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Abstract: An investigation has been made into the numerical solution of non-
singular Fredholm integral equations by obtaining the expansion of the unknown
function f(x) in a series of derived Chebyshev polynomials. The solution of
the eigen-value problem i.e. to find those values of the parameter for which
the homogeneous integral equation possesses non-trivial solution has also been
considered.

1. Introduction:

The use of a series of Chebyshev polynomials T»(x) to obtain the numerical
solution of integral equations has been investigated by Elliott [1]. He considers
the equation

(1) 7w =2{" ke Ny =F

where f(x) is the function to be determined. The constant 2, the kernel k(x,y)
and the function F(x) are known. The eigen-value problem associated with the
homogeneous integral equation has also been studied by Elliott in [2]. In this
paper it has been shown that a series of derived Chebyshev polynomials 7',(x)
can also be used effectively in such evaluations. The reason for preferring a
series of T(x) in the approximation of f(x) is that, since the maximum modulus
of T.(x) is n?, the coefficients must decrease faster than 1/#% to give convergence.
The method has been verified by means of numerical examples. An upper bound
of the error of such approximation to the solution of integral equation can how-
ever be deduced as in [3].

2. Method of solution:

To obtain the solution of (1), we suppose for convenience that the range of
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values of (x,y) is normalised so that —1<x, y<1 and that the kernel k(x,y) is
bounded. Following Elliott [1] we consider in brief the method of solving integral
equations both for separable and non separable kernels.

(a) Separable kernel:
Let the kernel be separable so that

(2) (5, 3) = pn(x)an() ,
Then (1) becomes
(3) SO =F@+1 5 pn() | as)f9)dy ,

Since F(x), pm(x) and gm(y) are known functions we assume that of them the
first two can be expanded in 7.(x) as in [4] and the last one in Tx(y). These
expansions can be found very easily.

We now look for the solution f(x) in the form

(4) fW)= 2 anTi(x)
Now if
gm(y)= gz cx Ty,
where the prime denotes that the first term is halved, then the integral
(5) In={" auto)fi)dy ,
is a constant depending upon ai, a2, as --- av and can be evaluated by using

Sl T (»)T(y)dy=0 if n+s, be even
-1

(6) 2n?

n2_82

if n+s, be odd

If ba, dn denote the coefficients of 7i(x) in the expansion of F(x) and pm(x)
respectively then substituting (5) in (3) and equating the coefficients of T/(x)
from both sides we get

M .
(7) an=bn+-2 E_llmd,’{” , n=1Q1)N,

where In=In(a1, az - - - an) .
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Equation (7) is a system of N linear equations for the N unknowns a1, az - -+ a~.
These can be solved numerically by standard methods.

(b) Non-separable kernel:

In this case we take f(x) as in (4). The N constants ai, az, - ** an are deter-
mined by writing down the integral equation at each of the N-points xi, i=1,
2...N.

Equation (1) is then replaced by N equations

(8) ’ fl)=F(x:) +z§’_1k(xi,y)f(y>dy .

Now for each x:, the kernel k(x:, y) is approximated by a polynomial of degree
M as in in the form

(9) ki, 9)= 5 balw) To()
With (4), (6) and (9) the integral

10) I(x,-)=S‘ ks, Ay |

can be evaluated in terms of the coefficients. Since F(x;) is known, then using
tables of T.(x) [5] we can write down f(x:) in terms of ai,a@:---av for each
value of xi.

Equation (8) becomes

(11) Sx)=F(x:)+ilx:) , i=1(1)N

which is a system of N linear equations for the /N unknown coefficients and can
be solved very easily.

3. Numerical examples:

In this section we consider first an example of an integral equation in which
the kernel is non-separable. The case for separable kernel can be handled quite
easily. However in the second example we discuss an eigen-value problem as-
sociated with the homogeneous integral equation in which the kernel is separable.

: BN R R
i fox | s fdy=1,

Let us consider first the equation with positive sign and approximate the function
J(x) by a polynomial of sixth degree. Since f(x) is an even function of x, we
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write
fx)=a1+asTi(x)+asTi(x)+a: THx) ,

and consider only positive values of x; at
x:=0, 0.5, 0.8, 1.0.

