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Introduction

It is well-known that the method of taking quotient is very useful in solving
problems in mathematics. It seems that this method is yielding more fruitful
results in algebra than in general topology. The reason would probably be that
in defining an algebraic quotient, the decomposition of the underlying set should
be compatible with the composition laws of the algebraic structure in question,
whereas in the topological case, any decomposition of the underlying set yields
a quotient space.

A comparison between the algebraic quotient and the topological quotient
leads us to consider a restrictive type of topological quotients which is, in some
way, similar to the algebraic quotients. We define: a quotient space $X/R$ of a
topological space $X$ is called a partition $sPace$ of $X$ if the following requirement
is satisfied:

For any $A\subset X$ and $xRy,$ $xeA^{0}$ if and only if $yeA^{0}$ .
It turns out that the notion of partition space has been implicit in different

contexts.
Example 1. To partition $sPaces$ .
Let $X$ be an arbitrary topological space, and $R$ the equivalence relation on

$X$ such that xRy if and only if $xey^{-}$ and $yex^{-}$ . It is easy to see that this
quotient space $X^{\pi}=XlR$ enioys the following pleasant Properties:

(i) $X^{\pi}$ is a $T_{0}sPace$ .
(ii) $X^{\pi}$ is a partition $sPace$ of $X$.

(iii) The topology of $X^{\pi}$ is lattice-isomorPhic to the topology of $X$.
In passing over to the $T_{0}$ partition space $X^{\pi}$ , we are in a position to reduce

some problems on an arbitrary topological space $X$ to problems on a $T_{0}$ space
$X^{\pi}$ leaving the lattice of the topology of $X$ essentially intact. Using this method,
H. Gaifman [6] and A. K. Steiner [15] obtained results on the existence of a
complement or a principal complement of a topology of a topological space.

Example 2. $ComPact$ Hausdorff partition $sPaces$ .
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The $\omega ncept$ of partition spaces was considered by J. Hardy and H. E. Lacey
in 1968 [101. Their Paper is concerned with the extension of regular Borel
measures defined on the Borel sets generated by subtopologies of a $\omega mpact$

regular space. J. Hardy and H. E. Lacey’s difinition is as follows:
Let $X$ be a $comPact$ regular $sPace$ . For each point $xeX$, let $N_{l}$ be the set
of all points $yeX$ such that for each $oPen$ set $U,$ $yeU$ if and only if $xeU$.
Consider $Y=\{N_{x} : xeX\}$ . Define $f;X\rightarrow Y$ by $f(x)=N_{x}$ for every $xeX$, and
give to $Y$ the largest topology for which $f$ is continuous.

It is proved that $Y$ is a compact Hausdorff partition space of $X$. The authors
claim that the concept of a partition space plays a central role in the develop-
ment of their work.

Example 3. The $sPaceL^{2}$ .
In real analysis and functional analysis, we study the space $\mathcal{L}^{2}$ of all measur-

able functions $f$ which are square-integrable (in Lebesgue’s sense). $\mathscr{L}^{2}$ is given
the strong topology induced by the norm

$\Vert f\Vert=(\int|f|^{2}d_{\mu})^{1/2}$

If we identity $f$ and $g$ of $\mathcal{L}^{2}$ when the set $\{x:f(x)\neq g(x)\}$ is of measure zero,
then we obtain the space $L^{2}$ which tums out to be a partition space of $\mathcal{L}^{2}$ .

Example 4. Associated metric $sPace$ .
Let (X, d) be a $pseudo\cdot metric$ space. Consider the equivalence relation $R$

such that xRy if and only if $d(x, y)=0$ . Then the quotient spoce $X/R$ is a metric
space with respect to the metric $d^{*}([x], [y])=d(x, y)$ . Here again $X/R$ is a parti-
tion space of $X$.

From the above examples, one sees that partition spaces aPpear explicitly or
implicitly in a number of ways in mathematics. It seems to us that a systematic
study of them may be worthwhile.

The general theory of partition space$s$ is developed in Chapter I, where we
define a covariant functor $\pi$ of the category of topological spaces and continuous
functions into the subcategory of $T_{0}$ spaces. The functor $\pi$ carries imbeddings

into imbeddings and homeomorphisms into homeomorphisms.

