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Abstract: $\beta X$ denotes the Stone-\v{C}ech compactification of a Tychonoff space
X. Some topological properties of $\beta X-X$ are characterised in terms of lattice-
theoretic Properties of the upper semi-lattice $K(X)$ of all Hausdorff compactifica-
tions of $X$. Also, we construct the space $\beta X-X$ from $K(X)$ when $X$ is locally
compact; when $X$ is not locally compact, the compact subsets of $\beta X-X$ are
specified.

\S 1. Introduction

In [6], the author has established that when $X$ is locally compact, the topologi-
cal Properties of $\beta X-X$ are related contravariantly in some sense, to the lattice
theoretic Properties of the lattice $K(X)$ of compactifications of $X$. But the situation
is not that nice when $X$ is not locally compact even if we restrict our morphisms
to homeomorphisms and ’ lattice-isomorphisms’. Examples in the two oPposite
directions to establish the above statement are given in [5] and [61 respectively.
However in section 2, we give some direct results which characterise some
topological Properties of $\beta X-X$ in terms of lattice-theoretic Properties of $K(X)$ ,
the semi-lattice of all Hausdorff compactifications of $X$. But in general, the
problem is naturally not that trivial. It is known that if $\alpha X$ is any compactifi-
cation of $X$ and $R$ is any equivalence relation on $\alpha X$ which is trivial on $X$ and
which is closed in the product space $\alpha X\times\alpha X$, then the quotient space $\alpha X/R$ is a
compactification of X. ([1] (129) Ex. E). In particular, all the compactifications
of $X$ are given by the closed equivalence relations on $\beta X$ which are trivial on $X$.
The converse problem arises, viz., can we get back the space $\beta X-X$ from the
semi-lattice $K(X)$ ? In section 3, we get back the space $\beta X-X$ from $K(X)$ when
$X$ is locally compact, and the compact sets of $\beta X-X$ otherwise. Theorem 1 of
[41 follows as a $roUary$ .

This leads to the more general problem: What are all semi-lattices which are
candidates for being $K(X)$ for some space $X$ ? A complete characterisation has
been given in [3] for locally compact spaces $X$.
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Conventions and notations

In this Paper, a space means a Tychonoff space, $i.e.$ , a $\omega mpletely$ regular

Hausdorff space.
$\beta X$ denotes the $Stone- oe\vee$ch compactification of X. $K(X)$ stands for the uPper-

complete semi-lattice ([11) of all compactifications of a sPace $X$, modulo their
usual equivalence, under the usual order.

$\mathfrak{F}\alpha(X)$ denotes the family of partition classes $\beta X-X$ corresponding to the
compactification $\alpha X$ of $X$.

\S 2. The following results will be used in this Paper. Magill, K. D. $Jr$ . $[4]$

has proved them in the particular case when $X$ is locally compact, but they

remain to be true in the general case when $X$ is any arbitrary Tychonoff space.

See also [51. Result 1.1 can be proved by using Ex. $E(129)$ of [11 and the rest

routine or on the same lines as in [41.

2.1 Result. Let $\alpha XeK(X)$ ; Let $K_{1},$ $K_{2},$ $\cdots$ , KN be a finite number of pairwise

disjoint non-empty compact subsets of $\alpha X-X$. Let $\delta X$ be the space obtained by

identifying $K_{1},$ $K_{2},$ $\cdots$ , KN separately and giving the quotient topology from $\alpha X$

Then $\delta XeK(X)$ .

2.5 Result. $\alpha X$ is a primary $mpactification$ of $X$ if and only if $\alpha X\neq\beta X$

and there do not exist two dual atoms $\delta X$ and $\delta^{\prime}X$ of $K(X)$ such that $\alpha X\wedge\delta X$

$=\alpha X\wedge\delta^{\prime}X\neq\alpha X$ and such that the only dual atoms $>\delta X\wedge\delta^{\prime}X$ are $\delta X$ and $\delta^{\prime}X$.
\S 3. In this section, we prove some direct results indicating the relations

between topological properties of $\beta X-X$ and lattice properties of $K(X)$ .

Notation: $\alpha X$ is denoted by $\alpha(X;K_{1}, K_{2},\cdots, K_{N})$ .
2.2 Result.

