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Abstract: In this paper, uniform linear aPproximation of functions with
values in a real or complex Hilbert space is considered with respect to a gener-
alized weight function. The existence, characterization, unicity and strong unicity
of the best aPproximation and the continuity of the best approximation operator
for this type of aPproximation problem are discussed.

1. Introduction. The problem of linear Chebyshev approximation of con-
tinuous functions which assume values in a real or complex Hilbert space was
studied by Zuhovickii and Steckin [9] and Lawson [3] by using gauge functions
as measures of approximation. They noted that the results of the classical pro-
blem for real or complex functions conceming the existence, the characterization
theorem of Kolmogorov [2] and the unicity of the best approximation extend
nicely to their case of vector-valued functions.

The problem of uniform approximation with respect to a weight function for
real valued functions has been considered recently by Moursund [5] for the linear
case and by Moursund and Taylor [6] for the case of rational functions. The
purpose of this paper is to consider a generalization of the vector-valued problem
of Zuhovickii and Steckin [9] and Lawson [3] by introducing a suitable weight

function. The weight function considered here has a form simpler than the one
considered by Moursund [5] for the real case. This has been necessitated by
the need to avoid the complexities of the vector-valued case and to make the
treatment simpler.

2. Preliminaries. Let $X$ be a compact Hausdorff space containing at least
$n+1$ points and $H$ be a real or complex Hilbert space with an inner product
$\langle, \rangle$ , a norm $\Vert$ . $||$ , and a zero element $\theta$ . We denote by $C(X, H)$ the Banach
algebra of functions $f;X\rightarrow H$, equipped with the uniform norm $\Vert f\Vert=\sup\{\Vert f(x)\Vert/$

$xeX\}$ . Let $M$ be a n-dimensional subspace of $C(X, H)$ , with $\{\Phi_{1}, \cdots\Phi_{n}\}$ as a
linearly independent set of base functions. We call a map $W:X\times H\rightarrow H$ a gener-
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alized weight-map with respect to the subspace $M$, if it satisfies:
$(w_{1})W$ is continuous on $X\times H$

$(w_{2})W$ is linear in $h$ i.e. $W(x, \alpha h_{1}+\beta h_{2})=\alpha W(x, h_{1})+\beta W(x, h_{2})$ , for all $\alpha,$ $\beta eC$

and $h_{1}$ , h2e $H$.
$(w_{2})peM,$ $ W(x, P(x))=\theta$ on $X$ implies $ p(x)=\theta$ on $X$.

Examples: $W(x,y)=y$ ; $W(x, y)=w(x)y,$ $w(x)$ being a $ntinuous$ complex

function which does not vanish on $X$, are trivial example$s$ of weight maps. Let
$X=[a, b],$ $a>0,$ $b>0$ . $H=L_{2}(a, b)$ . For the base functions of $M$, take the linearly

independent set $\{\Phi_{i}(x)=x^{i}t/i=0, \cdots, n\}$ then $W(x, y)=\sum_{i=0}^{n}\langle\Phi_{i}(x), y\rangle\Phi_{i}(x)$ gives a

nontrivial example of weight map.
For $feC(X, H)$ , we define $|f|=\sup_{x\in X}\Vert W(x,f(x))\Vert$ . It is easily verified that $|\cdot|$

is a semi-norm on $C$ Let $\inf_{p\in H}|f-p|$ be denoted by $E=E(f)$ . We call $p^{*}eM$, a
best weighted approximation to $f$ in $M$, provided $|f-p^{*}|=E(f)$ .

