s$ theory of meromorphic functions was
given by K. Yosida [7]. In particular, Yosida’s argument gives us the following
result:

Theorem B. Let $R(z, y(z))$ be a rational function of $z$ and $y(z)$ . Then if the
following equation

(1.2) $y^{\prime}=R(z, y(z))$ ,

admits a transcendentai meromorphic solution $y(z)$ whz $ch$ has only finitely many
poles, then $R(z, y(z))$ must be a linear function in $y(z),$ $i$ . $e.,$ $R(z, y(z))=r_{1}(z)+r_{2}(z)y(z)$

( $\gamma_{1}\gamma_{2}$ are rationaI functions).

The argument used in [71 relies heavily on the fact that all the coefficients
in $R(z, y(z))$ are rational functions which enables one to use a result of Valiron
[61. Unfortunately, there is no corresponding result for a broader class of mero-
morphic functions. The main Purpose of this note, among other things, is to
use Nevanlinna theory to extend Theorem $B$ (see Theorem 2 below) by allowing
the coefficients in $R(z, y(z))$ to be arbitrary meromorphic functions. The methods
developed are different from Yosida’s. We shall focus our attention of the solutions
which grow (in terms of Nevanlinna characteristic function) much faster than all
the coefficients in the equation and the number of their poles are required to
satisfy certain conditions.)
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\S 2. Notation and Preliminary Lemmas

In the sequel, we shall employ the usual notation of Nevanlinna theory. $y(z)$

will always denote a function meromorphic in the whole $\omega mplex$ plane. Following
Nevanlinna, we define

(2.1) $N(r, a)=N(r, a, y)=\int_{0}^{r}\frac{[n(t,a)-n(0,a)}{t}-dt+n(O, a)$
] log $r$ ,

where $n(r, a)=n(r, a, y)$ denotes the number of $rts$ of the equation $y(z)=a$ in
$|z|\leq r$ .

$N(r, y)=N(r, \infty, y)$ .
We also define

(2.2) $ m(r, y)=m(r, \infty, y)=\frac{1}{2\pi}\int_{0}^{2n}\log^{+}|y(re^{i\theta})|d\theta$ ,

where $\log^{+}|x|=\max(\log x, 0)$ ,

$m(r, a,f)=m(r,$ $\infty,$ $\frac{1}{y-a})$ $ a\neq\infty$ ,

and
$T(r, y)=m(r, y)+N(r, y)$ .

$T(r, y)$ is clled the characteristic function of $y$ . By virtue of this we are able to
give a measure of the growth rate of a meromorphic function.

We shall denote by $S(r, y)$ any quantity satisfying

(2.3) $S(r, y)=0\{T(r, y)\}$ ,

as $ r\rightarrow\infty$ , possibly outside a set of $r$ of finite linear measure.
We shall call a differential polynomial in $y$ and denote by $P_{n}(y)$ a polynomial

of degree at most $n$ in $y$ and its derivatives with the coefficients $a(z)$ satisfying

$T(r, a(z))=S(r, y)$ .

Lemma 1. (Milloux [4]). Let $l$ be a positive integer and

(2.4) $\psi(z)=\sum_{i\Rightarrow 0}^{l}a_{i}(z)y^{(i)}(z)$ $(y^{(0)}\equiv y)$ ,

where $a_{i}(z)$ are functions meromorphic in the plane and satisfy

(2.5) $T(r, a_{i}(z))=S(r, y(z))$ .
Then



CHUNG-CHUN YANG 117

(2.6) $m(r,yA)=S(r, y)$ ,

and

(2.7) $T(r, \phi)\leq(l+1)T(r, y)+S(r, y)$ .
Remark. If the function $y$ satisfies the $ndition$ :

(2.8) $N(r, y)=S(r, y)$ .
then (2.6) and (2.8) yields

(2.9) $\tau(r,$ $4y-)=S(r, y)$ .
For our estimation, the following result will play a basic role.