Then using table 2 of [1] we get the coefficients b.(x;) in the expansion of k(x:, y)
as in (9) at the specified points x; for M=14. Having found these coefficients
for k(xi,y), I(x:) is evaluated for each value of x; from and then substituting
those values in we obtain the following system of equations

4.712390a1— 8.986728as+16.806710as— 21.043288427=3.141592 ,

4.588030a:+ 0.909630as—14.682010a5+ 23.101484a7=3.141592 ,

4.402688a1+15.980146as— 0.889336as— 34.672301ar=3.141592 ,

4.248740a1+29.639646as+-79.687550a5+155.128218a:=3.141592 ,
the solution of which gives

S(x)=0.682902+0.008404 T3(x) —0.000080 7°5(x)—0.000018 T%(x) ,
Taking the integral with negative sign and proceeding as hefore

flx)=1.844448—0.024166 T4(x) +0.000454 T4(x)+0.000029 T'%(x) .

The comparison of these solutions with those obtained by Fox and Goodwin and
Elliott is given in table 1 and 2. The results of Fox and Goodwin [6] have been
presented only to 4D with an estimated maximum error of 1xX10~* due to round
off and we see that the results obtained by this method agree exactly with those
of Fox and Goodwin and with Elliott to within the prescribed error.

Table 1.
fa+— | o fapay=1
o1 T+@—yp VYT
Derived Chebyshev
| R | o | e | PR G
€8 4th degree Present method
to 4D Elliott. : t
o 5D
0 0.6574 0.65741 0.65745 0. 65742.
+0.25 0.6638 ~0.65385 0.66397 0.66384
+0.5 0.6832 0.68318 0.68323 0.68318
+0.75 0.7149 0.71482 0.71432 0.71486
+1.0 0.7557 0.75571 0.75576 0.75566
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Table 2.
@ -+ T faa=1
7)1 lt@—yp’ oY=
Fox and Chebyshev Legendre Derig&? g;herl?éshev
z Goodwin 6th degree 4thgde ree Present x%lethod
to 4D Elliott. g %0 5D
0 1.9191 1.91903 1.91925 1.91901
+0.25 1.8997 1.89958 1.89966 1.89957
+0.5 1.8424 1.84240 1.84261 1.84238
+0.75 1.7520 1.75208 1.75318 1.75198
+1.0 1.6397 1.63971 1.63987 ‘ 1.63972
.o 1
i) f(x)=z§ k(x, DAY
0
where k(x,y)=x(1—y) for y=>x

=y(1—x) for y<x

This is an eigen-value problem in which we want to find those value of the
parameter A for which the homogeneous equation possesses a non-trivial solution.
The analytical solution being f(x)=sinzx with A1=z%. The kernel here is separa-
ble. Since the range is [0,1]. We use a derived series of shifted Chebyshev
polynomials for the series expansion of f(x).

Now

(12) F)=A(1—x)I(x)+x](x)} ,

where

Ix)= S:yf(y)dy . Jw) =S' 1—»)f3)dy .
Let
flx)= glAnTﬁ'(x) and I(x)= :glanT’,'."(x).

Then using the following relations

*0 (o L s "[ T3#.(x) Tfix(x)]
(13) 2T (%)= 2 T¥ (x)+ 2l atl + 1 | n>1
N [ TH(x) _ T:':'.I(xq
(14) T3(x) 4 ) 1 , n>1

and T¥(x)=cosnf with 2x—1=cos 6 it can be easily seen from the integral for
I(x) that
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— An—l‘—An+1 + (n—2)(n+1)An_z-|—2nAn—(n+2)(n—1)An+z
8n 16n(n—1)(n+1) ’

and the condition I(0)=0 gives

n>1

(15) Aan

(16) = gz(——l)"n%n .

Similarly if B» denotes the coefficient of 7%’(x) in the expansion for J(x), then
it can be easily seen
n— ﬁn= An—l{;‘;Anil

. (n+1)(n_2)An—2+2nAn_(n_l)(n+2)An+2
a'n"{’,Bn-— 8%(”—1)(”—]—1) ’ n>1.

17)

Also J(1)=0 gives
(18) pr=— 22122,3” :

Now substituting the expansion for I(x) and J(x) in and equating the coeffici-
ents of T%(x) we find

(19) (n+1)An—2+{16n(n—1)(n+1)e—2n} An+#—1) Ans2=0, n>3
where ¢=1/4;

Also corresponding to n=1,

(20) ca=Bl L Lot

Since the solution is symmetrical about x=1/2, we get A:=0 for #>1. Now
replacing # by 2r—1, the equation becomes
21) nAzm—s+{32n(n—1)2n—1)e— (2n—1)} Asn-1+n—1) A2n1=0, n>2

It may be noted that a: and 81 in can be eliminated by employing (16), (17)
and [(18).