In Chapter II, we study a new classification of topological spaces by $\pi-$

equivalence. In relation to the well.known classifications we have:

homeomorphic $\rightarrow\pi\cdot equivalent\Rightarrow\left\{\begin{array}{l}lattice- equivalent\\homotopically equivalent\end{array}\right.$

A study of $\pi$-invariant Properties is included.
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Chapter III is devoted to a study of of some separation axioms. There we
introduce the $t_{1},$ $t_{2}$ and $t_{4}$ axioms and prove that

$\Downarrow T_{4}\Rightarrow Tychonoff\Downarrow$

$\Rightarrow$

$\Downarrow T_{8}$ $\Rightarrow\backslash T_{2}\Downarrow\Rightarrow\Downarrow T_{1}\Rightarrow T_{0}$

$t_{4}\Rightarrow completely\Rightarrow regular\Rightarrow t_{2}\Rightarrow t_{1}$

regular

The following principle:
Suppose $P$ and $Q$ are $\pi\cdot invariant$ prOperties. If the impljcation $P\Rightarrow Q$ is
true for all $T_{i}sPaces$ , then the implication is also true for all $t_{i}$ spaces,

is used to generalize results in $T_{i}$ spaces. Among others we prove that
A topological sPace is $comPletely$ regular if and only if it possesses a normal
base,

and
Every compact pseudo.metric space is suPercompact.
Many of the well-known compactification theories (e.g. the Stone-\v{C}ech $\omega m-$

pactification and Wallman-Frink compactification) apply only to Hausdorff spaces.
The Hausdorff separation axiom is thought to be necessary to ensure some form
of uniqueness of compactification. In the last chapter we generalize Tychonoff’s
theorem:

A topological sPace is homeomorphic to a subspace of a $comPact$ Hausdorff
sPace if and only if it is a completely regular $T_{1}$ sPace,

into the following:
A topological $sPace$ is homeomorphjc to a subspace of a compact $t_{2}sPace$ if
and only if it is a $comPletely$ regular $sPace$ .

We further generalize the methods of Stone-Cech compactification and Wallman-
Frink compactification to cater for completely regular spaces.

This Paper is based on a doctoral thesis of the University of Hong Kong.
The author wishes to thank his supervisors, Professor Y. C. Wong and Dr. K. $T$.
Leung, for their kind guidance.

CHAPTER I. Partition Spaces

1. Definition and Characterization of Partition Spaces

Let $X$ be a topological space and $R$ an equivalence relation on $X$. The
quotient space $X/R$ is said to be a partition $sPace$ of $X$ if the following condition
is satisfied:



4 YIM-MING WONG

For each $A\subset X$, if $xeA^{0}$ and xRy then $yeA^{0}$ , where $A^{0}$ denotes the interior
of the set $A$ in $X$.

In other words, $X/R$ is a partition space if and only if R-related points of $X$

belong to the same open sets of $X$. By duality, $X/R$ is a partition space if and
only if R-related points of $X$ belong to the same open sets of $X$. By duality,
$X/R$ is a partition space if and only if R-related points of $X$ belong to the same
closed sets of $X$.

The existence of a partition space of any topological space is evident. In
fact, for any topological space $X,$ $X$ itself is always a partition space of $X$. In
general, a topological space may have more than one partition space. For ex-
ample, if $X$ is an indiscrete space containing more than one point, then every
quotient space $X/R$ is a partition space of $X$. The condition for uniqueness of
of partition spaces of a topological space is given in the following theorem:

THEOREM 1.1. A topological $sPace$ has a unique ($uP$ to a homeomorphism)

partition $sPace$ if and only if it is $a$ To $sPace$ .
PROOF. Necessity: We have seen in Example1 (Introduction) that any

space $X$ has a $T_{0}$ partition space $X^{\pi}$ . On the other hand, $X$ itself is a partition
of $X$, therefore if $X$ has unique partition space, then $X$ is homeomorphic to $X^{\pi}$ ,

and hence $X$ has to be a $T_{0}$ space.
Sufficiency: Let $X$ be a $T_{0}$ space. We shall show that the only partition

space of $X$ is the trivial partition space $X$. Let $X/R$ be a partition space of $X$.
SuPpose $R$ is not the diagonal of $X\times X$, then we can find $x\neq y$ in $X$ such that
$xRy$ . Since $X$ is $T_{0}$ , we have, say, an open $neighbourh\ovalbox{\tt\small REJECT} dU$ of $x$ such that
$y\not\in U$. This contradicts the assumption that $X/R$ is a partition space of $X$.

