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Abstract: An investigation has been made into the numerical solution of non-
singular Fredholm integral equations by obtaining the expansion of the unknown
function $f(x)$ in a series of derived Chebyshev polynomials. The solution of
the eigen-value problem i.e. to find those values of the parameter for which
the homogeneous integral equation possesses non-trivial solution has also been
considered.

1. Introduction:

The use of a series of Chebyshev polynomials $T_{n}(x)$ to obtain the numerical
solution of integral equations has been investigated by Elliott [1]. He considers
the equation

(1) $f(x)-\lambda\int_{-1}^{1}k(x, y)f(y)dy=F(x)$ ,

where $f(x)$ is the function to be determined. The constant $\lambda$ , the kemel $k(x, y)$

and the function $F(x)$ are known. The eigen-value problem associated with the
homogeneous integral equation has also been studied by Elliott in [2]. In this
Paper it has been shown that a series of derived Chebyshev polynomials $T_{n}^{\prime}(x)$

can also be used effectively in such evaluations. The reason for preferring a
series of $T_{n}^{\prime}(xI$ in the $approximatio^{J}n$ of $f(x)$ is that, since the maximum modulus
of $T_{n}^{\prime}(x)$ is $n^{2}$ , the coefficients must decrease faster than $1/n^{2}$ to give convergence.
The method has been verified by means of numerical examples. An uPper bound
of the error of such aPproximation to the solution of integral equation can how-
ever be deduced as in [31.

2. Method of solution:

To obtain the solution of (1), we suPpose for convenience that the range of
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values of $(x, y)$ is normalised so that $-1\leq x,$ $y\leq 1$ and that the kernel $k(x, y)$ is
bounded. Following Elliott [11 we consider in brief the method of solving integral
equations both for separable and non separable kernels.

(a) Separable kernel:
Let the kemel be separable so that

(2) $k(x, y)=\sum_{m=1}^{M}p_{m}(x)q_{m}(y)$ ,

Then (1) becomes

(3) $f(x)=F(x)+\lambda\sum_{m=1}^{M}p_{m}(x)\int_{-1}^{1}q_{m}(y)f(y)dy$ ,

Since $F(x),$ $p_{m}(x)$ and $q_{m}(y)$ are known functions we assume that of them the
first two can be expanded in $T_{n}^{\prime}(x)$ as in [41 and the last one in $T_{n}(y)$ . These
expansions can be found very easily.

We now look for the solution $f(x)$ in the form

(4) $f(x)=\sum_{n=1}^{N}a_{n}T_{n}^{\prime}(x)$

Now if

$q_{m}(y)=\sum_{n=0}^{\infty}\prime c_{n}^{m}T_{n}(y)$ ,

where the prime denotes that the first term is halved, then the integral

(5) $I_{m}=\int_{-1}^{1}q_{n}(y)f(y)dy$ ,

is a constant dePending uPon $a_{1},$ $a_{2},$ $a_{8}\cdots a_{N}$ and can be evaluated by using

(6) $\left\{\begin{array}{ll}\int_{-1}^{1}T_{n}^{\prime}(y)T.(y)dy=0 & if n+s, be even\\=\frac{2n^{2}}{n^{2}-s^{2}} & if n+s, be odd\end{array}\right.$

If $b_{n},$ $d_{t}^{m}$ denote the coefficients of $T_{n}^{\prime}(x)$ in the expansion of $F(x)$ and $p_{n}(x)$

respectively then substituting (5) in (3) and equating the coefficients of $T_{n}^{j}(x)$

from both sides we get

(7) $a_{n}=b_{n}+\lambda\sum_{n=1}^{M}I_{m}d_{n}^{m}$ , $n=1(1)N$ ,

where $I_{m}=I_{m}(a_{1}, a_{2}\cdots a_{N})$ .
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Equation (7) is a system of $N$ linear equations for the $N$ unknowns $a_{1},$ $a_{2}\cdots a_{N}$ .
These can be solved numerically by standard methods.

(b) $Non\cdot separable$ kernel:
In this case we take $f(x)$ as in (4). The $N$ constants $a_{1},$ $a_{2},$ $\cdots a_{N}$ are deter-

mined by writing down the integral equation at each of the $N$-points $x_{i},$ $i=1$ ,

2 $\cdots N$.
Equation (1) is then replaced by $N$ equations

(8) $f(x_{i})=F(x_{i})+\lambda\int_{-1}^{1}k(x_{i}, y)f(y)dy$ .

