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The Paper is based on my published results, e.g. in Japan, and it has a
certain expositive character.

The topic belongs to most important and basic ones of Mathematics, Statis-
tics and Computers; so we find here all names of greatest Mathematicians of
the history.

I have greatly enioyed finishing my Paper on a subiect which has fascinated
all scientists of those domains since the origin of science–finishing it in Mathe-
matics Department of Technological University of Delft and therefore it is my
Pleasure to acknowledge my indebtedness to my all new Colleagues with the
Chairmen, Professor Dr. A. W. Goosens, Professor Dr. F. Loonstra, Professor
Dr. $Ir$ . J. W. Sieben and Professor Dr. J. W. Cohen, who introduced me in my
new circle as Visiting Professor with their constant best wishes and cooperations
and to Ing. S.J. de Lange for friendly talks in ones.

Working in decidability and decision methodsl) I have given different gene-
ralizations of the satisfiability definition receiving generatizations of basic
$th\ovalbox{\tt\small REJECT} rems$ of aforementioned domains; I introduced generalized models with their
asymptotic adequateness or adequateness with conditions. My invariance relation
is the source of many results of different scientists, $e.g$. it is the origin of
,,forcing‘2) in its syntactical development.

Ones lead to many technical aPplications. I cite from my note [38] based on
my discussion on meetings of the Intemational Mathematical Congress in Nice,
1-10, 9. 1970.

“ My truncated generalized model contains forcing models–simply: forcing
-and forcing follows from the proof of my invariant relation with many other

1) The paper is connected with my lectures on seminars of Jerzy Stupecki in 1950-57
years and on meetings of Wroctaw Mathematical Society in those years.

2) With ,,potential truth‘
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different assumptions equivalent to my invariant relation, see [31, [51, [231 and
P. 211, footnote 1, and [241, $[261, [30]$ , [37], [41].

Forcing was done after my results, $e.g$. after [23], see [421, and my ideas
was partly known to the creator of forcing in my lecture of 1958/9 years.1)

,,The forcing development seems to be simple in the syntactical sense but I
did not develop the syntactical theory in view of my very bad existence in
Israel (see Page 82) “.

Those results began since 1954 year–based on my past experience in gene-
ralizations2) of Herbrand-Godel’s proof of completeness theorem in two directions:

1. Finitization of all considerations by means of different conditions, [231,

[26], [27], [40], [41].

2. Asympotic approximations8), [221, [251, $[281, [32]-[37],$ $[41]$ .
The third step of those results was open and dealing here with continuous

values we begin with Boolean algebra of ones but a contrary to my predecessors

I shall not restrict myself to Propositional calculus and I shall give generalized

models of the first order functional calculus.

Of course, the indication of continuous values was in J. $StuPecki’ s$ lectures
of 1950-7, e.g. about J. Lukasiewicz’s infinite logics.

Thus we regard the closed interval $[0,1]$ as values of arbitrary formulas–
simply: probabilistic values of formulas–and an infinite Boolean algebra, i.e.
infinite Boolean logic, for the first order functional calculus with asymptoticly

finite interpretation of quantifier $\Pi$ leading to adequateness theorems with a
very simple exterior form of generalizations of Herbrand’s theorems and statis-
tical decidability of the first-order functional calculus, $[6]-[8],$ $[13],$ $[37],$ $[41]$ .

We recall the draft of the computational language used in my published

$papers-simply$ : computers–called first-order functional calculus:
$(0.1)$ Variables: (1) free: $x_{1},$ $x_{2},$ $\cdots(simplyx)$ ;

(2) apparent: $a_{1},$ $a_{2},$ $\cdots(simplya)$ ;

$(0.2)$ Relation signs: $f_{1}^{1},$ $\cdots,f_{q}^{1},$ $f_{1}^{\ell},$

$\cdots,$
$f_{q}^{\ell}$ with $t=q$ ;

1) I mean one of creators of forcing and my lecture of Jerusalem.
2) New remarks, for my simple proof of completeness theorem was done independently

on the above, see [22], with scientific and pedagogical domination including not published
decidability theorems of certain formulas.

8) I deal here with approximations of models what is impossible till my results; it is
possible to find words of approximations in last publications $’$) $f$ other authors dealing only

with Herbrand’s theorems but ones are in other sense, $e.g$ . reduction to propositional
calculus. All my results have a constructive and finite character.
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$(0.3)$ Logical constants:’ (negation), +(alternative), $\Pi$ (general quantifier). The
quantifier $\sum$ is defined ;

$(0.4)$ $h(E),$ $c(E)$–the number of free and aPparent variables occurring in $E$,
respectively;
$\{i_{h(E)}\}$–indices of all free variables occurring in $E$ ;
$\{i_{n}\}=i_{1},\cdots,$ $i_{f\hslash}$ ;

$(0.5)$ $n(E)=\max\{\{i_{h(E)}\}, h(E)+c(E)\},$ $n(U)=\max\{n(E);EeU\}$ ;
$(0.6)$ $E(u/x)$–the expression resulting from $E$ by substitution of $u$ for each

$x$ in $E$ with known restrictions;
$(0.7)$ $C\{E\}$–the set of all Parts of $E$ ;
$(0.8)$ $M,$ $M_{1},$ $\cdots$ –models; $Q,$ $Q_{1},$ $\cdots$ –non-empty set of models of the same

power (for finite models it is also used the word: rank). $Q(k)-Q$ is
the set of models of Power $k-called$ : generalized model of the Powef
$k$ or simply: generalized model;

$(0.9)$ The Pair $\langle D, \{F_{t}^{q}\}\rangle$ denotes a model, i.e. the domain $D$ is an arbitrary
non-empty set and $\{F_{q}^{t}\}$ is an arbitrary finite sequence of relations such
that $F_{l}^{j}$ is $i$-ary relation on $D,$ $i=1,$ $\cdots,$ $q$ and $j=1,$ $\cdot\cdot,$

$,$

$t$ .
A model of the Power $k$ is such model whose domain has exactly
numbers 1, $\cdots,$

$k$ ($k$ may be infinite), and then we write $V(M)=k$ ;
(0.10) For each model $ M=\langle D, \{F_{q}^{t}\}\rangle$ by $M|s_{1},$

$\cdots,$
$s_{k}|$ –or simply:

$M|\{s_{k}\}$–we denote a model $\langle D_{k}, \{\Phi_{q}^{t}\}\rangle$ of the Power $k$ such that for
each $r_{1},$ $\cdots,$

$r_{i}\leqq k$ and $i=1,$ $\cdots,$
$t$ and $j=1,$ $\cdots,$ $q$ :

$\Phi_{\dot{j}}(\gamma_{1}\cdots, r_{i})$ iff $F_{j}^{i}(s_{r_{1}}, \cdots, s_{r_{i}})$ .
So $ M|\{s_{k}\}=\langle D_{k}, \{\Phi_{j}^{\ell}\}\rangle$ ; if $\{s_{k}\}$ is emPty, then one holds for all models;
$M|\{s_{k}\}$ is a submodel of $M$ in the meaning of homomorphism;

(0.11) Meta-quantfiers: $(K),$ $(\{K_{m}\}),$ $(\exists K),$ $(\exists\{K_{m}\})$ –for each $K,$ $\{K_{m}\}$ and there
exists $K,$ $\{K_{m}\}$ , respectively;

(0.12) $\{p_{m}\}=p_{1},$
$\cdots,$ $P_{m}-finite$ sequence of numbers in $[0,1]$ ;