$\alpha(X;K_{1})\wedge\alpha(X;K_{2})=|_{\alpha(X;K_{1}\cup K_{2})ifK_{1}\cap K_{2}\neq\phi}^{\alpha(X;K_{1},K_{2})ifK_{1}\cap K_{2}=\phi}’$

.
$\alpha(X;K_{1})\alpha(X;K_{2})=\alpha(X;K_{1}\cap K_{2})$ .

2.3 Result. $\alpha X$ is a dual atom in $K(X)$ if and only if there exist distinct
points $p$ and $q$ in $\beta X-X$ such that $\alpha X=\alpha(X;\{p, q\})$ .

2.4 Deflnition. A compactification $\alpha X$ of a space $X$ is called a primary

compactification if $\mathfrak{F}(\alpha X)$ has precisely one non-singleton.

3.1 Result. $K(X)$ is distributive if and only if $|\beta X-X|<3$ .
Proof: $|\beta X-X|<3$ if and only if $|K(X)|\leq 2$ . So if $|\beta X-X|<3,$ $K(X)$ is
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trivially distributive. If $|\beta X-X|\geq 3$ , let $a,$ $b,$ $c$ be three distinct elements of
$\beta X-X$. Consider the $mpactifications\beta X,$ $\alpha(X;\{a, b\}),$ $\alpha(X;\{b, c\}),$ $a(X;\{a, c\})$ and

$/|\backslash $

$a(X;\{a, b, c\})$ . They form a sublattice of $K(X)$ isomorphic to $M_{5}=$ . and so
$\backslash |./$

$K(X)$ is not distributive.

3.2. Result. $K(X)$ is modular if and only if $|\beta X-X|\leq 4$ .
Proof: If $|\beta X-X|\leq 4$ , then it can be easily checked that $K(X)$ is modular.

If $|\beta X-X|>4,$ $chse$ distinct points $a,$ $b,$ $c,$ $d,$ $e$ in $\beta X-X$. The compactifications
$\beta X,$ $a(X;\{a, c\}, \{b, d\})\alpha(X;\{a, b\}, \{d, e\}),$ $\alpha(X;\{a, b\}, \{c, d, e\})$ and $a(X;\{a, b, c, d, e\})$

$/\backslash $.
form a sublattice of $K(X)$ isomorphic to the lattice $N_{5}=\backslash _{/}!$

and so $K(X)$ is

not modular.
However, we have

3.3 Result. The primary compactifications satisfy the modular law.

Proof: Let $a_{1}X=\alpha(X;H),$ $a_{2}X=\alpha(X;K),$ $a_{8}X=a(X;L)$ and let $a_{1}X\leq a_{t}Xi.e.$ ,
$L\subseteq H$. Then

$\alpha_{1}X(\alpha_{2}X\wedge a_{8}X)=|_{\alpha_{1}Xa(X;K,L)ifK\cap L=\phi}^{a_{1}X\alpha(X;K\cup L)ifK\cap L\neq\phi}$

$=|_{a(X;H\cap K,H\cap L)ifK\cap L=\phi}^{a(X.H\cap(K\cup L)ifK\cap L\neq\phi}$

$=\left|\begin{array}{lll}\alpha(X\cdot.(H\cap & K)\cup L)if & LK\cap\neq\phi\\ a(X\cdot.H\cap K, & KL)if\cap & L=\phi\end{array}\right|$ since $L\subseteq H$

$=|\alpha(X;H\cap K)\wedge\alpha(X;L)$ sinoe $L\subseteq H$

$=|(a_{1}Xa_{2}X)$ Aas$X$ ,

Hence the result.

3.4 Result. $K(X)$ has a zero element but no atom if and only if $\beta X-X$ is
$\omega mpact$ connected.

Proof: $K(X)$ has zero if and only if $X$ is locally compact, $i.e.$ , if and only

if $\beta X-X$ is compact. Further if $K(X)$ has an atom, it can be only a two-mint
compactification since otherwise let $aX$ be an atom of $K(X)$ which is not a two.
point-compactification. Then $\mathfrak{F}(\alpha X)$ has more than two elements. Take the set
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union of any two of them and the resulting partition gives a compactification of
$X$ smaller than $\alpha X$ and larger than the one-point-compactification which is a
contradiction. So if $K(X)$ has an atom, it is a $two\cdot point- compactification$ which
gives a partition of $\beta X-X$ into two disioint closed sets, so that $\beta X-X$ is not
connected. Conversely if $\beta X-X$ is not connected, then there exists a Hausorff
partition of $\beta X-X$ into two disioint closed sets which gives a two-point-com-
pactification so that there is an atom. Hence the result.