Now for each $x_{i}$ , the kernel $k(x_{i}, y)$ is approximated by a polynomial of degree
$M$ as in [1] in the form

(9) $k(x_{i}, y)=\sum_{n=0}^{M}\prime b_{n}(x_{i})T_{n}(y)$

With (4), (6) and (9) the integral

(10) $I(x_{i})=\int_{-1}^{1}k(x_{i}, y)f(y)dy$ ,

can be evaluated in terms of the coefficients. Since $F(x_{i})$ is known, then using

tables of $T_{n}^{\prime}(x)[5]$ we can write down $f(x_{i})$ in terms of $a_{1},$ $a_{2}\cdots a_{N}$ for each
value of $x_{i}$ .

Equation (8) becomes

(11) $f(x_{i})=F(x_{i})+\lambda I(x_{i})$ , $i=1(1)N$

which is a system of $N$ linear equations for the $N$ unknown coefficients and can
be solved very easily.

3. Numerical examples:

In this section we consider first an example of an integral equation in which
the kemel is non-separable. The case for separable kemel can be handled quite
easily. However in the second example we discuss an eigen-value problem as-
sociated with the homogeneous integral equation in which the kernel is separable.

$f(x)\pm\frac{1}{\pi}\int_{-1}^{1}\frac{1}{1+(x-y)^{2}}f(y)dy=1$ ,

Let us consider first the equation with positive sign and aPproximate the function
$f(x)$ by a polynomial of sixth degree. Since $f(x)$ is an even function of $x$ , we
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write
$f(x)=a_{1}+a_{8}T^{\prime},(x)+a_{5}T_{5}^{\prime}(x)+a_{7}T_{7}^{\prime}(x)$ ,

and consider only positive values of $x_{i}$ at

$x_{i}=0,0.5,0.8,1.0$ .
Then using table 2 of [11 we get the coefficients $b_{n}(x_{i})$ in the expansion of $k(x_{i}, y)$

as in (9) at the specified points $x_{i}$ for $M=14$ . Having found these coefficients
for $k(x_{i}, y),$ $I(x_{i})$ is evaluated for each value of $x_{i}$ from (10) and then substituting

those values in (11) we obtain the following system of equations

$4.712390a_{1}-8.986728a_{8}+16.8\mathfrak{X}710a_{5}-21.043288a_{7}=3.141592$ ,

$4.588030a_{1}+0.909630a_{8}-14.682010a_{5}+23.101484a_{7}=3.141592$ ,

$4.402688a_{1}+15.980146a_{8}-0.889336a_{5}-34.672301a_{7}=3.141592$ ,

$4.248740a_{1}+29.639646a_{8}+79.687550a_{5}+155.128218a_{7}=3.141592$ ,

the solution of which gives

$f(x)=0.682902+0.008404T_{8}^{\prime}(x)-0.000080T_{5}^{\prime}(x)-0.000018T_{7}^{\prime}(x)$ ,

Taking the integral with negative sign and proceeding as before

$f(x)=1.844448-0.024166T_{8}^{\prime}(x)+0.000454T_{5}^{\prime}(x)+0.000029T_{7}^{\prime}(x)$ .
The comparison of these solutions with those obtained by Fox and Goodwin and
Elliott is given in table 1 and 2. The results of Fox and Goodwin [61 have been
presented only to $4D$ with an estimated maximum error of $1\times 10^{-4}$ due to round
off and we see that the results obtained by this method agree exactly with those
of Fox and Goodwin and with Elliott to within the prescribed error.

Table 1.
$f(x)+\frac{1}{\pi}\int_{-1}^{1}\frac{1}{1+(x-y)^{2}}f(y)dy=1$
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Table 2.

$f(x)-\frac{1}{\pi}\int_{-1}^{1}\frac{1}{1+(x-y)^{2}}f(y)dy=1$

$f(x)=\lambda\int_{0}^{1}k(x, y)f(y)dy$ ,

where $k(x, \gamma)=x(1-y)$ for $y\geq x$

$=y(1-x)$ for $y\leq x$

This is an eigen-value problem in which we want to find those value of the
parameter $\lambda$ for which the homogeneous equation possesses a non-trivial solution.
The analytical solution being $f(x)=\sin\pi x$ with $\lambda=\pi^{2}$ . The kernel here is separa $\cdot$

ble. Since the range is [$0,1|$ . We use a derived series of shifted Chebyshev
polynomials for the series expansion of $f(x)$ .