(0.13) ’, $\dotplus-complementIon$ and sum of Boolean algebras in the interval
$[0,1]$ ; we give two examples of last algebras, $[14]-[16]$ , [19], $[33]-[37]$ ,
[411, [481 (My proof rules, P. 82, give a simple assertion of ones.).
(1) Lukasiewicz’s one: $p^{\prime}=2-P,$ $p\dotplus q=\min(1, P+q-1)$ ;

$\ovalbox{\tt\small REJECT}_{1)}Accordingtotheabove\Pi maybeapproximatedbymeansoffinitecompositionsof$

diodes and triodes–impossible till my results. An expression in which an aPparent
variable $a$ belongs to the scope of two quantifiers $\Pi a$ is not a formula; if $a$ does not occurin $E$, then $\Pi aE$ is not a formula.
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(2) Algebra of probabilities: $p^{\prime}=1-p;p\dotplus_{q=1}$ if $p$ is the value of $E$

and $q$ is the value of $E^{\prime},$ $p\dotplus_{q}=p+q-pqothe\iota\cdot wise$ and we inter.
prete formulas $E,$ $E^{\prime}$ as mutually exclusive events;

(0.14) $w,$ $w_{1},$ $\cdots$ –numbers $0,1$ , ; $w_{j}^{p}-for$ instance: the j-th member of the
binary expansion of the number $p$ ;

(0.15) $S(\{i_{r}\})$ –the set of all atomic formulas with indices of free variables
belonging to $\{i_{\tau}\};$ $V_{0}$–function on $S(\{k\})$ with values in $[0,1];\ovalbox{\tt\small REJECT}(\{p_{n}\})=$

$k$ means: $V_{0}$ is only defined on $S(\{k\})$ ;
(0.16) $m$–the length of the considered binary expansions of numbers (it is

here partly an editorial assumption).

The construction of the proPer prime ideal $[221, [28]-[32]$ , gives the natural
origin of my proof rules with cut-rule and its simplifications;

Let us recall ones:

(1.1) $E+E^{\prime}$

(1.2) If $E+F$ , then $F+E$ .
(1.3) If $(E+F)+G$ , then $E+(F+G)$ ,

(1.4) If $E$ , then $E+F$ .
(1.5) If $E+G$ , and $F+G^{\prime}$ , then $E+F^{2)}$

(1.6) If $E+F,$ $x\in C\{E\}$ , then $E+\Pi aF(alx)$ ,

(1.7) If $E+\Pi aF$, then $E+F(xla)$ .
In [32] I generalized the last construction with the proof rules according to
generalized models, i.e. truncated inferences of families of sets of formulas;

another kind of generalizations may be obtained in directions of $[181, [21]-[36]$ ,

$[43]-[44]$ .
So in view of the development of “ forcing ” I shall present it in the above

forms describing kinds of [31, $[51, [42]$ and let the reader identify here models

with their descriptions:
’ For an arbitrary generalized model $Q(k)$ , for an arbitrary model $M=\langle D_{k}$ ,

$\{\Phi_{q}^{\ell}\}\rangle eQ$ , for an arbitrary formula $E$ and each $\{i_{\tau}\}\supset\{i_{h(E)}\},$ $\tau+c(E)\leq k$ , we present

1) It is aBoolean algebra in $[0,2]$ and the reader will easy give othereillxampleasygive other examples of
Boolean algebras in $[0,1]$ .

2) Regarding my cited paper it may be simplified to:
(1.5) If $E+G$ and $E+G^{\prime}$ , then $E$ .
$(1.1)-(1.5)$ are rules of propositional calculus.
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an inductive definition of the notion “ $M$ forces $E$ –in symbols: $M1+E$–and
it is given in a brief sketch of [5]:

(d1) $M|+f_{i}^{j}(x_{i_{1}}, \cdots, x_{i_{j}})$ iff $F_{i}^{j}(i_{1}, \cdots, i_{j})eM$ ,
(d2) $M|+F+G$ iff $M|+F$ or $M|+G$ ,
(d3) $M|+F^{\prime}$ iff $\sim(\exists M_{1})\{(M_{1}eQ) A (M_{1}|\{i_{\tau}\}=M|\{i_{\tau}\}) A (M|+F)\}^{1)}$

(d4) $M|+\Sigma aF$ iff $M|+F(xla)$ .
If $Q$ is closed under Permutations, then $x$ may be the first $xCC\{F\}$ ,
see [231, [241, [261, $[301, [34]$ , [381.

The basic lemma of truncation (the regarded homomorphismes) is:
L.l. $M|\{s_{k}\}|\{j_{rn}\}=M|\{s_{k_{j_{m}}}\}$ , see [9], [11]

D.l. $M_{1}eM[k]$ iff $(\exists\{s_{k}\})(M_{1}=M|\{s_{k}\})$

$M[k]$ is the set of all models $M|\{s_{k}\}$ of the Power $k$ .
To formulate the equivalence of my invariance relations and forcing let us

introduce my generalization of satisfiability definition according to [29], [31], [32],
i.e. first we introduce inductively the following functional $W$ with the above
restrictions:

(1d) $W\{k, Q, M, \{i_{\tau}\}, f_{i}^{j}(x_{i_{1}}, \cdots, x_{i_{j}})\}=1$ iff $F_{i}^{j}(i_{1}, \cdots, i_{j})$ ,

(2d) $W\{k, Q, M, \{i_{\tau}\}, F^{\prime}\}=1iff\sim W\{k, Q, M, \{i_{\tau}\}, F\}=1$

iff $W\{k, Q, M, \{i_{\tau}\}, F\}=0$ ,

(3d) $W\{k, Q, M, \{i_{\tau}\}, F+G\}=1$ iff $ W\{k, Q, M, \{i_{\tau}\}, F\}=1\vee$

V $W\{k, Q, M, \{i_{\tau}\}, G\}=1$ ,

(4d) $W\{k, Q, M, \{i_{\tau}\}, \Pi aF\}=1$ iff $(j)(M_{1})\{(j\leqq k)$ A
$\wedge(M_{1}/\{i_{\tau}\}=M/\{i_{\tau}\})\rightarrow W\{k, Q, M, \{i_{\tau}\}, j, F(x_{j}la)\}=1\}^{2)}$ ,

D.2. $N(k, Q, G)$ iff $(\{i_{\tau}\})\{(\{i_{\tau}\}\supset\{i_{h(G)}\})\wedge(\tau+c(G)<k)\rightarrow(i)(M)(W\{k, Q, M, \{i_{\tau}\}, G\}=1$

1) Of course, speaking only about descriptions of models, domains of regarded models
may be different ones, the segnence $\{i_{\tau}\}$ may be replaced by a number $r\geqq\max\{i_{\tau}\}$ and we
can restrict ourselves to extensions of $M$ instead of $M|\{i_{\tau}\}=M|\{i_{\tau}\}$ , i.e. to suitable exten-
sions of $M$ cutted to $r$ .

The rule “ $M|+x$ iff $X\epsilon D_{k}$
” is here omitted.