Lemma 2. Let $y(z)$ be a transcendental meromorphic function with $N(r,y)$

$=S(r, y)$ . Assume that $a_{i}(z)(i=a, 1,2, \cdots, l)$ be meromorphic function and satisfy
$nditions(2.5)$ .
Then

(2.10) $T(r, y^{l}+a_{1}(z)\pi_{l-1}(y)+a_{2}(z)\pi_{\ell-2}(y)+\cdots+a_{\ell-1}(z)\pi_{1}(y)+a\iota(z))$

$=lT(r, y)+S(r, y)$ .
where $\pi_{i}(y)$ are homogeneous differential polynomial in $y$ of degree $i$ .

Proof.
Set

(2.11) $P\ell(y)=y^{l}+a_{1}(z)\pi_{\ell-1}(y)+\cdots+a_{\ell-1}(z)\pi_{1}(y)+a_{\pi}(z)$ .
We rewrite (2.11) as

(2.12) $p_{\ell}(y)=y^{\ell}(z)(1+\frac{a_{1}(z)\pi_{\ell-1}(y)}{y^{l-1}}\cdot\frac{1}{y}+\cdots+\frac{a\iota-1(z)\pi_{1}(y)}{y}\cdot\frac{1}{y^{\iota-1}}+a\ell(z)\frac{1}{y^{l}})$

$=y^{\iota}(z)(1+\frac{A_{1}(z)}{y}+\frac{A_{2}(z)}{y^{2}}+\cdots+\frac{A_{l}(z)}{y^{\ell}})$ ,

where $A_{i}(z)=a_{i}(z)\frac{\pi_{\ell-}.\cdot(\gamma)}{y^{\ell-:}}$ $(i=1,2, \cdots, l)$ .

Thus by (2.9) of Lemma 1 and in addition, we have

(2.13) $T(r, A_{i}(z))=S(r, y)$ $(i=1,2, \cdots, l)$ .
Now on the circle $|z|=r$ , let

(2.14)
$A(z)={\rm Max} 1\leq i\leq\ell|A_{i}(z)|^{1/i}$ $i=1,2,$ $\cdots,$

$l$ .
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Let $E_{1}$ be the set of $\theta$ in $ 0\leq\theta\leq 2\pi$ for which $|)^{\prime}(re^{i\theta})|\geq 2A(re^{i\theta})$ , and $E_{2}$ be the
complementary set.

On $E_{1}$ we have

(2.15) $|p_{\ell}(y)|=|y^{\ell}(z)||1+\frac{A_{1}(z)}{y}+\frac{A_{2}(z)}{y^{2}}+\cdots+\frac{A_{\ell}(z)}{y^{\ell}}|$ ,

$\geq|y^{\ell}(z)|\{1-|\frac{A_{1}}{y}|-|\frac{A_{2}}{y^{2}}|-\cdots-|\frac{A_{\ell}}{y^{l}}|\}$ ,

$\geq|y^{l}(z)|\{1-\frac{1}{2}-\frac{1}{2^{2}}$ –. . $.-\frac{1}{2^{\ell}}\}$ ,

$=\frac{1}{2^{l}}|y^{l}(z)|$ .

Hence, from this, (2.13) and (2.14), we have

(2.16) $lm(r, y)=m(r,y^{\ell})$

$=\frac{1}{2\pi}\int_{E_{1}}\log^{+}|y^{l}(re^{i\theta})|d\theta+\frac{1}{2\pi}\int_{E_{2}}\log^{+}|y^{\ell}(re^{i\theta})|d\theta$ ,

$\leq\frac{1}{2\pi}\int_{0}^{2n}\log^{+}|2^{\iota}p_{\ell}(y)|d\theta+\frac{1}{2\pi}\int_{E_{2}}\log^{+}|2A^{(z)}|^{\ell}d\theta$ ,

$=m(r, p_{\ell}(y))+l$ log $2+S(r, y)$ .
Adding $lN(r, y)$ on both sides of the above inequality, we obtain

(2.17) $lT(r, y)\leq T(r_{1}p_{l}(y))+lN(r, y)+S(r, y)$ ,

$=T(r, p_{l}(y))+S(r,y)$ ,

Since $N(r,y)=S(r, y)$ .
On the other hand, it is easily shown from the expression(2.12) and by

induction on $l$ that
(2.18) $T(r, p_{\ell}(y))\leq lT(r, y)+S(r, y)$ .