If we now suppose that f(x) is approximated by a polynomial of degree four,
then
f(x)=A1T¥ (x) +AsT¥ (x)+AsT¥ (%) ,

where the three equations for Ai, As and As can be obtained from and (21).
This can be put in a matrix form as

SA=¢A,

where A is the column vector (Ai, As, As) and S is the matrix
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3 _1  _ 1]
32 16 9%
-1 1 _ 1
9% 64 192
1 1
|0 320 192

The largest eigen-value of this matrix is 2=9.86963. Crout and Elliott
find the value of 1 as 9.87605 and 9.86958 respectively, the analytic solution being
9.86960. The eigen value found here shows an almost closer approximation to
the analytic solution like that of Elliott and is much better than Crout. The
magnitudes of the errors being 3X10-%, 2X10-% and 645X 10~% respectively.

For the eigenfunction f(x), we note that f(-;—>=1 so that

J(x)=0.3609629 T’ (x)—0.0439633 T3’ (x) +0.0014294 T¥ (x) ,

The comparison of the functional values obtained by different methods and the
analytic solution is shown in Table 3.

Table 3.
Derived
Chebyshev
v | im0 | 1 Sees | lerrorl | fih degree | lerror) | SRERSIEY | jerror

Sin nx 4th degree X108 x—EQIhSOe%ss X 10 Present x10

- A=9.86963
0.0, 1.0 0 0 0 0.00058 58 0.00205 205
0.1, 0.9 0.30902 0.30716 186 0.30878 24 0.30862 40
0.2, 0.8 0.58799 0.58716 63 0.58862 83 0.58805 6
0.3, 0.7 0.80902 0.80918 16 0.81000 98 0.80959 57
0.4, 0.6 0.95106 0.95119 13 0.95142 36 0.95130 24
0.5, 0.5 1.00000 1.00000 0 1.00000 0 1.00000 0

From the tabular points it may be observed that the maximum error in this
method (205%10-% is much greater than Elliott’s case (98 X107%. But excluding
a small region at each of the both ends, the errors at remaining points in the
rest of the interval are less than that of Elliott.

Taking a sixth degree expansion for f(x) we have the value of 1=9.869604 and

S(x)=0.3608523 T}’ (x)—0.0439498 T¥ (x) +0.0014294 T¥ (x)—0.0000215 T (x) .

The values of the function at different points as compared to Elliott’'s sixth
degree expansion may be seen from the following table:
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Table 4.
Elliott
Present method.
1—E9:x§g;60 Cheg;zshev |error| Derived Chebyshev lerror|
“sinra | 6th depg ree X 105 exp 6th degree % 105
2=9.86966 4=9.869604

0.0, 1.0 0 —0.00004 4 —0.00003 3
0.1, 0.9 0.30902 | +0.30906 4 0.30903 1
0.2, 0.8 0.58779 0.58785 6 0.58778 1
0.3, 0.7 0.80902 0.80907 5 0.80902 0
0.4, 0.6 0.95106 0.95107 1 0.95106 0
0.5, 0.5 1.00000 1.00000 0 1.00000 0

4. Collocation points and the eigen-value problem:

In this section we shall be concerned with the choice of collocation points in
the eigen-value problem associated with the integral equation having non-de-
generate kernel. We have from (9) and

(22) )= 3 anfald)
where

(23) Balz)= 3 — 21

S
P=) mbzr-1 (x’) N

where # is even and S= M+1 if M is odd, S=-%l— if M is even and
S
i ’ r\A1
(24) Bn(xi) = Z (2 2 —————bar(xi) ,

. M-1 . . M . . . —
when 7 is odd and S= if M is odd, S=—2— if M is even. Equation
now reduces to

N
(25) S(x)=F (qu:)-l-lng1 nBn(xi) ,
which can be put in a matrix form as
(26) ' (T—2B)a=F,
where T and B are matrices of order N defined by
1 Ti(x) i(x1) oo Th(x)
1 Ti(x2) i(x2) -+ Th(x2)

(27a) T=

1 Tixn) Tixn) -+ Thixn)
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and

Bu(x1)  Pa(x1) --- Bn(x1)
Bi(x2) Ba(x2) --- Bn(x2)

----------------------

Bi(xn) Be(xn) - -+ Bn(xN)

(27b) B=

Also @ and F are column vectors of order NN given by

at=(ai, az, --- an) ,

F'=(F(x1), F(x2), - - - F(xn)) .