Using continuity of $|$ and standard compactness arguments one can easily

conclude that the set of best weighted aPproximation to $f$ is nonempty, closed
and convex. the case $W(x, y)\equiv y$ corresponds to the one considered by Zuhovickii
and Steckin [9] and $W(x, y)\equiv w(x)y$ , gives an aPproximation problem with ordinary

weight for which $w(x)=\frac{1}{\min\Vert f(x)\Vert}$ ($ f(x)\neq\theta$ on $X$ ) gives results similar to the

ordinary relative error approximation for the real case.
A function $\eta:X\rightarrow H$ with a finite suPport $S=$ {$x_{1},$ $\cdots,$

$x_{n}|x_{k}\in X$, distinct} i.e.
$\eta(x)=\theta,$ $xeX\sim S$ and $\eta(x_{k})\neq\theta,$ $k=1,$ $\cdots,$ $m$ , will be called a unit if $\Vert\eta(x_{k})\Vert=1$ ,

$k=1,$ $\cdots,m$ ; and it will be called an extremal unit with respect to the weight $W$

and the subspace $M$, provided there exists a function $\mu:X\rightarrow H$ with the same

$suPportS$ for which $\eta(x_{k})=\frac{\mu(x_{k})}{\Vert\mu(x_{k})\Vert}$ , $k=1,$ $\cdots,$ $m$ and

$\sum_{k=1}^{n}\langle W(x_{k} , \mu(x_{k})), W(x_{k}, q(x_{k}))\rangle=0$ for each $qeM$ .
3. Characterization of best weighted approximation. We begin with the

main characterization theorem. The statement (2) is a generalization of the
Kolmogorov’s characterization [21 and the statement (5) is a generalization of the
characterization due to Rivlin and $ShaPiro[8]$ .

Theorem 3.1. Let $feC(X, H)$ and $peM$. Then the following five statements
are equivalent.
(1) $P$ is a best weighted aPproximation to $f$ in $M$
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(2) (a) max $\{{\rm Re}\langle W(x,f(x)-P(x)), W(x, q(x))\rangle lxeX|f-p|=\Vert W(x,f(x)-P(x))\Vert\}\geq 0$ ,

for each $qeM$

or equivalently

(b) min $\{{\rm Re}\langle W(x,f(x)-p(x)), W(x, q(x))\rangle lxeX|f-p|=\Vert W(x,f(x)-p(x))\Vert\}\leq 0$ ,

for each $qeM$

we shall denote by $X_{f.p}$ the set $\{xeX/|f-P|=\Vert W(x,f(x)-p(x))\Vert\}$

(3) the zero-element $(0,0, \cdots, 0)$ of the $n$-space $C$“ belongs to the convex-hull of
the set of $n^{-}tuples$ :

$ A=\{Z=(\langle W(x,f(x)-P(x)), W(x, \Phi_{1}(x))\rangle, \langle W(x,f(x)-p(x)), W(x, \Phi_{2}(x)))\rangle$ ,
$\langle W(x,f(x)-p(x)), W(x, \Phi_{n}(x))\rangle)/xeX_{f.p}\}$ .

(4) there exist $mpoint_{SX1},$ $\cdots,$ $x_{m}eX_{f.p}$ and $m$ number $\alpha_{k}>0,$ $k=1,$ $\cdots,$ $m,$ $\sum_{1}^{n}\alpha_{k}=1$ ,

(where $m\leq n+1$ for a real Hilbert space $H$ and $m\leq 2n+1$ for a $\omega mplex$ Hilbert
space $H$), for which

$\sum_{k=1}^{m}\alpha_{k}\langle W(x_{k},f(x_{k})-p(x_{k})), W(x_{k} , q(x_{k}))\rangle=0$ ,

for each $qeM$.
(5) there exists an extremal unit $\rho$ : $X\rightarrow H$ with suPport $S=\{x_{I}, \cdots, x_{m}\}$ of points

belonging to $X_{f.p}$ ($m\leq n+1$ or $m\leq 2n+1$ ) for which

$\rho(x_{k})=\frac{f(x_{k})-p(x_{k})}{\Vert f(x_{k})-p(x_{k})||}$ , $k=1,$ $\cdots,$ $m$ .

Proof. We establish the implications:

(1) $\Rightarrow(2)\Rightarrow(3)\Rightarrow(4)\Rightarrow(5)\Rightarrow(1)$

(1) $\Rightarrow(2)$ :
Let $p$ be a best weighted aPproximation to $J$ . Assume that (2) is false, then

there exist a $q\in M$ and $m>0$ , such that

$\max_{x\in x_{f.p}}\{{\rm Re}\langle W(x,f(x)-p(x)), W(x, q(x))\rangle\}=-2m$ .