Thus, combining (2.17) and (2.18), we obtain (2.10).

In a polynomial $p(z, y_{0}, y_{1}, \cdots, y_{n})$ , we shall denote $k_{0}+k_{1}+\cdots+k_{n}$ and $k_{1}+2k_{2}$

$+\cdots+nk_{n}$ as the dimension and weight of a term $a(z)y_{0}^{k_{0}}y_{1}^{k_{1}}y_{8}^{k_{2}}\cdots y_{l}^{k_{n}}(a(z)\not\equiv 0)$

respectively. The degree of $p(y)$ is the maximal dimension among all its terms.

We shall call $p(y)$ a polynomial of degree $d$ as non-degenerate if

(2.19) $\Sigma a(z)\not\equiv 0$ ,

where $a(z)$ are coefficients in $p(y)$ and the summation is taken over all terms
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with dimension $d$ and the weight being maximal.

Lemma 3. Let $y(z)$ be meromorphic transcendental with $N(r, y)=S(r, y)$ .
If $p(y)$ is a non-degenerate differential polynomial of degree $d$ , then

(2.19) $T(r, P(y))=dT(r, y)+S(r, y)$ .
Proof. By a result of Y. Tumura [5] one can express

(2.20) $y^{(n)}=y(F^{n}+p_{n-1}(F))$ $n=1,2,$ $\cdots$

where $F=\frac{y^{\prime}}{y}$ . We note that $T(r, F)=N(r, F)+m(r, F)=S(r, y)$ .
Thus by substituting this into $p(y),$ $p(y)$ will become the form $A(z)y^{d}+p_{d-1}(y)$ .

The rest follows by lemma 2.

Lemma 4. (Clunie [1]). SuPpose that $p_{m}(y)$ and $Q_{n}(y)$ be two differential
polynomials in $y$ and that

(2.21) $y^{n}(z)p_{m}(y)=Q,,(y)$ .
Then

(2.22) $m\{r, p_{m}(y)\}=S(r, y)$ as $ r\rightarrow\infty$ .

\S 3. Main Results

We first prove a general result.

Theorem 1. Let $R_{\ell}(z, y(z),$ $y_{1}(z),$
$\cdots,$ $y_{k}(z))i=1,2$ , be given rational functions

in $y_{0}(z),$ $y_{1}(z),$ $\cdots y_{k}(z)(y_{i}(z)\equiv y^{(i)}(z))$ with meromorphic functions as their coefficients.
Assume that

(3.1) $R_{i}(z, y_{0}(z),$ $y_{1}(z),$
$\cdots,$

$y_{k}(z))\equiv^{\underline{p_{1\ell}(z,y_{0},\cdots,y_{k})}}$ ,
$q_{i\ell}(z,y_{0}, \cdots,y_{k})$

where, $p_{i\ell}(z, y_{0}, y_{1}, \cdots,y_{k}),$ $q_{i\ell}(z, y_{0}, y_{1}, \cdots,y_{k})$ are two relatively prime polynomials
in $y_{0},$ $y_{1},$ $\cdots,y_{k}(i=1,2)$ with degree $n_{i},$ $m_{i}(i=1,2)$ respectively.