Now
(12) $f(x)=\lambda\{(1-x)I(x)+xJ(x)\}$ ,

where

$I(x)=\int_{0}^{x}yf(y)dy$ , $J(x)=|_{g}^{l}(1-y)f(y)dy$ .

Let

$f(x)=\sum_{n=1}^{\infty}A_{n}T_{n}^{*\prime}(x)$ and $I(x)=\sum_{n=1}^{\infty}\alpha_{n}T_{*}^{*J}(x)$ .
Then using the following relations

(13) $xT_{n}^{*\prime}(x)=\frac{1}{2}T_{n}^{*\prime}(x)+\frac{n}{4}[\frac{T_{n+1}^{*\prime}(x)}{n+1}+\frac{T_{n-1}^{*\prime}(x)}{n-1}]$ , $n>1$

(14) $T_{n}^{*}(x)=\frac{1}{4}[\frac{T_{n+1}^{*\prime}(x)}{n+1}-\frac{T_{n-1}^{*\prime}(x)}{n-1}]$ , $n>1$

and $ T_{n}^{*}(x)=c\infty n\theta$ with $ 2x-1=\cos\theta$ it can be easily seen from the integral for
$I(x)$ that
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(15) $\alpha_{n}=\frac{A_{n-1}-A_{n+1}}{8n}+_{16n(n-1)(n+1)}\ovalbox{\tt\small REJECT}(n-2)(n+1)A_{n-2}+2nA_{n}-(n+2)(n-1)A_{n+2}$ , $n>1$

and the condition $I(O)=0$ gives

(16) $\alpha_{1}=\sum_{n=l}^{\infty}(-1)^{n}n^{2}\alpha_{n}$ .
Similarly if $\beta_{n}$ denotes the coefficient of $T_{n}^{*\prime}(x)$ in the expansion for $J(x)$ , then
it can be easily seen

(17) $\left\{\begin{array}{ll}\alpha_{n}-\beta_{n}=\frac{A_{n-1}-A_{n+1}}{4n} , & \\\alpha_{n}+\beta_{n}=\frac{(n+1)(n-2)A_{n-2}+2nA_{n}-(n-1)(n+2)A_{n+2}}{8n(n-1)(n+1)} , & n>1.\end{array}\right.$

Also $J(1)=0$ gives

(18) $\beta_{1}=-\sum_{n=2}^{\infty}n^{2}\beta_{n}$ .

Now substituting the expansion for $I(x)$ and $J(x)$ in (12) and equating the coeffici-
ents of $T_{n}^{*\prime}(x)$ we find

(19) $(n+1)A_{n-2}+\{16n(n-1)(n+1)\epsilon-2n\}A_{n}+(n-1)A_{n+2}=0$ , $n\underline{>}3$

where $\epsilon=1/\lambda$ ;

Also corresponding to $n=1$ ,

(20) $\epsilon A_{1}=\frac{A_{t}-A_{1}}{16}+\frac{1}{2}(\alpha_{1}+\beta_{1})$ ,

Since the solution is symmetrical about $x=1/2$ , we get $A_{2n}=0$ for $n\geq 1$ . Now
replacing $n$ by $2n-1$ , the equation (19) becomes

(21) $nA_{2n-8}+\{32n(n-1)(2n-1)\epsilon-(2n-1)\}A_{2n-1}+(n-1)A_{2n+1}=0$ , $n\geq 2$

It may be noted that $\alpha_{1}$ and $\beta_{1}$ in (20) can be eliminated by employing(16), (17)

and (18).

If we now suPpose that $f(x)$ is aPproximated by a polynomial of degree four,
then

$f(x)=A_{1}T_{1}^{*\prime}(x)+A_{S}T_{8}^{*\prime}(x)+A_{5}T_{5}^{*\prime}(x)$ ,

where the three equations for $A_{1},$ $A_{8}$ and $A_{5}$ can be obtained from (20) and (21).