According to the above theorem, the method of taking partition spaces is
useful only for $non\cdot T_{0}$ spaces. As a matter of fact, the usefulness of the method
of taking partition spaces bases on the fact that every topological space has one
and only one To partition space($s$ee \S 2, Corollary 1.6 of this chapter).

We shall present here a characterization of partition spaces, which will be
made use of frequently.

THEOREM 1.2. Let $X/R$ be a quotient $sPace$ of a topological sPace $X$ and $P$

the natural prOjectjon from $X$ onto $X/R$ . $X/R$ is a partition space of $X$ if and
only if for every $oPen$ set $G$ in $X$,

$G=P^{-1}(p(G))$ .
PROOF. SuPpose $X/R$ is a partition space of $X$ and $G$ an open set of $X$.

If $yep^{-1}(p(G))$ , then there is some $xeG$ such that $p(x)=p(y)$ i.e. $xRy$ . There-
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fore $yeG$ , by definition of partition space. Thus $G\supset P^{-1}(p(G))$ . On the other
hand, it is generally true that $G\subset p^{-1}(p(G))$ , therefore $G=P^{-1}(p(G))$ for every open
set $G$ .

Conversely, suPpose $G=p^{-1}(p(G))$ for every open set $G$ of $X$. For any $A\subset X$,
let $xeA^{0}$ and $xRy$ . Since $xeA^{0}$ and $p(x)=p(y),$ $P(y)eP(A^{0})$ and hence $ye$

$p^{-1}(p(A^{0}))=A^{0}$ . Therefore $X/R$ is a partition space of $X$.
By duality, the above theorem can be restated as follows:
COROLLARY 1.3. $X/R$ is a partition $sPace$ of $X$ if and only if for every

closed set $F$ in $X,$ $F=P^{-1}(p(F))$ .
A further $\omega nsequence$ of Theorem 1.2 is the following useful corollary.

COROLLARY 1.4. If $X/R$ is a partition $sPace$ of $X$, then the natural Projec-
tion $p;X\rightarrow XlR$ is an $oPen$ and closed maP.

We note that the above Property of $p$ is not sufficient for a quotient space
to be a partition space. Indeed, if $Y$ is a discrete space with more than one
point, then $Y$ has more than one quotient space and for each quotient space of
$Y$ the natural Projection is an open and closed map. However being a $T_{1}$ space,
$Y$ has only one partition space.

2. The Partial Ordering on Partition Spaces.

Let XlRt and $X/R_{2}$ be two quotient spaces of $X$. We shall say that $X/R_{1}$ is
larger than $X/R_{2}$ and write $X/R_{1}\geq X/R_{2}$ (or $X/R_{2}$ is smaller than $X/R_{1}$ and write
$X/R_{2}\leq X/R_{1})$ if for all $x,$ $y$ in $X,$ $xR_{1}y$ implies $xR_{2}y$ . Clearly, $\geq$ is an ordering
and the trivial quotient spaces{X} and $X$ are the smallest and the largest ele-
ment of the set $Q(X)$ of all quotient spaces of $X$. We shall show that every
family of quotient spaces of $X$ has a least uPper bound as well as a greatest

lower bound. Consequently the set $Q(X)$ of all quotient spaces of a topological
space $X$ is a complete lattice with respect to this ordering.

Let $\{X/R_{\alpha}\}_{\alpha eA}$ be a family of quotient spaces of $X$. We define equivalence
relations $R$ and $R^{\prime}$ on $X$ by:

xRy if and only if $xR_{\alpha}y$ for all a $e$ A. $xR^{\prime}y$ if and only if there exist a
positive integer $n$ and $\alpha_{1},$ $\cdots,$ $\alpha_{n+1}e$ $A$ and $t_{1},$

$\cdots,$
$t_{n}eX$ such that $xR_{\alpha_{1}}t_{1}$ ,

$t_{1}R_{\alpha_{2}}t_{2},$
$\cdots,$ $t_{n-1}R_{a_{n}}t_{n}$ and $t_{n}R_{\alpha_{n+1}}y$ .