Assume that

(3.2) $p_{21}(z, y_{0}, \cdots,y_{k})=y^{n_{2}}(z)+p_{2}(z, y_{0}, \cdots,y_{k})$ ,

and
(3.3) $q_{21}(z, y_{0}, \cdots,y_{k})=y^{m_{2}}(z)+q_{2}(z,y_{0}, \cdots, y_{k})$ ,

where $p_{2}(z,y_{0}, \cdots,y_{k})$ and $q_{2}(z, y_{0}, \cdots,y_{k})$ are two polynomials in $y_{0},$ $\cdots,y_{k}$ with
degree less than $n_{2},$ $m_{2}$ respectively.



120 A NOTE ON MALMQUIST’S THEOREM

Further assume that $p_{11}$ and $q_{11}$ both are non-degenerate. Then if the differ-
ential equation

(3.4) $R_{1}(z, y_{0}, \cdots,y_{k})=R_{2}(z, y_{0}, \cdots,y_{k})$ ,

admits a transcendental meromorphic solution $y(z)$ with

(3.5) $N(r, y)=S(r, y)$ ,

and such that

(3.6) $T(r, a(z))=S(r, y)$ as $ r\rightarrow\infty$ ,

hold for all the coefficients $a(z)$ in $R_{1}$ and $R_{2}$ , we must have

$n_{1}+m_{1}\geqq|n_{2}-m_{2}|$ .
Proof. Since by assumption that $p_{11}$ and $q_{11}$ both are non.degnerated, and

the property that $T(r,fif_{2})\leqq T(rfi)+T(r,f_{2})$ (see $e.g$ . $[2]$) we have

$T(r, R_{1})\leqq T(r, p_{11})+\tau(r,$ $\frac{1}{q_{11}})$ .

It follows by lemma 1 and Nevanlinna’s first fundamental theorem, that

(3.7) $T(r, R_{1})\leqq n_{1}T(r, y)+m_{1}T(r, y)+S(r, y)$ ,

$=(n_{1}+m_{1})T(r, y)+S(r, y)$ .
while

(3.8) $T(r, R_{2})\geqq T(r, p_{21})-T(r, q_{21})$

$=n_{2}T(r, y)-m_{2}T(r, y)+S(r, y)$ ,

$=(n_{2}-m_{2})T(r, y)+S(r, y)$ .
Since $p_{21}$ and $q_{21}$ are interchangeable, we thus have

$T(r, R_{2})\geqq|n_{2}-m_{2}|T(r, y)+S(r_{*}y)$ .
Our assertion follows from this, (3.7), and the fact that $T(r, R_{1})=T(r, R_{2})$ .
Now let us consider the special case

$R_{1}(z, y_{0}, y_{1}, \cdots,y_{k})=y^{\prime}$ and $R_{2}(z, y_{0}, y_{1}, \cdots,y_{k})$

is a rational function of $y$ only.
Thus equation (3.4) assumes the form

(3.9) $y^{\prime}=\frac{a_{1}(z)+a_{2}(z)y+\cdot.\cdot.\cdot+a_{n_{2}}(z)y^{n_{2}}}{b_{1}(z)+b_{2}(z)y+\cdot+b_{n_{2}}(z)y^{m_{2}}}$ .
$(a_{n_{2}}\neq 0, b_{m_{2}}\neq 0)$ .
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Now suppose that (3.9) has a transcendental meromorphic solution $y(z)$ satisfying

(3.10) $N(r, y)=S(r, y)$ ,

(3.11) $T(r, a_{i}(z))=S(r, y)$ $(i=1,2, \cdots, n_{2})$ ,
and
(3.12) $T(r, b_{j}(z))=S(r, y)$ $(j=1,2, \cdots, m_{2})$ .
Then by (3.10) and (2.5) of lemma 1 we have

(3.13) $T(r, y^{\prime})\leqq m(r,$ $\frac{\gamma^{\prime}}{y})+m(r, y)+N(r, y^{\prime})$ ,

$=S(r, y)+T(r,y)+S(r, y)$ .
$=T(r, y)+S(r,y)$ .