This can be put in a matrix form as
$SA=\epsilon A$ ,

where $A$ is the column vector ($A_{1}$ , As, As) and $S$ is the matrix
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$[-\frac{3}{\frac,960321}$
$--\frac{1}{\frac\frac,320641611}$ $--\frac{1}{\frac\frac,1921929611}|$

The largest eigen-value of this matrix is $\lambda=9.86963$ . Crout [7] and Elliott [1]

find the value of $\lambda$ as 9.87605 and 9.86958 respectively, the analytic solution being
9.86960. The eigen value found here shows an almost closer aPproxImation to
the analytic solution like that of Elliott and is much better than Crout. The
magnitudes of the errors being $3\times 10^{-s},$ $2\times 10^{-S}$ and $645\times 10^{-s}$ respectively.

For the eigenfunction $f(x)$ , we note that $f(\frac{1}{2})=1$ so that

$J(x)=0.360\Re 29T_{1}^{*\prime}(x)-0.0439633T_{8}^{*\prime}(x)+0.\alpha)14294T_{\$}^{*\prime}(x)$ ,

The comparison of the functional values obtained by different methods and the
analytic solution is shown in Table 3.

Table 3.

From the tabular points it may be observed that the maximum error in this
method $(205\times 10^{-S})$ is much greater than Elliott’s case $(98\times 10^{-S})$ . But excluding

a small region at each of the both ends, the errors at remaining points in the
rest of the interval are less than that of Elliott.

Taking a sixth degree expansion for $f(x)$ we have the value of $\lambda=9.86\Re 04$ and

$f(x)=0.3608523T_{1}^{*\prime}(x)-0.0439498T_{8}^{*;}(x)+0.0014294T_{s}^{*\prime}(x)-0.00\infty 215T_{7}^{*\prime}(x)$ .
The values of the function at different points as compared to Elliott’s sixth
degree expansion may be seen from the following table:
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Table 4.

4. Collocation points and the eigen-value problem:

In this section we shall be concerned with the choice of collocation points in
the eigen-value problem associated with the integral equation having non-de-
generate kernel. We have from (9) and (10)

(22) $I(x_{i})=\sum_{\sim=1}^{N}a_{n}\beta_{n}(x_{i})$ ,

where

(23) $\beta_{n}(x_{i})=\sum_{r=1}^{s}\frac{2n^{2}}{n^{2}-(2r-1)^{2}}b_{2r-1}(x_{i})$ ,

where $n$ is even and $S=\frac{M+1}{2}$ if $M$ is odd, $S=\frac{M}{2}$ if $M$ is even and

(24) $\beta_{n}(x_{i})=\sum_{r=0}^{s}’\frac{2n^{2}}{n^{2}-(2r)^{2}}b_{2r}(x_{i})$ ,

when $n$ is odd and $S=\frac{M-1}{2}$ if $M$ is odd, $S=\frac{M}{2}$ if $M$ is even. Equation (11)

now reduces to

(25) $f(x_{i})=F(x_{i})+\lambda\sum_{n=1}^{N}a_{n}\beta_{n}(x_{i})$ ,

which can be put in a matrix form as

(26) $(T-\lambda\beta)a=F$ ,

where $T$ and $\beta$ are matrices of order $N$ defined by

(27a) $T=\lfloor_{1T_{f}(x_{N})T_{1}^{\prime}(x_{N})T_{N}(XN}^{1.T_{2}^{\prime}(x_{1}).T^{\prime},(x_{1}.)..\cdot\cdot..\cdot...\cdot\cdot.T_{N}^{\prime}(x_{1})}1.T_{2}^{\prime}.(x_{2})..T_{a}^{\prime}(x_{2}).T_{N}^{\prime}(x_{2}.))]$
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and

(27b) $\beta=\left\{\begin{array}{llll}\beta_{1}(x_{1}) & \beta_{2}(x_{1}) & \cdots & \beta_{N}(x_{1})\\\beta_{1}(x_{2}) & \beta_{2}(x_{2}) & \cdots & \beta_{N}(x_{2})\\\cdots & \cdots & \cdots & \cdots\\\beta_{1}(x_{N}) & \beta_{2}(x_{N}) & \cdots & \beta_{N}(x_{N})\end{array}\right\}$

Also $a$ and $F$ are column vectors of order $N$ given by

(28) $\left\{\begin{array}{l}a^{t}=(a_{1}, a_{2}, \cdots a_{N}),\\F^{t}=(F(x_{1}), F(x_{2}), \cdots F(x_{N})).\end{array}\right.$

APplying standard methods, the equation (26) can be solved

(29) $a=(T-\lambda\beta)^{-1}F$ .
In the notation of equation (26), the homogeneous integral equation viz.,

(30) $f(x)-\lambda\int_{-1}^{1}k(x, y)f(y)dy=0$ ,

reduces to the form

(31) $(T-\lambda\beta)a=0$ .