2) The above definition of a switching function is simplified and the general form of
(4d) is the following:

$(4d)W\{k, Q, M, \{i_{r}\}, \{z_{r}\}, \Pi aF\}=1$ iff

$(j)(x)(M_{1})${($x_{j}$ does not occur in $F$) $\wedge(j=1,2, \cdots)\wedge(z\epsilon D_{k})\wedge(M_{1}/\{z_{i\tau}\}=M/\{z_{i\tau}\})\rightarrow$

$W\{k,Q,M,\{i_{\tau}\},j,\{z_{\tau}\}(z/j), F(x_{j}la)\}=1\}$ ,

where $Xj$ is the name of $z_{j}$ ; the formulation $(1d)-(3d)$ in the last case is immediately.
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iff $W\{k, Q, M, \{i_{\tau}\}, i, H\}=1$ )}

As a basis of my probalistic models we give1)

D.3. $FeP(k, Q, M, \{i_{\tau}\})$ iff $(\exists H)\{(H\in C(F))\wedge(N(k, Q, H)\rightarrow W\{k, Q, M, \{i_{\tau}\}, F\}$

$=1)\}$

D.4. $FeP\{k, Q, M\}$ iff $F\in P(k, Q, M, \{i_{h(F)}\})$

D.5. $FeP\{k\}$ iff $(Q)(M)\{Q(k)\wedge(MeQ)\rightarrow(FeP\{k, Q, M\})\}$ ,

D.6. $EeP$ iff $(\exists k)\{(k\geqq n(E))\wedge(EeP\{k\})\}^{2)}$

I cite from my papers the explanation of the last definitions:
$W\{k, Q, M, \{i_{\tau}\}, E\}=1$ may be read: the model $M$ satisfies $E$ respectively to

$Q$ and $\{i_{\tau}\}$ .
If $Q$ is one-elementing, then $W$ is the usual satisfiability function in the

domain of ordinary numbers of $D_{k}$ ; then D.2..4. create, obviously, the usual
truth definition in $M$.

If $M$ is a model and $Q=M[k]$ , then elements of $Q$ are submodels of $M$ in
the sense of homomorphism, the number $i$ in (4d) is the name of an arbitrary

element of the domain of $M$ and D.4. says $\{i_{\tau}\}$ has not influence in whole on
the introduced generalization of the satisfiability definition as in one-elementing
$Q$ , i.e. as in the case of a usual model; the invariant relation $N(k, Q, G)$ holds
for connectives of propositional calculi–so in the case of practical verifications
we need verify the invariant relation only for formulas of the form $\Pi_{aH}$ for
some $H$ ; this relation asserts the same as in usual models, namely: the intro-
duced generalization of the satisfiability definition depends only on values of fre:
variables of $E$ and it does not depend on the conditional sequence $\{i_{\tau}\}$ which does
not determine here values of free variables–hence the name of $Q$ as a generaliz-

ed model.
D.5. $- 6$ . are pictures of the usual truth definition in its homomorphic gene-

ralization introduced above. For normal forms it suffices to guess only $H=E$

and the implication to the left instead of the second equivalence in D.2. ; the

last implication suffices for theses.
The main theorem: $-P$ is the class of all theses of the first order functional

calculus, i.e. of all true formulas of the calculus.
Its syntactical $pr\ovalbox{\tt\small REJECT} f$ gives simultaneously completeness of infinite many

$\ovalbox{\tt\small REJECT} 1)$They are not needed in the formulation of the equivalence lemma called:invariance
lemma.

2) Instead of $C(E)$ the reader may regard a suitable set of formulas in D.3. respectively
to his tasks.

The number $n(E)$ may be less than used here.
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Boolean important calculi with quantifiers of finite interpretations which aPProxi-
mate the first order functional calculus and so the Proof gives a simultaneous
one of generalizations of G\"odel, Skolem, L\"ovenheim, Herbrand’s $th\ovalbox{\tt\small REJECT} rems$ which
are here constructive ones for vsing generalized models we obtain only construc-
tive proofs, but in more general sense regarded above.

Invariance lemma: -Let $E$ be an arbitrary formula,

$\{i_{\tau}\}\supset\{i_{h(E)}\},$ $\tau+c(E)\leqq k$ and $Q(k)$ ;
then:

$M$ forces $E$ iff $W\{k, Q, M, \{i_{\tau}\}, E\}=1$ and $N(k, Q, G)$ for all $GeC\{E\}$ .
The simple $pr\ovalbox{\tt\small REJECT} f$ of the last lemma is inductive respectively to the length
of $E$ and $I$ received this lemma about 17 years ago proving the invariant
relation $N^{1)}$

In practical veryfications for $E$ and given $M$ we may restrict $Q$ to extensions
of $M|\{i_{h(E)}\}$ .

Let us cite [38] the second time:
Let the reader formulate other ways, likely to force theory, leading to

analogical invariance lemmas (for instance, according to my Papers) and first of
all let him formulate my weaker assumptions about quantifiers for normal
formulas in notions of forcing, see cited Papers.

The generalization for arbitrary languages -computers–is in print since
several years.

Of course, and it is published in my Papers, that my generalized models
give generalizations of matrix methods, i.e. they only give constructive $pr\ovalbox{\tt\small REJECT} fs$

of independence and consistency.
So about ten years ago -being also in contacts with Jerzy $StuPecki$ -I

wrote to Karimiers Aidukiewier and Karimiers Kuratowski:
My results open a new start of reconstruction of the whole Mathematics on

intuitive and constructive ways.
It is easy to see the connection of my results with group theory (of automor-

phismes), see [171, and it is known and it is seen in this Paper that all results
are also regarded in Game theory; so speaking about normal games with zero-
sum it is important to regard complete matrices with very important results of
Jerzy Stulecki, and Bolestaw Sobocinski, e.g. [43], [45], [48], and regarding $J$.
$\overline{1)}$It is immediately seen from $thekind\ovalbox{\tt\small REJECT}$of my publication but, of course, Idid not use
the notion “ forcing ” and I only used the semantic, i.e. it is a lemma of an assumption
for negation instead of $\Pi$ ; see the definition of $\sum$ .
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StuPecki’s seminars in 1947/8, one of his Pupils M. Reichaw, today also Professor
of University and Polytechnic, solved his problem of complete matrices replacing

S. Nicod’s matrices by one $n\times n$ matrix. His inductive $pr\ovalbox{\tt\small REJECT} f$ is very interesting,

very clear and important and I plan to publish it in next ioumals of Creation
in Mathematics [211.

The above gives the common origin of possible new ways -the common
origin written in my Papers, i.e. the historical ages problem of decidability

formulated in my solutions:
Mathematical therems1) are semidecidable (K. Godel. S. Herbrand), $[11, [10]$ ,

[12], [141, [151, $[181, [22]-[35],$ $[39],$ $[41]$ undecidable (A. Church) [11, [101, [121,

[16], [30] and statistically decidable $[35]-[37|, [39],$ $[41]$ .
Of course, my generalized models give also finite generalizations of the

following:

If instead of formulas we regard equations, then using Poretzki’s expansions

we obtain linear polynomials and so the consistency is equivalent to existence of
simultaneous solution of the corresponding polynomials. So, for instance, we
obtain here generalizations of linear Programming, see page95.

Let us for brevity of the lecture–suppose an editorial assumption:

We only regard formulas of a given length and it may be done here in
practical applications.

Introducing my generalized probabilistic satisfiability definition we explain

several additional remarks about 0-1 sequences.

For a given $n$ and $pe[0,1]$ let $(w_{1}^{p}, \cdots. w_{n}^{p})$ denote a sequence of 0-1

numbers and let $g$ be a function on the interval $[0,1]$ with values $\{w_{n}^{p}\}$ , const-

ructed from $p$ , and for instance, for each $pe[0,1]$ :
1. $g(p)=\{w_{n}^{p}\}$ is the binary Part-expansion of $p$ of length $n$ , where $w_{:}^{p}$ is

the i-th element of the binary expansion of $p$ . Instead of the binary expansion

we can take the decimal expansion or other one.
2. $\{w_{n}^{p}\}$ is the Bernoulli’s sequence of $n$ independent trials, e.g. if $X$ is a

binomial random variable, $n=6$ and $(w_{1}^{p}, \cdots. w_{6}^{p})=(0,1,0,0,1,1)$ , then it may

be:
$p=P\{X=2\}+P\{5\leqq X\leqq 6\}$ , where $P\{i\leqq X\leqq j\}$ is the probability that $i\leqq X\leqq j$ ,

see [371.