By continuity there exists an open subset $G\supset X_{f.p}$ such that,

${\rm Re}\{\langle W(x,f(x)-p(x)), W(x, q(x))\rangle\}<-m$ , $xeG$ .
For the complement $F$ of $G$ , which is compact,

$\Vert W(x,J\mathfrak{l}x)-P(x))\Vert<E-\delta,$ $xeF$ holds for some $\delta>0$ .
If we select
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$\epsilon=\frac{1}{2}$ min $(\frac{m}{|q|^{2}}$ $\frac{\delta}{2|q|})$ ,

it is easily verified that for $p_{1}=p-\epsilon qeM$, we get

$\Vert W(x,f(x)-p_{1}(x))\Vert^{2}=\Vert W(x,f(x)-p(x)\Vert^{2}$

$+2\epsilon{\rm Re}\langle W(x,f(x)-P(x)), W(x, q(x))\rangle$

$+\epsilon^{2}\Vert W(x, q(x))\Vert^{2}$

$<E^{2}-\epsilon m$ , $xeG$

and
$\Vert W(x,f(x)-p_{1}(x))\Vert\leq||W(x,f(x)-p(x))\Vert+\epsilon\Vert W(x, q(x))\Vert$

$<E-\frac{\delta}{3}$ , $xeF$ .
Whence

$|f-p_{1}|<E$ ,

which is a contradiction. 2(b) follows by changing $q$ to $-q$ .
(2) $\Rightarrow(3)$ ;

The set $X_{f.p}$ is compact and the map $x\rightarrow z$ is continuous. Hence, A is com.
pact and the convex-hull $A_{\iota}$ is $\omega mpact$ convex. Now, by (2) (a)

$\max_{x\in x_{f.p}}\{{\rm Re}\sum_{i=1}^{n}\overline{c}_{i}\langle W(x,f(x)-P(x)), W(x, \Phi_{i}(x))\rangle\}\geq 0$ ,

for arbitrary $Ci$ . This implies that if, for some $Ci$ and $a_{0}$ ,

${\rm Re} t\sum_{i=1}^{n}$ Ci $\langle W(x,f(x)-p(x)), W(x, \Phi_{i}(x))\rangle$} $\leq a_{0}$ .
holds for all $xeX_{f.p}$ , then $a_{0}\geq 0$ . Thus the origin $(0, \cdots, 0)$ in $C$“ belongs to each
closed half-space which contains the set $A$ and, hence, it also belongs to the
convex hull $A_{0}$ of $A$ .
(3) $\Rightarrow(4)$ :

This follows by the characterization of the convex-h\‘ull given in Caratheodory’s
theorem (cf. Cheney [11, PP. 17).

(4) $\Rightarrow(5)$ :
We have

$\sum_{k=1}^{n}\alpha_{k}\langle W(x_{k} , f(x_{k})-P(x_{k})),$ $W(x_{k}.q(x_{k}))>=0$ ,

for arbitrary $qeM$. Define

$\rho(x_{k})=\frac{f(x_{k})-p(x_{k})}{\Vert f(x_{k})-p(x_{k})\Vert}$ ,
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$\mu(x_{k})=\alpha_{k}(f(x_{k})-p(x_{k}))$ , $k=1,$ $\cdots,$ $m$ ,

and
$\rho(x)=\mu(x)=\theta$ , $x\neq x_{k}$ , $k=1,$ $\cdots,$ $m$ ,

then

$\sum_{k=1}^{m}\langle W(x_{k} , \mu(x_{k})), W(x_{k}, q(x_{k}))\rangle=0$ , for each $qeM$ ,

hence $\rho$ is an extremal unit.
(5) $\Rightarrow(1)$

Let $\rho$ be an extremal unit satisfying (5), with

$\mu(x_{k})=\alpha_{k}(f(x_{k})-p(x_{k}))$ , $\alpha_{k}>0$

and

$\rho(x_{k})=\frac{\mu(x_{k})}{\Vert\mu(x_{k})\Vert}$ , $k=1,$ $\cdots,$ $m$ .