It follows from this and $threm1$ that

(3.14) $|m_{2}-n_{2}|\leqq 1$ .
Now suPpose that $m_{2}\neq 0$ . Then we have (i) $n_{2}=m_{2}-1$ or (ii) $n_{2}=m_{2}$ or (iii)

$n_{2}=m_{2}+1$ .
In case (i) we have, according to (3.9) that

$ b_{m_{2}}(z)y^{m_{2}}y^{\prime}+b_{n_{2}-1}(z)y^{m_{2}-1}y^{\prime}+\cdots=a_{n_{2}}(z)y^{n_{2}}+\cdots$ .
Hence
(3.15) $y^{m_{2}}(b_{m_{2}}y^{\prime})+p_{m_{2}-1}(y)=Q_{f}2(y)$ ,

or

(3.16) $y^{m_{2}-1}[b_{m_{2}}(z)yy^{\prime}+b_{m_{2}-1}(z)y^{\prime}]+p_{m_{2}-2}(y)=Q_{n_{2}}(y)$ ,

where $Q_{n_{2}}(y)$ is a differential polynomial in $y$ of degree at most $n_{2}$ .
APplying lemma 4 to (3.15) and (3.16) we obtain

(3.17) $m(r, b_{m_{2}}y^{\prime})=S(r,y)$ ,

and

(3.18) $m(r, b_{m_{2}}y^{\prime}y-b_{m-1}(z)y^{\prime})=S(r, y)$ .
By (3.10) we deduce

(3.19) $T(r, bfn_{2}y^{\prime})=S(r, y)$ ,

and

(3.20) $T\{r, y^{\prime}(b_{m_{2}}y-b_{m_{2}-1})\}=S(r, y)$ .
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Thus it follows from (3.19) and (3.20) that

(3.21) $T(r, b_{m_{2}}y-b_{m_{2}-1})\leqq T\{(r, y^{\prime}(b_{m_{2}}y-b_{m_{2}-1})\}+\tau(\gamma,$ $\frac{1}{b_{m_{2}}y})$ ,

$=S(r, y)$ .

This gives a contradiction, since

(3.22) $T(r, b_{on_{2}}y-b_{m_{2}-1})=T(r, y)+S(r, y)$ .
Case (ii) and case (iii) can be handled in a similiar manner and will lead to

the same contradiction.
Thus we must have $m_{2}=0$ .
Now according to (3.14) we conclude $n_{2}=1$ .
Thus the following theorem is proved.

Theorem 2. If the differential equation

(3.23) $y^{\prime}=\frac{a_{1}(z)+a_{2}(z)y+\cdot.\cdot.\cdot+a_{n_{2}}(z)y^{n_{2}}}{b_{1}(z)+b_{2}(z)y+\cdot+b_{m_{2}}(z)y^{m_{2}}}$ ,

has a transcendental meromorphic solution $y(z)$ such that conditions (3.10), (3.11)

and (3.12) are satisfied. Then it is necessary that the right hand side of equation
(3.23) is linear in $y$ .

Pemark. The above argument also shows that the same conclusion holds if
one replaces $y^{\prime}$ by $y^{(n)}(n\geqq 0)$ in the equation (3.23).

The following two results follow immediately from the proof of Theorem 2.

Corollary 1. The following differential equation

$a_{1}(z)y(z)y^{\prime}(z)+a_{2}(z)y^{\prime}(z)+a_{\theta}(z)\equiv 0$ ,

with $a_{1}(z)\not\equiv 0,$ $a_{t}(z)$ iO has no entire solutions $y(z)$ which satisfies $T(r,a_{i}(z))=S(r,y(z))$ .
$i=1,2,3$ .

Corollary 2. The following differential equation

$a_{1}(z)y(z)y^{\prime}(z)+a_{2}(z)y(z)+a_{8}(z)\equiv 0$ ,

with $a_{1}(z)a_{3}(z)\not\equiv 0$ has no entire solution $y(z)$ which satisfies

$T(r, a_{i}(z))=S(r, y(z))$ $i\equiv 1,2,3$ .
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