3. $\{w_{n}^{p}\}$ is generated by a matrice $\Vert a_{ij}\Vert$ with $|$ aij $|\neq 0$ or another operator.

Let us point out, if we regard (in my Papers) sets of models closed respec-

1) It $\ovalbox{\tt\small REJECT} ntains$ the termination problem in computers.
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tively to permutations we may consider the number $p$ as generator of numbers
$p*$ with truncated permuted expansions; so each sequence $\{p_{m}\}$ of numbers
determines certain generated prolongations $\{p_{m+1}\}$ putting, e.g. $p_{m+1}=p*$ , see
$[231, [26]$ , [301. The part-expansion $g(p_{i})$ of $p_{i}$ we write in i-th column of a
matrice, $i=1,\cdots,$ $n$ , and so $\{p_{m}\}$ determines a matrice $n\times m$ of part-exPansions
of $\{p_{m}\}$ but for brevity we put $n=m$ .

D.7. $(j\sim s, \{p_{m}\}, \{i_{\tau}\}\leqq k)$ iff $(R)\{(ReS(\{i_{\tau}\}))\wedge V_{0}\{k, R\}=pe\{p_{m}\}\rightarrow(w_{\dot{f}}^{p}=w_{l}^{p})\}$ .
And it asserts that i-th and s-th elements of suitable binary expansions are

equal.

We extend the introduced $V_{0}$ to a composition of threshold function $V$ defined
for an arbitrary formula $E$ with indices of free variables $\leqq k$ and $\{i_{\tau}\}\supset\{i_{h(E)}\}$ :

(1D) $V\{k, \{p_{m}\}, \{\tau_{\tau}\}, R\}=V_{0}\{k, R\}e\{p_{m}\}^{1)}$

(2D) $V\{k, \{p_{m}\}, \{i_{\tau}\}, F^{\prime}\}=V\{k, \{p_{m}\}, \{i_{\tau}\}, F\}$ ,
(3D) $V\{k, \{p_{m}\}, \{j_{\tau}\}, F+G\}=V\{k, \{p_{m}\}, \{j_{\tau}\}, F\}\dotplus V\{k, \{p_{m}\}, \{i_{\tau}\}, G\}=1$ ,
(4D) $V\{k, \{p_{n*}\}, \{i_{\tau}\}, \Pi aF\}=P$ iff $(i)\{(j\leqq m\}\rightarrow(w_{j}^{p}=1$ iff $(s)(r)\{(s\leqq m)\wedge(r\leqq k)$

$\wedge(j\sim s, \{p_{m}\}, \{i_{\tau}\}\leqq k)\wedge V\{k, \{p_{m}\}, \{i_{\tau}\}, r, F(x_{r}/a)\}=\grave{p}_{r}\rightarrow(w_{\dot{f}}^{p_{r}}=w_{*}^{pr}=1)\})\}$ .
(4D) is an adequate form of (4d) by means of numbers of the interval $[0,1]$

and $n=m$ is the number of elemenls of $Q$ .
$V\{k, \{p_{m}\}, \{i_{\tau}\}, E\}=p$ is read: the generalized probabilistic model $\{p_{m}\}$ gives

the value $p$ for $E$ respectively to $\{i_{\tau}\}$ and $k$ ; if numbers $\{p_{m}\}$ are only $0,1$ , then
$V$ is a form of usual satisfiability function in domains of numbers $\leqq k$ .

In applications we may restrict ourselves to finite $B\ovalbox{\tt\small REJECT} lean$ algebras and my
all definitions have an algorithmic character with statistical computation, [37],
[39], [52]:

D.8. $J(k, \{p_{m}\}, G)$ iff $(\{i_{\tau}\})\{(\tau+c(G)<k)\wedge(\{i_{h(G)}\}\subset\{i_{\tau}\})\rightarrow(j)(V\{k, \{p_{m}\}, \{i_{\tau}\}, G\}$

$=V\{k, \{p_{m}\}, \{i_{\tau}\}, j, G\})\}$ .
The last invariance relation $J$ reduces the influence of $\{i_{\tau}\}$ to $\{i_{h(G)}\}\subset\{i_{\tau}\}$ , see

page 84.
D.9. $EeP\{k, \{p_{n}\}\}$ iff $(\exists G)\{(GeC\{E\})\wedge(J(k, \{p_{m}\}, G)\rightarrow V\{k, \{p_{m}\}, \{i_{h(E)}\}, E\}=1)\}$

My results give immediately, [32], [37]:

Adequacy theorem: If $U$ is an arbitrary set of formulas, the $U$ is consistent
iff there exists such $\{p_{n}\}$ that if $EeU,$ $k\geq n(E)$ and $(\{p_{m}\})=k$ , then $Eep\{k, \{p_{m}\}\}$

and $E^{\prime}\in p\{k, \{p_{l\hslash}\}\}$ .
$\ovalbox{\tt\small REJECT} 1)Sommustbesufficientgreatandm\leqq 2^{q\ell k^{t}}$
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Additionally: if $Up_{\nabla}F$ and $ k\geqq$ max $\{n(F), n(U)\}^{1)}$ then $peP\{k, \{p_{n}\}\}$ .
According to the last theorem each consistent set $u$ of formulas is defined

by a Pair $\langle n(U), \{p_{m}\}\rangle,$ $n(U)\leqq k$ , or omitting the infinity it is defined by a
sequence $\langle\{p_{n}\}, \{p_{m+1}\}, \{p_{n+2}\}, \cdots\rangle$ with finite $m$ :

The last sequence $\{p_{m}\}$ is called “ adequacy U-sequence.”
The adequacy theorem may be written shortly in symbols of a form of

generalization:

A-theorem: $-U$ is consistent. iff:
$(\exists\{P\cdot\})\{(V(\{P\cdot\})=k)\wedge(E)\{(U\vdash E)\wedge(k\geqq n(E))\rightarrow(EeP\{k, \{p_{m}\})\wedge(E^{\prime}eP\{k, \{p_{m}\}\})\}\wedge$

$\wedge\{(UP_{\nabla}F)(k\geqq\max\{n(F), n(U)\})\rightarrow(F\in P\{k, \{p_{m}\}\})\}\}$

A-theorem for $U$ empty contains the main theorem of preceding lecture, e.g.
in the following statistical formulation introducing statistical tests:

Let us suPpose $E$ is the measured quantity and for brevity let 1 be its
theoretical value. Our tests indicate great numbers $k$ and let $P_{j}$ be probabilis-
tics (our confidences) with $Limj\rightarrow\infty P_{j}=1$ and let $Limj\rightarrow\infty e_{j}=0$ .

According to history of statistics let us take an intuitive basis assuming $E$

has normal density; then we guess:
D.10. $EeP$ iff $(j)(\exists k)\{(k\geqq n(E))\wedge(\{p_{m}\})\{(1\leqq m\leqq 2^{q\ell k^{t}})\rightarrow(\exists G)\{(GeC\{E\})\wedge$

($J(k,$ $\{p_{m}\},$ $G)\rightarrow V\{k,$ $\{p_{m}\},$ $\{i_{h(E)}\},$ $E\}e[1-e_{i},$ $1]$ with the confidence $P_{\dot{f}}$)}}}

It may be proven [371:

Main theorem with statistical tests: $-P$ is the class of true formulas of the
first- order functional calculus, i.e. the class of theses of that calculus.