Now for an arbitrary $reM$, we have

$\sum_{k=1}^{n}\langle W(x_{k}), \mu(x_{k})), W(x_{k} , p(x_{k})-r(x_{k}))\rangle=0$ ,

which gives,

$|f-r||f-p|\sum_{k=1}^{m}\alpha_{k}=|f-r|\sum_{k=1}^{m}\Vert W(x_{k}, \mu(x_{k}))\Vert$

$\geq\sum_{k=1}^{m}|\langle W(x_{k} , \mu(x_{k})), W(x_{k} ,f(x_{k})-r(x_{k}))\rangle|$

$\geq|\sum_{k=1}^{m}\langle W(x_{k} , \mu(x_{k})), W(x_{k} ,f(x_{k})-r(x_{k}))\rangle|$

$=|\sum_{k=1}^{m}\langle W(x_{k} , \mu(x_{k})), W(x_{k},f(x_{k})-p(x_{k}))\rangle|$

$=|f-p|^{2}\sum_{k=1}^{n}\alpha_{k}$ . $(*)$

whence $|f-r|\geq|f-P|$ , and $p$ is a best weighted aPproximation to $f$. This
completes the $prf$ of the theorem.

The following generalizations of the results of de la Vall\’ee-Poussin and Zuho-
vickii are immediate consequences.

Theorem 3.2. (de la Vall\’ee-Poussin)
Let $\rho:X\rightarrow H$ be an extremal unit with suPport $S=\{x_{1}, \cdots, x_{n}\}$ with respect to

the subspace $M$ and the weight $W$. If there exists a $peM$ and $\delta\geq 0$ , such that

$\rho(x_{k})=\frac{f(x_{k})-p(x_{k})}{\Vert f(x_{k})-p(x_{k})\Vert}$ ,
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and $\Vert W(x_{k} ,f(x_{k})-p(x_{k}))\Vert>\delta,$ $k=1,$ $\cdots,$ $m$ ; then $ E(f)\geq\delta$ . In fact, using the estimate
$(*)$ , one obtains $|f-r|\geq\delta$ for each $reM$.

Theorem 3.3 (Zuhovickii) If $p$ is a best weighted aPproximation to $feC(X, H)$

on $X$, then there exists a certain finite subset of $X_{f.p}$ , which consists of $ m(m\leq$

$2n+1$ or $m\leq n+1$) points, such that $p$ is also best on this set.

4. Uniqueness. The conditions on the base functions used by Zuhovickii
and Steckin [91 in the cases when the Hilbert Space is finite and infinite dimen-
sional, though they are necessary as well as sufficient for the unicity of the best
aPproximation for the respective cases, do not seem to lead to the strong unicity
and the continuity of the best aPproximation operator as in the classical case of
the Haar condition.

Here, we introduce two alternative conditions: the first is sufficient and the
second necessary in the case of the finite dimensional Hilbert space, for the
unicity of the best aPproximation. The first condition also yields the strong
unicity and the $\infty ntinuity$ of best aPproximation operator in the case of a real
Hilbert sPace.

Theorem 4.1. Let the subspace $M$ and the weight $W$ satisfy the following
condition:
(T) For each $f\not\in M$ and each best weighted aPproximation $p$ to $f$ in $M$. The
equation $\langle W(x,f(x)-p(x)), W(x, q(x))\rangle=0$ can have at most $n-1$ distinct solutions
in $X$, unless $ W(x, q(x))\equiv\theta$ i.e. $ q(x)\equiv\theta$ on $X$. Then each $feC(X, H)$ has a unique
best weighted approximation in $M$.

Proof. We need the following Lemma.

Lemma 1. If $M$ and $W$ satisfy the condition (T), then the set $X_{f.p}$ contains
at least $n+1$ points for each $feC(X, H)$ .

SuPpose $X_{f.p}$ contains points $\leq n$ . By theorem 3.1 (4) there exi$st$ distinct
points $x_{1},$ $\cdots,$ $x_{m}eX_{f.p},$ $m\leq n$ and the numbers $\alpha_{k}>0,$ $k=1,2,$ $\cdots,$ $m$ ; such that

$\sum_{k=1}^{n}\alpha_{k}\langle W(x_{k},J(x_{k})-p(x_{k})), W(x_{k} , q(x_{k}))\rangle=0$ , $qeM$ .