(28)

Applying standard methods, the equation can be solved
(29) a=(T—28)'F .

In the notation of equation [(26), the homogeneous integral equation viz.,
1

30) f(x)—ZS k(x, NF(dy=0,
-1

reduces to the form
31 \ (T—2B)a=0 .

The determination of eigen-value 2 associated with the equation for which
the above equation has non-trivial solutions gives the possible eigen-values.
Setting 2=1/e, the equation can be reduced to the more standard from

(32) (T-'Ba=ca .

Hence the solution of the eigen value problem reduces to finding the eigen values
of the maj:rix T-18. Now if the points x: be chosen as the zeros of T#..(x) i.e.

1\;—7:— T i=1(1)N the matrix 7! can be found explicity. The choice of

these collocation points has been made purely for computational convenience.
From the orthogonality relation

Xi=C0S

2 ’
=0. if i+#j

o N+1 w
- VIERVITE B o THa) THe) ==, if i=j

and we obtain
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2

4) Tr1=—f_

(34) N+1

1 0 0 ---0 ) 1 1 - 1 Y1—x* 0 --- 0
01/22 0 --- 0 | Ti(x1) Ti(x2) .-+ Ti(xn) 0 1—x2-.- O

X[ 0 0 1/38 .0 0 | v e

................

L0 0 0 ---1/N2J{ Th(x)) TH(x2) -+ Th(xn) J_ O 0 ---1—4%

It is to be noted from the right hand side of (34) that the matrix in the middle
is the transposed of 7 and two other matrices are diagonal matrices whose ele-
ments are of the form % and 1—x% respectively, where r=1,2--- N, Now to
obtain the eigen value we compute the matrix 7! and the largest eigen value
2 will be determined by the smallest value of . If the function f(x) is either
even or odd, then the even or odd coefficients a. respectively are identically zero
and so the matrices are reduced in size. The collocation points in these cases
are chosen somewhat differently and for the completeness of the discussion we

shall state the results explicitly.

(a) Even case:

Let f(x) be an even function, then writing
N+1
Sx)= 2 A1 Tdn1(x) ,

flx) is approx1mated by a polynomial of degree 2N in which there are N+1 un-
known coeﬁ‘ic1ents To find out these coefficients we choose

xi=cos in/2(N+1) , i=1(1)N-+1
and the following orthogonal property holds good.

—_— e N1 1 N+1 ep s s
\/1~x§¢1—x§ ’_% w Tz’r—l(xi) Tz’r—-l(xi) =T ’ if 1=y

@5 =0, if i%j

=N+1, if i=j=N+1
The matrix T being of the form ‘

{(x1) a(x1) o Tyn-a(x1) Ty s1(x1)
T{(x2) Ti(x2) o Ten-a(x2) Tini(x2)

............................................

@6  T=

Ti(xn41) Ti(xny) cor Ton-a(xN41) TIner(xn41)
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the inverse matrix is given by

10 0--- 0 [ Tix) Tix) -+ 1/2)TixN4)
T1—_2 | 0130~ 0 Tix)  Thxs) -+ (12) TH(xn41)
7Y 1 e 1
0 0------ 1/(2N+1)2‘ Tz'N+1(x1) Tysi(x2) -~ (1/2)T2,N+1(xN+1)
1—x2 0 --- 0 )
— a2,
37) o 0 1—x2 0
0 0 "1_‘xN+1

(b) Odd Case:
Let f(x) be an odd function of x. Writing

fa)= 2 anTh®) ,

so that f(x) is approximated by a polynomial of degree 2N—1 which requires N
coefficients to be evaluated.
We choose

xi=cos ni/2(N+1) , i=1Q)N

and the follwing orthogonal property holds good.

— —— &1 N+1 v s
2 2 —_— Ir : Ir ) =— —
38) Vi—xgvi=2 X e () T (x3) = — if i=j

=0, if i#j
The matrix T is given by

Ti(x1) Ti(xy) -« Tov(xt)
Ti(x2) Ti(x2) -+ Tin(x2)

------------------------

Ti(xn) Ti(xn) -+ Ten(xw)

(39) T=

With an inverse matrix 7! given by

1/22 Q0 --- 0 " Thx) Ti(x2) -+ Ti(xn)
2 0 1/42--- 0 Ti(x1) i(x2) --- Tilxn)

0O 0 ---1/(2N)? Tin(x1) Ton(xz) <+ Ton(xn)
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1—xf 0 0
. — 2 .
@0) % 0 1—=x3 0
0 0 - 1—x%
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