3.5 Definition. A lattice $L$ is called uPper semi-complemented if for every
$deL$ , there exists $d^{\prime}eL$ such that $d\vee d^{\prime}=1$ .

3.6 Result. The complete lattice $K(X)$ is uPper semi-complemented if and
only if for every Hausdorff quotient $K$ of $\beta X-X$, there exists a quotient $K^{\prime}$ such
that $\beta X-X$ is homeomorphic to a closed subspace of $K\times K^{\prime}$ .

Proof: $K(X)$ is uPper $semi-mplemented$ if and only if given any closed
partition $\pi$ of $\beta X-X$, there exists a closed partition $\pi^{\prime}$ of $\beta X-X$ such that $A\cap B$

is either empty or singleton for evepy $A$ $e\pi$ and $Be\pi^{\prime}$ . This haPpens if and
only if the map $x\rightarrow(\pi_{x}, \pi_{x}^{\prime})$ from $\beta X-X$ into $(\beta X-X)/\pi\times(\beta X-X)/\pi^{\prime}$ is one-one.
The map is clearly continuous and its image can be seen to be a closed subset
of range space. Now the assertion follows.

Note. $K(N)$ is not uPper semi-complemented where $N$ is the countable
discrete space. For $[1, \Omega]$ is a quotient of $\beta N-N$ (see [21) and $[1, \omega]$ is not a
closed subspace of $\beta N-N$.

3.7 Result. If $K(X)$ is complemented, then $\beta X-X$ is totally disconnected.

Proof: Let $x,$ $ye\beta X-X$ be two distinct points. Then $\alpha(X;\{x, y\})$ is a dual
atom of $K(X)$ . Since $K(X)$ is complemented, there exists a compactification
$\alpha^{\prime}X$ of $X$ such that $\alpha^{\prime}X\wedge a(X;\{x, y\})=0$ and $\alpha^{\prime}X\alpha(X;\{x, y\})=1$ . Since $\alpha^{\prime}X\wedge$

$\alpha(X;\{x, y\})=0$ , there can be at the most two partition classes in $\mathfrak{F}(\alpha^{\prime}X)$ in which
case one contains $x$ and the other $y$ . But since $\alpha^{\prime}X\alpha(X;\{x, y\})=1$ , there should
exist two such partition classes. $i$ . $e.,$ $\beta X-X=A\cup B$ where $xeA,$ $yeB$ and $A$

and $B$ are both closed being partition classes corresponding to a Hausdorff com-
pactification of a locally compact space. So $\beta X-X$ is totally disconnected.

Note. Converse is not true; for, $K(N)$ is not even uPper semi-complemented.

\S 4. In this section, we get back the space $\beta X-X$ from $K(X)$ when $X$ is
locally compact; the compact subsets of $\beta X-X$ otherwise.
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Remark. If $|K(X)|\leq 2$ , the situation is trivial and is not included in the
following discussion.

4.1 Notation. The set of all dual atoms of $K(X)wiU$ be denoted by $D$ .
4.2. DennitIon. Two distinct dual atoms of $K(X)$ are said to overlap if

there are precisely three dual atoms above their lattice intersection.
4.3 Definition. Let $d_{1},$ $d_{2}$ be two overlapping dual atoms of $K(X)$ . We say

that a third dual atom $d^{\prime}$ is hinged with $d_{1},$ $d_{2}$ if the following happens:
(i) $d^{\prime}$ overlaps with $d_{1}$ as well as with $d_{2}$ .
(ii) there are precisely six dual atoms above the lattice intersection of $d^{\prime},$ $d_{1}$

and $d_{2}$ .
4.4 Definition. Let $d_{1},$ $d_{2}$ be two overlapping dual atoms of $K(X)$ . The set

of all dual atoms hinged with $d_{1}$ and $d_{2}$ will be called the point $|d_{1}d_{2}|$ .
4.5 Remark. For the semi-lattice $K(X)$ , we notice the fonowing:
(i) Any two distinct dual atoms of $K(X)$ are either overlapping or there

exists no other dual atom above their intersection.
(ii) If $d_{1},$ $d_{2}$ are overlapping dual atoms, then the corresponding identifications

in $\beta X-X$ has exactly one common point. In other words, if $d_{1}=\alpha(X;\{a, b\})$ ,
$d_{2}=\alpha(X;\{c, d\})$ , ahen $\{a, b\}\cap\{c, d\}$ is a singleton (say) $a=c$ .