So D.10. gives immediately statistical tests in the last main theorem. And
omitting the quantifier $(j)$ with the replacement of the interval $[1-e_{i}, 1]$ by
the number 1 in D.10. we obtain my published results in different iournals but
in notion of probabilistic models and without statistical tests, see pages $\Re\cdot 95$ .

Let us point out, regarding only usual models we can only restrict ourselves
to $k\geqq\aleph_{0}$ and two values $0$ , 1 of $V$ ; but the last adequacy theorem may only

deal with finite $k$ what is impossible for usual models.
The main theorems may be also completed:
The quantifier $(\{p_{m}\})$ in D.10. is restricted to all adequacy sequences with

generated prolongations, e.g. for $m\geqq 2^{qtk^{t}}$ with $k\geqq n(U)$ .
In the sequel we only regard adequacy U-sequences and so the introduced

1) If $n(U)$ is infinite, then $m,$ $k$ are infinite; but $n(U)=infinity$ may be omitted in that
theorem writing: $k$ sufficient great; if we restrict ourselves to formulas of a given length
then $n(U)$ is finite.
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values $V\{k, \{p_{m}\}, \{i_{h(E)}\}, E\}$ in D.9., D.10 and in last theorems may be done
independent on $k$ by means of the definition:

(1) $P^{U}\{E$) $=L\underline{im}kV\{k, \{p_{m}\}, \{i_{h(E)}\}, E\}$

(If $\{p_{m}\}$ depends on $k$ , then we also assume (1).)

We say $E,$ $F$ are disioint respectively to $U$ iff $(EF)^{\prime}$ is a thesis respectively
to $U$.

A topological space of formulas may be here obtained in usual ways (e.g.
$P^{U}\{E\}-p^{U}\{F\})$ but we do not use properties of a metric and therefore we shall
speak about metric in the sense of the following definition:

D.ll. $D(E, F)=P^{U}\{EF^{\prime}+E^{\prime}F\}^{1)}$

Hence for instance denoting $P\{E\}=P,$ $P\{F\}=q$ we have in the probabilistic model,
page 81,

$D(E, F)=\left\{\begin{array}{l}0, If E\equiv F\\P+q-2pq, if E\not\equiv F^{2)}\end{array}\right.$

The explained infinite probabilistic models (but not finite one) where regarded
e.g. by A.N. Kolmogoroff, J. $L6s$ , A. Mazurkiewicz, R. Suszko, $\cdots$ )

The limit of a sequence $E_{i}$ of formulas is defined usually:
D.12. $E=Lim\rightarrow\infty E_{i}$ iff $Lim\ell\rightarrow\infty D(E_{i}, E)=0$

From the above follows respectively:
Convergence theorem: – $LimP\{E\equiv E_{i}\}=1\rightarrow\infty$ iff $LimE_{i}=E\rightarrow\infty$ iff $(\exists N)(i)\{(i\geqq N)$

$\rightarrow(U\vdash E_{i}\equiv E)\}$ .
Generalization of Herbrand’s theorem: $-Limi\rightarrow\infty E_{i}=E$ iff there exists $n$ such

that $U\vdash E_{n}\equiv E^{8)}$

So we obtain immediately:
Convergences of Probabilities:– $Lim\rightarrow\infty E_{i}=E$ iff $Limi\rightarrow\infty P\{E_{i}\}=P\{E\}$ .
And we obtained a usual convergence and not only the strong law of great

numbers.
It is interesting that the last formulation of theorems contains Herbrand’s

$th\ovalbox{\tt\small REJECT} rems^{4)}$ for an arbitrary consistent sets of formulas according to the following

$\ovalbox{\tt\small REJECT} 1)$It is the symmetrical difference: $E_{-}F=(E\equiv F)^{\prime}$ and it is an example of non thre
shold function.

2) Of course, the introduced asymptotic probability satisfies A. Mazurkiewicz’s axioms
of probabilities but the proof is based on proved theorems in my published papers.

8) We do not regard here syntactical proof rules, see pages81-82.
4) Those formulations belong to the author and we may obtain here also Craig, Gentzen

and A. Robinson’s theorems.
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important examples of convergent sequences of formulas:
1. Herbrand’s quantifierless formulas for an arbitrary expression creating

finite alternatives $E_{m}$ of infinite many formulas; it suffices to see this theorem
for theses and then according to the above the generalization is also seen.

2. My formulas without quantifiers determined by main theorems and D.6.
3. My generalization of Herbrand’s formulas in a simultaneous $pr\ovalbox{\tt\small REJECT} f$ of

G\"odel, Skolem, L\"ovenheim and Herbrand’s theorems with a new notion: $E$ is a
thesis of a set of formulas $A$ respectively to $B,$ A $eB$ ; the syntactic way is
published in [32] and it is a generalization of [221.

We emphasize:
A-theorem gives probabilistic tables for Boolean calculi with quantifiers of

finite interpretations which approximate the first order functional calculus
(with added axioms $U$ else; additionally it gives an infinite probabilistic table).

In the following theorem we identify formulas with events and the equivalence

with the identity and we deal with the probabilistic model; so from the infinite
addition axiom of probabilities follows immediately:

Kolmogoroff’s theorem (generalization of the infinite axiom of probabilistics):

-If $U$ is consistent and events $E_{i},$ $E_{j}$ are disioint respectively to $U,$ $i\neq j,$ $i,$ $j$

$=1,2,$ $\cdots$ . and $Limm\rightarrow\infty(E_{1}+\cdots+E_{m})=E$ , then:
$ P\{E\}=P\{E_{1}\}+\cdots+P\{E_{m}\}+\cdots$

Though it is a reformutation of Kolmogoroff’s theorem it is a new theorem
in view of my generalized models.

Values of formulas and statistical testing: –We shall describe different test
methods and so first of all the measured quantity is an arbitrary formula $E$.

My published paper, see cited ones, describe different formulas $E_{i}$ of Proposi-

tional calculus which asymptotically replace $E$ and even more, see pages $\mathfrak{B}\cdot 95$ .
First we regard the aforementioned different convergent sequences $E_{i}$ with

$Lim\rightarrow\infty E_{i}=E$ .
And we have here three questions:

1. Estimation of $E$ .
2. Comparison of different estimations.
3. Decisions.
Estimations of the value of $E$ may be obtained on the following three ways:

normal formulas (or especially G\"odel-Herbrand’s quantifierless formulas) with their
propositional approximation, ones in the general case, my different approxima-

tions with finite-natural change of the interpretation of quantifiers and not of
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the structure of formulas in additional descriptions.
Comparison of two calculated estimations we obtain, e.g., using statistical

tests or Student’s density and so we assume the measured quantity has the

normal density.
We may here consider all questions of statistics with e.g., Borel-Cantelli’s

lemma (giving interesting decidability criterions of arbitrary formulas), sequen-

tial analysis and recurrentive events1) with all densities but we $shaU$ describe

here stronger results and first of all we present in decisions a simple example

of statistical tests $[6]-[8],$ $[50],$ $[51]$ .
Let us retum to my above propositional approximations $E_{k}$ of $E$ or (Herbr-

and’s ones wholly of another kind) and let us guess for brevity: $E$ is a true
formula; then according to the above we can have for instance: $M$ formulas
$E_{i}$ are true–a finite machine iotted down $N$ formulas in a program without a
reply–and so $N-M$ formulas $E_{i}$ are false $i=1,2,$ $\cdots,$

$N$.
Interpreting true $E_{k}$ as white cards and false $E_{k}$ as black ones and closing

all cards in a box (we suppose a black box) we apply the known statistical choice

with the probability of chosing $k$ white cards between $n$ chosen cards:

$P_{NM}^{nk}=\frac{\left(\begin{array}{l}M\\k\end{array}\right).(Nn--kM)}{(_{n}^{N})}$

For great $N$ it is replaced by the binomial density with $p=M/N$ and afterwards
by the normal density with the formula

$P\{|\frac{k}{n}-p|<t\}=2\Phi(\frac{t}{\sigma})-1=P$ ,

where $P$ is the confidence and $\overline{\sigma}=\sqrt{p(1-P)/n}$

The most interesting case $p$ is very small; then applying Poisson’s density

$P_{\lambda}(k)=\frac{\lambda^{k}}{k!}e^{-\lambda},$ $\lambda\approx nP$

with $\lambda\rightarrow\infty$ we use the normal density with $\overline{\sigma}=\sqrt{\lambda/n}$ and then we obtain the
following computation results:

$v$ We recall a formula in directions of the binomial density:

$P\{X_{n}\leqq k\}=P\{S_{k}\geqq N\}$ ,

where $X_{n}$ takes on values of strict outcomes of the recurrentive event $x$ in $n$ regarded
trials and $S_{k}$ takes on values of numbers of trials till the k-th outcome of $x$ .
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If $P=0.95,$ $\lambda=0.0001,$ $t=0.OOOO1$ then $n=384.16\cdot 10^{12}\approx 22.3\cdot 10^{5}$ distances between
the earth and the sun.1)

In sequential analysis using formulas of [511 (without errors of approxima-
tions) we obtain for the errors of the first and second kinds $\alpha=0.01,$ $\beta=0.05$ ,
respectively, with the hypothesis $H_{0}$ : $\lambda_{0}=0.0001$ .

1. against the alternative one $H_{1}$ : $\lambda_{1}=0.00021$ for the current most powerfull
test:

$n=(\frac{t_{05}-t_{0.1}}{\lambda_{1}-\lambda_{0}})^{2}=(\frac{2.32-1.65}{10^{-5}(21-10)})^{2}=\frac{0.44}{121}\cdot 10^{10}=371\cdot 10^{5}$ ,

2. against the alternative $H_{1}$ : $\lambda_{1}=10^{-4}$ calculated by means of aPproxima-
tion in the interval $[9\cdot 10^{-5},2\cdot 10^{-4}]$ with the most powerfull probability ratio
test: $n=382\cdot 10^{4}$ . Let the reader read distributions of calculated $n$ and $a$ better
calculation of errors of the first and second kinds.

Another estimation of $n$ may be obtained restricting ourselves only to the
binomial density with results of [49] instead of the above Poisson’s aPproxima $\cdot$

tion.
The sequential Probability Ratio Test gives methods of construction of

equivalent formulas of the first-order functional and2) a resolvent of a given
formula.

Last results are called: weak statistical decidability of theorems.
The great importance of all results is in computation by means of compu-

ters and we cite [21 of mathematical conference of last years:
“ 2. Counter examples: –Computing machines have been of service to

mathematics in printing out, by example, the falsity of a coniectured result.
The theory of Numbers is a good branch of mathematics to $1\ovalbox{\tt\small REJECT} k$ for these
counter examples not only because of its discrete variable nature but also
because the subiect abounds with easily stated Propositions whose truth values
are very difficult to establish.

A very recent discovery of Lander and Parken and the CDC 6600 is a case
in Point. Euler (circa 1769), in discussing the Fermat Problem, declared that is
also impossible to find three fourth powers whose sum is a fourth power or to
find four fifth powers whose sum is a fifth power. Two centuries later, this

1) The convergence of Poisson’s density to the normal one is in [37] as a conclusion of
my general theorem with a simple proof and it states that the normed Poisson’s random
variable has asymptotically the normal density with the expectation $0$ and variances 1 and
even more for the local theorem.

2) Ones are not simpler.
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summer, the 6600 came up with the undisputable fact that

$27^{5}+84^{5}+110^{5}+133^{5}=144^{5}$

This not only demolishes Euler’s assertion about fifth powers but even raises
hopes that the equation

$x^{4}+y^{4}+z^{4}=w^{4}$

may also be solvable. I know three different computing establishments where
this equation is now under scrutiny.

Not all searches for counter-examples have triumphial endings. In fact,
in the case of some famous unsolved problems, it would seem foolhardy to
invest much good machine time in such a research. Examples are the Four
Color Problem and the Goldbach Coniecture that every even number $(>2)$ is the
sum of two primes.

3. Verification of coniectures: When one has been unsuccesful in finding
a counter-example, one can sometimes report that one’s machine time was well
spent in verifying the truth of $N$ cases of the general proposition one secretly
was hoping to demolish. If $N$ is pretty large, one can say that the proposition
is now more plausible than before. A metric for plausibility has never been
proposed, as far as I know, but if we had one we may be sure that it would
not be a linear function of $N^{\prime\prime}$ .

Thus results of the Paper complete the last known facts and it is anticipated
that an understanding of presented algorithmes with weak and strong statistical
decidability of theorems will permit many scientists and readers to formulate
and to solve problems which they currently believe unsolvable.

Describing further strong decision methods we shall sketch parts of my
lecture in Computers Conference of Menaggio (2.8–14.8. 1970), Italy), Paris
(22.9. 1970, France) and Rome (5–20.10. 1970, Italy).1)

First of all we recall my first published truncated satisfiability (composition

of treshold) function of $[221, [34]$ with suitable truth definitions:
For an arbitrary Me $Q(k)$ and every formula $E$ with indices of free varia-

bles $\leqq k$ we have my first inductive definition of the truncated satisfiability:
(id 1) $W\{M, Q, f_{j}^{m}(x_{r_{1}}\cdots,x_{r_{fn}})\}=1$ iff $F_{j}^{m}(r_{1}, \cdots,r_{m})$ ,
(id 2) $W\{M, Q, F^{\prime}\}=1iff\sim W\{M, Q, F\}=1$ iff $W\{M, Q, F\}=0$

(id 3) $W\{M, Q, F+G\}=1$ iff $W\{M, Q, F\}=1\vee W\{M, Q, G\}=1$

1) Weak ones was also presented in my visiting lectures of Milano, Pavia and Venezia,
Italy, 1970 year.
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(id 4) $W\{M,$ $Q,$ $\Pi_{aF\}=1}$ iff $(i)(M_{1})\{(i\leqq k)$ A $(M_{1}eQ)\wedge(M_{1}|\{i_{h(F)}\}=M/\{i_{h(F)}\})$

$\rightarrow W\{M, Q, F(x_{i}la)\}=1\}$

D.13. $n(Q, k)$ iff $Q(k)\wedge(\{t_{k}\})(M)\{(\{t_{k}\}\leqq k)\wedge(MeQ)\rightarrow(M/\{t_{k}\}eQ)\}^{1)}$

D.14. $N(Q, k)$ iff $m(Q, k)$ A $(t)(M_{1})(M_{2})(\exists M)\{(t+2\leqq k)$ A $(M_{1}, M_{2}eQ)\wedge$

A $(M_{1}|\{t\}=M_{2}/\{t\})\rightarrow(M\in Q)\wedge(M/\{t+1\}=M_{1}/\{t+1\})\wedge(M/\{t\}$ ,
$t+2/=M_{2}/\{t\},$ $t+2/$)}

D.15. $E\in P\{Q, k\}$ iff $(M)\{(MeQ)\rightarrow W\{M, Q, E\}=1\}$

D.16. $EeP\{k\}$ iff $(Q)\{N(Q, k\}\rightarrow(EeP(Q, k)\}$

D.17. $EeP$ iff $EeP\{n(E)\}$

If we regard elements of $Q$ with an infinite sequence of monadic relations
(added to those models for the relation $N(Q,$ $k)$), then it is proved the main
theorem, page 84, but then $Q$ has infinite number of finite models of the rank
$n(E)$ .