The determination of eigen-value $\lambda$ associated with the equation (31) for which
the above equation has non-trivial solutions gives the possible eigen.values.

Setting $\lambda=1/\epsilon$ , the equation (31) can be reduced to the more standard from

(32) $(T^{-1}\beta)a=\epsilon a$ .

Henoe the solution of the eigen value problem reduces to finding the eigen values
of the matrix $ T^{-1}\beta$ . Now if the points $x_{i}$ be chosen as the zeros of $T_{N+1}^{\prime}(x)$ i.e.
$x_{i}=cos\frac{\dot{t}\pi}{N+1}$ , $i=1(1)N$ the matrix $T^{-1}$ can be found explicity. The choice of

these collocation points has been made purely for computational convenience.
From the orthogonality relation

(33) $\left\{\begin{array}{ll}\sqrt{1-x_{1}^{2}}\sqrt{1-x_{j}^{2}}\sum_{r\approx 1}^{N}\frac{1}{r^{2}}Ti(x_{i})T_{r}^{\prime}(x_{j})=\frac{N+1}{2}, & if i=j\\=0. & if i\neq j\end{array}\right.$

and we obtain
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(34) $T^{-1}=\frac{2}{N+1}$

$\times\left\{\begin{array}{lllll}l & 0 & 0 & \cdots & 0\\0 & 1/2^{2} & 0 & \cdots & 0\\0 & 0 & 1/3^{3} & \cdots & 0\\\cdots & \cdots & \cdots & \cdots & \cdots\\ 0 & 0 & 0 & \cdots & 1/N^{2}\end{array}\right\}\left\{\begin{array}{llll}1 & 1 & \cdots & 1\\T_{2}^{\prime}(x_{1}) & T_{2}^{\prime}(x_{2}) & \cdots & T_{2}^{\prime}(x_{N})\\\cdots & \cdots & \cdots & \cdots\\ T_{N}(x_{1}) & T_{N}^{\prime}(x_{2}) & \cdots & T_{N}^{\prime}(x_{N})\end{array}\right\}\left\{\begin{array}{llll}1-x_{\iota}^{2} & 0 & \cdots & 0\\0 & 1-x_{2}^{2} & \cdots & 0\\\cdots & \cdots & \cdots & \cdots\\ 0 & 0 & \cdots & 1-x_{N}^{2}\end{array}\right\}$ .

It is to be noted from the right hand side of (34) that the matrix in the middle
is the transposed of $T$ and two other matrices are diagonal matrices whose ele-

1ments are of the form – and $1-x_{r}^{2}$ respectively, where $r=1,2\cdots N$. Now to
$r^{2}$

obtain the eigen value we $\ovalbox{\tt\small REJECT} mpute$ the matrix $ T^{-1}\beta$ and the largest eigen value
$\lambda$ will be determined by the smallest value of $\epsilon$ . If the function $f(x)$ is either
even or odd, then the even or odd coefficients $a_{n}$ respectively are identically zero
and so the matrices are reduced in si$ze$ . The collocation points in these cases
are chosen somewhat differently and for the completeness of the discussion we
shall state the results explicitly.

(a) Even case:
Let $f(x)$ be an even function, then writing

$f(x)=\sum_{n=\iota}^{N\star 1}a_{2n-1}T_{2n-1}^{\prime}(x)$ ,

$f(x)$ is aPproximated by a polynomial of degree $2N$ in which there are $N+1$ un-
known coefficients. To find out these coefficients we choose

$x_{i}=\cos i\pi/2(N+1)$ , $i=1(1)N+1$

and the following orthogonal Property holds good.