Define evaluation functionals $L_{k}eM^{*},$ $k=1,$ $\cdots,$ $m$ ; by $L_{k}(q)=\langle W(x_{k} ,f(x_{k})-p(x_{k}))$ ,
$W(xk, q(x_{k}))\rangle,$ $qeM$. Then $\sum_{1}^{n}\alpha_{k}L_{k}=0$ . Let $Xm+1,$ $\cdots Xn$ be distinct points of $X$

different from $x_{1},$ $\cdots x_{m}$ , if $m<n$ . Then we have

$\sum_{k=1}^{m}\alpha_{k}L_{k}=0$ , by choosing $\alpha_{m+1}=\cdots=\alpha_{n}=0$ ,
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if $m>n$ .
Thus $L_{k},$ $k=1,$ $\cdots,$ $n$ do not span $M^{*}$ . By Hahn Banach theorem, select a functional
$\mathcal{L}eM^{**}$ , such that $\mathcal{L}(L_{k})=0,$ $k=1,$ $\cdots,$ $n$ . By reflexivity of finite dimensional
spaces, there exists a polynomial $q_{1}eM$, such that $L_{k}(q_{1})=\langle W(x_{k},f(x_{k})-p(x_{k}))$ ,
$W(x_{k}, q_{1}(x_{k}))\rangle=0,$ $k=1,$ $\cdots,$ $n$ . This contradicts condition (T) and establishes the
Lemma. Proof of the theorem can now be completed by routine arguments.

Assume that $p$ and $P$ are two best approximations to $f$ in $M$, then $q=\frac{p+P}{2}$ is
also a best aPproximation to $f$ and for the points $xeX_{f.q}$ , one gets

$ 2E(f)=\Vert W(x,f(x)-p(x)+f(x)-P(x))\Vert\leq\Vert W(x,f(x)-p(x)\Vert$

$+\Vert W(x,f(x)-P(x))\Vert\leq 2E(f)$ .
Hence the equality occurs throughout this string of inequalities, which implies
$xeX_{f.p}$ and $xeX_{f.P}$ . By the strict convexity of the Hilbert space norm and
hypothesis $(w_{S})$ for the weight $W,$ $p(x)=P(x)$ for $xeX_{f.q}$ ; whence $p(x)\equiv P(x)$ by
Lemma 1 and the condition (T). This completes the $prf$ of the theorem.

Remark. We wish to note here that the condition $(w_{S})$ of the weight $W$ is
used with full effect in the preceding theorem and also in the subsequent discus-
sion. However, for Purposes of section 3 only, it can be dearly dispensed with.
The condition (T) also implies the following condition (T) the equation $W(x,q(x))$

$=\theta,$ $qeM$, can have no more than $n-1$ distinct solutions in $X$, unless $ q(x)\equiv\theta$

on $X$.
(T) does not seem to be sufficient for the unicity of best weighted aPproxi-

mation, however, in the next theorem we prove that it is necessary in case $H$

is finite dimensional.

Theorem 4.2. Let $H$ be finite dimensional then if for each $feC(X, H)$ , there
exists a unique best weighted approximation in $M$. Then $M$ and $W$ satisfy the
condition (T).

Proof. We assume the contrary, that (T) is not satisfied. Then there exists
a $Q\in M,$ $ Q\neq\theta$ and distinct points $x_{1},$ $x_{2}\cdots,$ $xeX$, such that $W(x_{\dot{f}}, Q(x_{j}))=0$ ,
$j=1,$ $\cdots,$ $n$ . We may assume that $|Q|<1$ . Now select $heH$ such that $\Vert h\Vert=1$ then