Using probabilistic models we may omit the last infinity in the following
manner:

Let us arrange all atomic formulas of $S(n(E))$ ( $i.e$ . a finite number) and all
elements of $Q(n(E))$ in a table with 0-1 values in the following table.

$\overline{M_{1}M_{2}M_{i}}|_{10.\cdot 1}^{\frac{RR...\cdot.\cdot...\cdot.\cdot...\cdot.R}{001010}}12\epsilon$

The 0-1 sequence below $R:,$ $i=1,$ $\cdots,$ $s$ is regarded as binary expansion of a
number of $[0,1]$ and so we have a finite number of numbers belonging to $[0,1]$ ;
in that construction we can realize first of all, the set $Q(n(E))(without$ additional
monadic relations) in the first $2^{q\ell(n(E))^{\ell}}$ expansion of those numbers $\cdots$

So the finite number of elements of $[0,1]$ generate the regarded set $Q(n(E))$

with additional monadic relations.
Thus $ac\ovalbox{\tt\small REJECT} rding$ to my aforementioned visiting lessons the question is:
How to shoot the finite number of numbers belonging to $[0,1]$ and according

to the reduction of the decidability problem it suffices to regard atomic formulas
indicated by one aPparent variable my theorems gives intervals tending to $0$

containing ones and we have at least statistical aPproximation of those numbers.
1) Using arbitrary names D-13 may be omitted.
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So closing the third question about decisions we can use here not only tests
and Student’s density in comparison of two results or e.g.. with the expected
value $0$ , but also to use minimization of functions with their densities (and here
I cite P. Erdoe’ and M. Kac’s results [4] about normal limit density), linear
expansions of formulas occording to the generalization of Poretzki’s formula in
the interval $[0,2]$ with linear interpolation (if we only regard the interval $[0,1]$ )

and extrapolation (if we regard the interval $[0,2]\rangle$ of values, [481: therefore we
recall the expansion of formulas of Propositional calculus:

$f(p_{1}, \cdots, p_{n})=\Sigma s_{1}\cdots s_{n}f(d_{1}, \cdots,d_{n})$

with $\sum s_{1}\cdots s_{n}=1,0\leqq s_{i}\leqq 1$ , and

$s_{i}=\left\{\begin{array}{ll}1-p_{i}p_{1}, ififd:=0d_{i}=1 & \} and 0\leqq p_{i}\leqq 1\\p\cdot-12-p_{1}, ififd:=1d_{i}=2 & \} and 1<p_{i}<2 ,\end{array}\right.$

where the summation is over an the configurations of either $d_{i}=0$ or 1 or 2 and
the coefficients $s_{1}\cdots s_{n}$ may be regarded as probabilities of occurrences of the
$\ovalbox{\tt\small REJECT} rresponding$ independent random variables $d_{1},$

$\cdots,$
$d_{n}$ and so we have here the

Monte Carlo method with construction of random variables [37].
First experimental values of $E$ are best given $ac\ovalbox{\tt\small REJECT} rding$ to my generalized

models of $E,$ $[23|-[27], [30]-[36],$ $[39]$ , and it is immediately seen that their con-
struction is wholy new one.

If in a random verification it happens we reiected a true theorem $E$ with
a given confidence (but never vice versa, if it is the question), then we apply
the following decision:

Reiect another theorem with the same confidence, even if the formula was
only reiected in inference $\omega nclusions$ on the basis of the reiection of $E$ .

If the last way gives a contradiction in the above process, then we proved
$E$ ; if no, then we reiect both formulas with the same probability.

Hence the functional calculi–mathematical theorems–are strongly statisti-
cally decidable. . .

Regarding $\aleph_{0}$ Propositional calculus we can $\ovalbox{\tt\small REJECT} nstruct$ syntactical $pr\ovalbox{\tt\small REJECT} f$ rules
to the last probabilistic semantic and to prove new completeness $th\ovalbox{\tt\small REJECT} rems$ based
in my publications, see cited ones.

Thus speaking about switching functions, threshold ones, resolvents, Chow’s
parameters and linear programming we have here a natural generalizations of
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ones with the inclusion of the decidability problem in linear programming with
aPplications of $\ovalbox{\tt\small REJECT} mputers$ in our calculations and it will be a topic of my future
papers, see [2], [41, $[6|, [13],$ $[19],$ $[20],$ $[21],$ $[23],$ $[30],$ $[36],$ $[37],$ $[39],$ $[41],$ $[43]$ ,

[45], [46], [47], [48], [51], [52].

At last my problem from Poland–of about 17 years ago–was unsolved in

view of my very bad conditions in Israel, [38]:

Finitization of functions: –Cut functions and replace my generalized models
by means of generalized models with functions on finite sets with finite number
of values.

Of course, the positive solution is published in my Papers by means of

reduction of functions to relations but the Purpose of my future publications is

to give derivative methods and so the positive solution with applications dealing

with a direct method omitting reduction to relations, will be published in next
my papers.

We dose the Paper citing my other important results in print:

First of all, according to my theorems the invariant relation can be omitted
in the following way:

Let $i(G)=\max\{i_{w(G)}\},$ $m(E)=\max\{P(G)\leftarrow i(G)$ , for each simple member $G$ of
$E\}$ , where $G$ is a simple member of $E$ iff $E=F_{1}+G+F_{2}$ , for some $F_{1},$ $F_{2}$ and $G$

is not an alternative of formulas, $j(G)=\max\{k-P(G), i(G)\}$ ; then;

For an arbitrary generalized model $Q(k)$ , for an arbitrary $T=\langle B_{k}, \{F_{\dot{g}}^{i}\}\rangle eQ$

and for an arbitrary formula $E$ whose indices of free variables are $\leqq k$ , we
introduce the following inductive definition of the functional $V_{1}$ :

(1d) $V_{1}\{Q, T, f_{j}^{n}(x_{r_{1}}\cdots, x_{r_{m}})\}=1$ iff $F_{j}^{m}(r_{1}, \cdots, r_{m})$ ,

(2d) $V_{1}\{Q, T, F^{\prime}\}=1$ iff $\sim V_{1}\{Q, T, \{i_{\ell}\}, F\}=1$ iff $V_{1}\{Q, T, F\}=0$ ,

(3d) $V_{1}\{Q, T, F+G\}=1$ iff $V_{1}\{Q, T, F\}=1\vee V_{1}\{Q, T, G\}=1$ ,

(4d) $V\{Q, T, \Pi aF\}=1$ iff $(i)(T_{1})\{(i\leqq j(F)+1)\wedge(T_{1}eQ)\wedge$

$\wedge(T_{1}|\{j(F)\}=T|\{j(F)\})\rightarrow V_{1}\{Q, T_{1}, F(Xi/a)\}=1\}$

D.18. $EeP_{1}\{k\}$ iff $(Q)(T)\{Q(k)\wedge(TeQ)\rightarrow V_{1}\{Q, T, E\}=1\}$

D.19. $EeP_{1}$ iff $(\exists k)\{(k\leqq m(E))\wedge(EeP_{1}\{k\})\}$

The main theorem is; $P_{1}$ is the class of all theses.
Thus according my published results we obtain here simple generalized

sequent rules with strong generalizations of the resolution method leading to

better decidability methods (partially recursive functions).

BIBLIOGRAPHY
[1] J.A. Church: Introduction to Mathematical Logic, 1956.