(35) $\left\{\begin{array}{ll}\sqrt{1-x_{i}^{2}}\sqrt{1-x_{j}^{2}}\sum_{t=1}^{N\neq 1}\frac{1}{(2r-1)^{2}}T_{2r-1}^{\prime}(x_{i})T_{2r-1}^{\prime}(x_{j})=\frac{N+1}{2} , & if i=j\\=0, if i & j\\=N+1, i & i=j=N+1\end{array}\right.$

The matrix $T$ being of the form

(36) $T=\left\{\begin{array}{lllll}T_{1}^{\prime}(x_{1}) & T_{s}^{\prime}(x_{1}) & \cdots & T_{2N-1}^{\prime}(x_{1}) & T_{2N+1}^{\prime}(x_{1})\\T_{1}^{\prime}(x_{2}) & T_{8}^{\prime}(x_{2}) & \cdots & T_{2N-1}^{\prime}(x_{2}) & T_{2N+]}^{\prime}(x_{2})\\\cdots & \cdots & \cdots & \cdots & \cdots\\ T_{1}^{\prime}(x_{N+1}) & T_{8}^{\prime}(x_{N+1}) & \cdots & T_{2N-1}(x_{N+1}) & T_{2N+1}^{\prime}(x_{N+1})\end{array}\right\}$ ,
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the inverse matrix is given by

(37) $\times\left\{\begin{array}{llll}1-x_{1}^{2} & 0 & \cdots & 0\\0 & 1-x_{2}^{2} & \cdots & 0\\\cdots & \cdots & \cdots & \cdots\\ 0 & 0 & \cdots & 1-x_{N+1}^{2}\end{array}\right\}$ .

(b) Odd Case:

Let $f(x)$ be an odd function of $x$ . Writing

$f(x)=\sum_{n=1}^{N}a_{2n}T_{2n}^{\prime}(x)$ ,

so that $f(x)$ is aPproximated by a polynomial of degree $2N-1$ which requires $N$

coefficients to be evaluated.
We choose

$x_{i}=\cos\pi i/2(N+1)$ , $i=1(1)N$

and the follwing orthogonal Property holds good.

(38) $\left\{\begin{array}{ll}\sqrt{1-x_{l}^{2}}\sqrt{1-x_{j}^{2}}\sum_{r=1}^{N}\frac{1}{4r^{2}}T_{2r}^{\prime}(x_{i})T_{2r}^{\prime}(x_{j})=\frac{N+1}{2}, & if i=j\\=0, if i & j\end{array}\right.$

The matrix $T$ is given by

(39) $T=\left\{\begin{array}{llll}T_{2}(x_{1}) & T_{4}^{\prime}(x_{1}) & \cdots & T_{2V}^{\prime}(x_{1})\\T_{2}^{\prime}(x_{2}) & T^{\prime}(x_{2}) & \cdots & T_{2N}^{\prime}(x_{2})\\\cdots & \cdots & \cdots & \cdots\\ T_{2}^{\prime}(x_{N})T_{4}^{\prime}(x_{N}) & \cdots & \cdots & T_{2N}(x_{N})\end{array}\right\}$ .

With an inverse matrix $T^{-1}$ given by

$T^{-1}=\frac{2}{N+1}\left\{\begin{array}{llll}1/2^{2} & 0 & \cdots & 0\\0 & 1/4^{2} & \cdots & 0\\\cdots & \cdots & \cdots & \cdots\\ 0 & 0 & \cdots & 1/(2N)^{2}\end{array}\right\}\left\{\begin{array}{llll}T_{2}^{\prime}(x_{1}) & T_{2}^{\prime}(x_{2}) & \cdots & T_{2}^{\prime}(x_{N})\\T_{4}^{\prime}(x_{1}) & T_{4}^{\prime}(x_{2}) & \cdots & T_{4}^{\prime}(x_{N})\\T_{2N}^{\prime}(x_{1}) & T_{2N}(x_{2}) & \cdots & T_{2N}(x_{N})\end{array}\right\}$
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(40) $\times\left\{\begin{array}{llll}1-x_{1}^{2} & 0 & \cdots & 0\\0 & 1-x_{2}^{2} & \cdots & 0\\\cdots & \cdots & \cdots & \cdots\\ 0 & 0 & \cdots & 1-x_{N}^{2}\end{array}\right\}$ .
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