(iii) The set of all dual atoms hinged with $d_{1},$ $d_{2}$ uniquely determines a point
of $\beta X-X$, viz., $a$ .

(iv) If $d_{8},$ $d_{4}e|d_{1}d_{2}|$ and $d_{2},$ $d_{4}$ are distinct, then they are overlapping and
$|d_{8}d_{4}|=|d_{1}d_{2}|$ .

(v) Any two distinct sets $|d_{1}d_{2}|$ and $|d^{\prime}d^{\prime\prime}|$ intersect setwise precisely in a
singleton.

4.6 Notation. The set of all subsets of $D$ of the form $|d_{1}d_{2}|$ will be denoted
by $F$.

4.7 Definition. Let $A$ be a subset of $F$ with more than one element. Then
a dual atom $deK(X)$ is said to be determined by $A$ if $d$ occurs as the unique
set intersection of two members of $A$ .

4.8 Deflnition. Let $A$ be a subset of $F$ with more than one element. Let
$\mathfrak{D}$ be the collection of all dual atoms determined by $A$ . We say that $A$ is F-
compact provided (i) $\wedge d$ exists and (ii) $\mathfrak{D}=\mathfrak{D}^{\prime}$ where $\mathfrak{T}^{\prime}$ is the $1lection$ of all

$d\in \mathfrak{D}$

dual atoms $\geq\wedge d$ in $K(X)$ . We say that a singleton subset of $F$ is F-compact.
$d\in \mathfrak{D}$
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4.9 Theorem. There is a bijection from $F$ to $\beta X-X$ which carries F-compact

sets to compact sets of $\beta X-X$ and vice versa. Further the complements of F-
$mpact$ sets of $F$ form a topology for $F$ if and only if $X$ is locally compact.

In this case, $F$ is $hommorphic$ to $\beta X-X$.
Proof: Let $|d_{1}d_{2}|eF$. Let $d_{1}=\alpha(X;\{a, b\})$ and $d_{2}=a(X;\{a, c\})$ (see Remark

3.5 (ii)). Then if $d^{\prime}e|d_{1}d_{2}|$ , then $d^{\prime}=\alpha(X;\{a, d\})$ for some $de\beta X-X$ by 3.5 (iii).

Thus we get a natural bijection $\phi:F\rightarrow\beta X-X$ defined as $\phi(|d_{1}d_{2}|)=a$ .
Let $A$ be F-compact. If $A$ is a singleton, then $\phi(A)=a$ for some $ae\beta X-X$

which is uniquely determined. If $A$ contains more than one point, let $|d_{1}d_{2}|$ and
$|d_{S}d_{4}|$ be distinct members of $A$ . Let $|d_{1}d_{2}|$ uniquely determines $a$ and $|d_{8}d_{4}|$

uniquely determine $b$ . Then $\alpha(X;\{a, b\})$ is a dual atom determined by $A$ . Now
notice (either by using 1.4 or independently) that $\wedge d$ if it exists, can be only a

$d\in \mathfrak{D}$

primary compactification, say, $\alpha(X;H)$ . Since $A$ is $F-mpact$ , the collection of

dual atoms $\geq\wedge d$ is precisely $\mathfrak{D}$ . This proves that $\phi(A)$ is compact in $\beta X-X$

$d\in \mathfrak{D}$

and it is actually $H$. The converse is trivial.
Further $X$ is locally compact if and only if $\beta X-X$ is $mpact$ which happens

if and only if $F$ is F.compact since $\phi(F)=\beta X-X$. In this case, defining each F-

$mpact$ set to be closed, we get a topology for $F$. This obviously makes $\phi$ a
$hom\infty morphism$ since $\phi$ carries F-compact sets to compact sets and vice versa.

4.10 Corollary. Let $X$ and $Y$ be Tychonoff spaces. If $K(X)$ and $K(Y)$ are
isomorphic, then there exists a bijection $h$ from $\beta X-X$ onto $\beta Y-Y$ which pre-

serves compact sets in both directions.
In particular,

4.11 Corollary. (Magill, K. D., $Jr.$) Let $X$ and $Y$ be locally $mpact$ . If
$K(X)$ and $K(Y)$ are isomorphic, then $\beta X-X$ and $\beta Y-Y$ are $hommorphic$ .
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