Det $|\langle W(x_{j}, h), W(x_{j}, \Phi_{i}(x_{j}))\rangle|_{1}^{n}=0$ .
Select a non-zero vector $(\beta_{1}, \cdots\beta)$ orthogonal to the rows of the corresponding

matrix. Let $J=\{j/\beta_{j}\neq 0, W(x_{j}, h)\neq\theta\},$ $X_{J}=\{x_{j}/jeJ\}$ and $C_{J}=\{sgn\beta_{j}/jeJ\}$ . We may
assume that $h$ has been so selected that the set $J$ is non.empty. Define the maps
$\eta:X_{J}\rightarrow C,$ $\mu$ : $C_{J}\rightarrow H$ by $\eta(x_{j})=sgn\beta_{j}$ and
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$\mu(sgn\beta_{j})=\frac{(s}{\Vert W}g\frac{n\beta_{j})h}{(x_{J},h)\Vert}$ .
By Tietze’s extension theorem, they have continuous extensions $\overline{\eta}$ : $X\rightarrow C$ and
$\overline{\mu}$ : $C\rightarrow H$ satisfying $\Vert\overline{\eta}\Vert\leq 1$ and $\Vert W(x, \mu(x))\Vert\leq 1,$ $\alpha eC,$ $xeX$. The composed map
$\overline{f}:X\rightarrow H,\overline{f}-\mu\circ\overline{\eta}eC(X, H)$ satisfies

(a) $ f(x_{j})=\frac{(sgn\beta_{\dot{g}})h}{\Vert W(x_{j},h)\Vert}\leftarrow$ , $jeJ$ .
(b) $|\overline{f}|\leq 1$ .

At this stage, we need

Lemma 2. For each $\overline{f}eC(X, H)$ satisfying (a) and (b), we have $E(\overline{f})=1$ .
By (b), $E(\overline{f})\leq 1$ . If we assume that there exists a $qeM,$ $|\overline{f}-q|<1$ , then

$\Vert W(x_{i},\overline{f}(x_{j})-q(x_{\dot{g}}))\Vert^{2}=||W(x_{\dot{f}},\overline{f}(x_{j}))\Vert^{2}$

$-2{\rm Re}\langle W(x_{j} , \overline{f}(x_{j})), W(x_{j}, q(x;))\rangle+\Vert W(x_{j}, q(x_{\dot{l}}))\Vert^{2}<1$ .
Using (a), this gives for $ieJ,$ ${\rm Re}\langle W(x_{j}, f^{\neg}(x_{\dot{S}})), W(x_{j} , q(x;))\rangle>0$ i.e.

${\rm Re}\{\beta_{j}\langle W(x_{j}, h), W(x_{j}, q(x_{\dot{g}}))\rangle\}>0$ .
whence

${\rm Re}\{\sum_{i=1}^{n}\beta_{j}\langle W(x_{j}, h), Wx_{\dot{g}}, q(x_{\dot{g}}))\rangle\}>0$ .

This $ntradicts$ the choice of the vector $(\beta_{1}, \cdots, \beta_{n})$ and establishes the lemma.
For the $prf$ of the main theorem, now take

$F(x)=\overline{f}(x)(1-\Vert W(x, Q(x))\Vert)$ .
Then $F(x)$ satisfies (a) and (b) of Lemma 2, hence $E(F)=1$ . Finally, for $0\leq\lambda\leq 1$

11 $W(x, F(x)-\lambda Q(x))\Vert\leq 1-\Vert W(x, Q(x))\Vert+\lambda\Vert W(x, Q(x))\Vert\leq 1$ .
This proves the theorem.
We next prove a strong unicity theorem for this aPproximation problem.

Theorem 4.3. Let $H$ be a real Hilbert space. SuPpose that $M$ and $W$ satisfy
the conditon (T) as in theorem 4.1 and let $p$ be a best weighted aPproximation

to $f$ in $M$. Then there exists a constant $\lambda=\lambda(f)>0$ , such that for any $qeM$,

$|f-q|\geq|f-P|+\lambda(f)|P-q|$ .
Proof. If $|f-p|=0$ , then $\lambda=1$ satisfies the required inequality. Next, as-

sume that $|f-P|>0$ . By the characterization theorem 2.1 there exist distinct
points $x_{k}eX_{f.p}$ and numbers $\alpha_{k}>0,$ $k=1,$ $\cdots,$ $m,$ $m\leq n+1$ , such that
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$\underline{1}\Sigma^{m}\alpha_{k}\langle W(x_{k},f(x_{k})-p(x_{k})), W(x_{k}, P(x_{k}))\rangle=0$ ,
$|f-p|k=1$

for each $qeM$. Using the same idea as in the $prf$ of Lemma l,i we conclude
that $m\geq n+1$ . Hence $m=n+1$ .