Then $X/R$ and $X/R^{\prime}$ are the least uPper bound and the greatest lower bound of
the family $\{X/R_{\alpha}\}_{\alpha\epsilon A}$ respectively.

The ordering on $Q(X)$ is essentially an ordering of the equivalence relations
in the set $X$ and is unrelated to the topology of $X$ or to the topologies of the
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quotient spaces. However interesting results can be obtained when we consider
the induced ordering on the subset of all partition spaces.

THEOREM 1.5. The set of all partition $sPaces$ of a topological $sPaceX$forms
a $comPlete$ sub-lattice of the lattice $Q(X)$ of all quotient $sPaces$ of X. Furthermore,
the smallest Partition $sPace$ is the largest To quotint $sPace$ of $X$.

PROOF. For the first part, it suffices to verify that the lattice sum $X/R$ as
well as the lattice product $XlR^{\prime}$ of a family $\{X/R_{\alpha}\}_{\alpha eA}$ of partition spaces of $X$

are partition spaces of $X$. By definition, xRy if and only if $xR_{\alpha}y$ for all $R_{\alpha}$ .
Therefore R-related points of $X$ belong to the same open sets of $X$ and $X/R$ is
a partition space of X. Suppose $xR^{\prime}y$ . Then by definition of $R^{\prime},$ $xR_{\alpha_{1}}t_{1},$ $\cdots$ ,
$t_{n}R_{\alpha_{n+1}}y$ for some $t_{i}eX$ and $\alpha_{i}eA$ . Therefore $x,$ $t_{1},$

$\cdots,$
$t_{n}$ and $y$ all belong to

the same open sets of $X$ and hence $X/R^{\prime}$ is a partition space.

Let $S$ be the equivalence relation on $X$, defined as the following:
xSy if and only if $xey^{-}$ and $yex^{-}$ , where $x^{-}$ stands for the closure of the
singleton $\{x\}$ .

We shall show that $X/S$ , with the quotient topology, is the smallest partition
space as well as the largest To quotient space of $X$. We have seen in Example
1 (Introduction) that $X/S$ is a To partition space of $X$. Suppose $X/Q$ is a parti-

tion space of $X$ and $xQy$ . Since $yey^{-},$ $xex^{-}$ and $X/Q$ is a partition space, we
have $xey^{-}$ and $yex^{-}i.e.,$ $xSy$ . Since $x,$ $\gamma$ are arbitrary, we have $X/Q\geq XlS$ .

It remains to prove that $X/S$ is the largest $T_{0}$ quotient space of $X$. Let $X/T$

be a To quotient space of $X$. We are going to show that $XlS\geq XlT$. Let
$p;X\rightarrow XlT$ be the natural Projection and suPpose $xSy$ . We shall show that
$p(x)=P(y)$ . Assume $p(x)\neq p(y)$ . Since $X/T$ is a To space, there is, say, an open
neighbourhood $U$ of $p(x)$ which does not contain $p(y)$ . $P^{-1}(U)$ is an open neigh-
bourhood of $x$ which does not $\ovalbox{\tt\small REJECT} ntainy$ . We have then $x\not\in y^{-}$ , contradicting
$xSy$ .

COROLLARY 1.6. $IJX$ is a topological $sPace$ , then $X$ has one and only one
$T_{0}$ partition $sPace$ denoted henceforth by $X^{\pi}$ .

COROLLARY 1.7. If $X$ is $a$ To $sPace$ , then $X^{\pi}=X$ and all partition $sPaces$

of $X$ are equal to itself.
The following theorem is a characterization of the To partition space of $X$.
THEOREM 1.8. Let $X/R$ be a quotient $sPace$ of a tolological $sPaceX$ and $p$

the natural projection. $XlR=X^{\pi}$ (i.e., $X/R$ is the To $sPace$ of $X$) if and only if
for all $x,$ $yeX$, the following statements are equivalent:

(i) $p(x)=p(y)$ ;
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(ii) For all $A\subset X,$ $xeA^{-}$ if and only if $yeA^{-}$ ;
(iii) For all $A\subset X,$ $xeA^{0}$ if and only if $yeA^{0}$ .
PROOF. Necessity: It is obvious that $(ii)\Leftrightarrow(iii)$ holds in general. Suppose

$X/R$ is the To partition space of $X$. By definition, we have $(i)\Leftrightarrow(iii)$ . We now
show (iii) $\Leftrightarrow(i)$ . Assume $p(x)\neq p(y)$ . Since $X/R$ is To, there is an open set $G$

in $X/R$ such that, say, $p(x)eG$ but $p(y)\not\in G$ . $p^{-1}(G)$ is then an open set in $X$ so
that $xep^{-1}(G)$ but $y\not\in P^{-1}(G)$ , contradicting (iii).