PROBABILITY OF FORMULAS 97

[2] R.F. Churchhouse, J.C. Hertz-Editors: Computers in Mathematical Research, 1968,
–D.H. Lehmer: Machines and Pure Mathematics.

[3] P.J. Cohen: Independence results in set theory, Studies in Logic and Foundation of
Mathematics, 1970, The Theory of Models.

[4] P. Erd\"os and M. Kac: On certain limit theorems of the theory of probability, Bull.
Amer. Math. Soc. 52, 1946.

[5] S. Feferman: Some aPplications of the notion of forcing and generic $ set\epsilon$ , The
Theory of Models in [3], 1970.

[6] J.W. Feller: An introduction to Probabihty theory and its $ Application\epsilon$ , 1950.
[7] M. Fisz: Rachamek Prawdopodsbieinkwe: Statystyke Matematyczna; translation in

German: Wahrscheinlichkeitsrechnung und mathematische Statistik, 3, Aufl., 1965.
[8] B.W. Gnedenko–A.N. Kolmogoroff: $Roskt\epsilon dy$ granicsne rniemych Losowych rieral-

eraych, 1957.
[9] K. Godel: Zum entscheidungsproblem des logischer Funktionenkalkul 40, 1933.
[10] D. Hilbert-P. Bernays: Grundlagen der Mathematik, 2, 1933.
[11] L. Kalmar: Uber die Erfulbarkeit derjenigen zahlausdrucke welche in der Normal-

form zwei benachbarte Auzeichen enthalten, Mathematische Annalen 108 (1933).
[12] S.C. Kleene: Introduction to metamathematics, 1952.
[13] A.N. Kolmogoroff: Osnownie Poniatija Tieorii Wierojatnostiej, 1933.
[14] J. Los: The algebraic $treatmen$ of the methodology of dementary deductive systems,

Studia Logica 2, 1955.
[15] A. Mostowski: Logika Matematyrma, 1948.
[16] A. Mostowski: On definable sets of positive integers, Fundamenta Mathematica 34,

1947.
[17] M. Rabin: Universal groups of automorphismes, sec [5].
[18] M. Rasiowa–R. Sikorski: On the Gentzen theorem, Fundamenta Mathematica 48,

1960.
[19] M. Reichaw: Lectures in set theory and applications, 1964.
[20] M. Reichaw: Algebraical Topology, 1968.
[21] M. Reichaw: n.valued complete matrice, Creation in Mathematics, 1972.
[22] J. Reichbach: 0 petnosci weiszego rachrumkn $ funkcyjnego- Completenes\epsilon$ of the first

order funtional calculus, Studia Logica, 1955.
[23] J. Reichbach: On the first.order functional calculus and truncation of $ model\epsilon$ ,

Studia Logica, 1958.
[24] J. Reichbach: On theses of the first-order functional calculus, Zeit. f. Mathema-

tik, 7, 1961.
[25] J. Reichbach: On the eonnection of the firsl-order functional calculus with many

valued $propo\epsilon itional$ calculi, Notre Dame Joumal of Formal Logic, 4, 1961.
J. Reichbach: On the connection of the first-order functional calculus with many
valued propositional calculi, $Lecture-1960/1$ .
Abstract: Proceeding of the Fourth Congress of Scientific Societies, Rehowot, April
2-5, Israel Bulletin of Research Council of Israel, Sec. F., Math. Phys., August 1964,
IOFI.
J. Reichbach: About connection of the first-order functional calculus with many
valued Propositional calculi, Zeit. Math. Log. Grund. Math. 2, 1963.

[26] J. Reichbach: On characterzations of theses of the first-order functional calculus,
Math. Annalen, 3, 1963.

[27] J. Reichbach: On the connection of the first-order functional calculus with $\aleph_{0}$ pro-
$po\epsilon itional$ calculus, Notre Dame Journal of Formal Logic, 1964.

[28] J. Reichbach: About Mathematieal Logic-Foundation of Mathematics, ISF, 1966.



98 JULIUSZ REICHBACH

[29] J. Reichbach: Functional calculus with variables of an arbitrary order and its
models, ISF, 1966.

[30] J. Reichbach: On characterizations and undecidability of the first order functional
calculus, Yokohama Mathematical Journal, 13, 1965.

[31] J. Reichbach: Some methods of formal $ proof\epsilon$ II (Generahzations of the $\epsilon atisfia-$

bility definition), Yokohama Mathematical Jounal, 1967/8.
[32] J. Reichbach: Propositional calcuh and completeness theorem, Yokohama Mathema-

tical Journal, 1969.
[33] J. Reichbach: A $no^{\backslash }te$ on theses of the first-order functional calculus, Notre Dame

Jounal of Formal Logic, 4, 1968.
[34] J. Reichbach: Some examples of different methods of formal proofs with generali-

zations of the satisfiability definition, Notre Dame Journal of Formal Logic, 1969.
]35] J. Reichbach: Generalizations of Herbrand’s theorems and asymptotic probabihstic

models, 1969.
[36] J. Reichbach: On statistical tests in generalizations of Herbrand’s theorems and

asymptotic probabilistic models, (Main theorems of mathematics), Creation in Mathem-
atics, 1, 1970.

[37] J. Reichbach: Probability–Events Balance (Mathematical Statistics Mathematics), Ap-
pendixes:1. About derivative and definite integrals. 2. Statistical densities in the de $\cdot$

cidability problem of the first-order functonal calculus, Creation in Mathematics, 1968-9.
[38] J. Reichbach: A note about Generalized Models and the origin of forcing in the

Theory of Models, Creation in Mathematics, 1971.
[39] J. Reichbach: Lessons in Mathematics: Mathematical Logjc for secondary schools

with Programmings in Computer Science, Creation in Mathematics, 1970/1.
[40] J. Reichbach: Non-standard analysis respectively to truncation of models with

technical aPplication, 1971/2.
[41] J. Reichbach: Weak and strong statistical decidability of theorems, Creation in

Mathematics, 1971.
[42] A. Robinson: Lectures in two Congresses: Mathematical logic of Jerusalem 1962/3,

International Congress of Mathematicians of Nice, 1970.
[43] J. Stupecki: Petnosc wielowartoscionyh rachumkowrdain, Prace Towarystwa Nauko-

wego, Warszawa, 1931.
[44] J. Stupecki-W.H. Pogonelski: A variant of the proof of the completeness of the

first-order functional calculus, Studia Logica 12, 1961.
[45] B. Sobocinski: On a Universal decision efement, The Journal of Computing Systems,

2, 1953.
[46] H. Steinhaus: Kalejdoskop Metematyezny, Mathematical Snapshots, Oxford University

Press, 1970.
[47] L. Takacs: On the distribution of the maximum of sums of mutually independent

and identically distributed random variables, Adv. Appl. Prob. 2, 1970.
[48] Takao Tsuda and Hiroshi Metsumoto: A note on linear Extrapolation of Multivaria-

ble Functions by the Monte Carlo Method, Journ. of Issoc. for Comp. Machinery, 13, 1966.
[49] A. Volodin: On the number of observations required to test two hypotheses for the

binomial density, Theory Prob. Applications 15, 1970.
[50] B.L. Van der Waerden: Mathematical Statistics, 1957, 1960.
[51] A. Wald: Sequential Analysis, Wiley Mathematical Statistics Series, 1947.
[52] R.O. Winder: Fundamentals of threshold logic, Edited by J.T. Tou, APplied Automat

Theory, 1968.
Tel-Aviv, Neve Sharet,
Almagor 27/3, entrance 4,
Israel


	BIBLIOGRAPHY