Next, since $\alpha_{k}>0$ , by the condition T) we infer that for at least one index $k$ ,

$\frac{\langle W(x_{k},f(x_{k})-p(x_{k})),W(x_{k},q(x_{k}))\rangle}{|f-p|}>0$ ,

consequently,

$\max_{1\leq k\leq n+1}\frac{\langle W(x_{k},f(x_{k})-p(x_{k})),W(x_{k},q(x_{k}))\rangle}{|f-p|}$ ,

is a poeitive continuous function of $q$ .
Hence,

$\lambda(f)=\min_{q\in K.|q|=1}\frac{\max\langle W(x_{k},f(x_{k})-p(x_{k})),W(x_{k},q(x_{k}))\rangle}{|f-p|}>0$ ,

by a continuity and $mpactness$ argument.

Now let $qeM$. If $|P-q|=0$ , the inequality to be proved is trivial. Otherwise,

let $r=\frac{p-q}{|p-q|}$ , then $|r|=1$ and we have for some index $k$

$|f-q||f-P|\geq\langle W(x_{k} , f(x_{k})-P(x_{k})), W(x_{k},f(x_{k})-q(x_{k}))\rangle$

$=||W(x_{k},f(x_{k})-p(x_{k}))||^{2}$

$+\langle W(x_{k},f(x_{k})-p(x_{k})), W(x_{k},p(x_{k})-q(x_{k}))\rangle$

$\geq|f-P|^{2}+\lambda(f)|f-p||p-q|$ .
Hence $|f-q|\geq|f-P|+\lambda(f)|p-q|$ , and the $prf$ is complete.

5. Continuity of the best approximation operator. We assume that $M$

and $W$ satisfy the condition (T). For each $feC(X, H)$ , let us denote by $\ovalbox{\tt\small REJECT}_{f}^{-}$

the best weighted approximation to $f$ in $M$. As in the classical case, we can
show that $F$ is a continuous operator. In fact, we show then $\ovalbox{\tt\small REJECT}^{-}$ satisfies a
Lipschitz $ndition$ .

Theorem 5.1. $\ovalbox{\tt\small REJECT}^{-}$ is a continuous mapPing on $C(X, H)$ to $M$. For each $f$,

there corresponds a number $r(f)$ such that

$|\mathcal{J}_{f}^{-}-ff_{g}|\leq r(f)|f-g|$ , for all $geC(X, H)$ .
Proof. By the strong unicity theorem 4.3, one gets a constant $\lambda(f)$ such that

$|f-q|\geq[f-\ovalbox{\tt\small REJECT}_{f}^{-}|+\lambda(f)|\ovalbox{\tt\small REJECT}_{f}^{-}-q[t$ Taking $q=\ovalbox{\tt\small REJECT}_{l}^{-}$ ,

we have
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$\lambda(f)|\ovalbox{\tt\small REJECT}_{f}^{-}-\mathscr{F}_{l}^{-}|\leq|J-ff_{g}|-|f-\ovalbox{\tt\small REJECT}_{f}^{-}|$

$\leq|f-g|+|g-ff_{g}|-|f-\ovalbox{\tt\small REJECT}_{f}^{-}|$

$\leq|f-g|+|g-ff_{f}|-|f-\ovalbox{\tt\small REJECT}_{f}^{-}|$

$\leq|f-g|+|g-f|+|f-\ovalbox{\tt\small REJECT}_{f}^{-}|-|f-\ovalbox{\tt\small REJECT}_{f}^{-}|$

$=2|f-g|$ .
Thus we get $r(f)=2\lambda^{-1}(f)$ as the Lipschitz constant.
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