Sufficiency: That $X/R$ is a partition space follows from $(i)\Leftrightarrow$ (iii). We
now prove that $X/R$ is a To space. Let $p(x)\neq p(y)$ . From (iii) $\Leftrightarrow(i)$ , an open
set $G$ in $X$ exists such that, say, xeG but $y\not\in G$ . By Theorem 1.2, $G=p^{-1}(p(G))$ .
Therefore, $p(G)$ is open in $X/R$ and $p(x)\in P(G)$ but $p(y)\not\in p(G)$ .

3. The Induced Maps on Partition Spaces.

The main purpose of this section is to prove that, for any topological spaces
$X$ and $Y$, the set of all continuous functions of $X$ into $Y$ is mapped in a natural
way onto the set of all continuous function of $X^{\pi}$ into $Y^{\pi}$ .

Let $X/R$ be a quotient space of a topological space $X$ and $g;XlR\rightarrow Y$ a
function of $X/R$ into a topological space Y. It is well-known that $g$ is $\ovalbox{\tt\small REJECT} ntinuous$

if and only if $g\circ p$ is continuous.

For Partition spaces, we have other useful lemmas.
LEMMA 1.9. Let $Y/Q$ be a partition $sPace$ of a topological $sPaceY$ and $q$

the natural Projection of $Y$ onto $Y/Q$ . A function $f$ from a topological $sPaceX$

into $Y$ is continuous if and only if $q\circ f$ is continuous.

PROOF. The necessity follows from the continuity of the natural Projection
$q$ . We now prove the sufficiency. Let $G$ be an open set in Y. By Theorem



8 YIM-MING WONG

1.2, $G=q^{-1}(q(G))$ . Therefore we have

$f^{-1}(G)=f^{-1}(q^{-1}(q(G)))=(q\circ f)^{-1}(q(G))$ .
Since $q$ is open (Corollary 1.4) and $q\circ f$ is continuous (assumption), $f^{-1}(G)$ is open.
$f$ is therefore $\ovalbox{\tt\small REJECT} ntinuous$ .

LEMMA 1.10. Let $X/R$ be a partition $sPace$ of a topological $sPaceX$ and $P$

the natural Projection of $X$ onto $X/R$. For every continuous function $f:X\rightarrow Y$

of $X$ into a $T_{0}$ sPace $Y$, there exists a unique continuons function $h:X/R\rightarrow Y$

such that the diagram

$X/R$

is commutative.
PROOF. The uniqueness of $h$ is obvious. To prove the existence of $h$ , it

is enough to show that $x_{1},$ $x_{2}eX$, if $p(x_{1})=p(x_{2})$ then $f(x_{1})=f(x_{2})$ . $Supwse$ this
is not the case, then there are $x_{1},$ $x_{2}\in X$ such that $p(x_{1})=p(x_{2})$ and $f(x_{1})\neq f(x_{2})$ .
Since $Y$ is To, we have, say, an open $neighbourh\ovalbox{\tt\small REJECT} dG$ of $f(x_{1})$ in $Y$ which does
not contain $f(x_{2})$ . By continuity $f^{-1}(G)$ is open. By construction, $x_{1}ef^{-1}(G)$

and $x_{2}\not\in f^{-I}(G)$ . As $X/R$ is a partition space of $X$ we should have $x_{2}ef^{-1}(G)$ .
This is a $\ovalbox{\tt\small REJECT} ntradition$ . The continuity of $h$ follows from the commutativity of
the diagram and that $X/R$ is a quotient space.

Now we are in a position to present the first main theorem as follows:
THEOREM 1.11. Let $X^{\pi},$ $Y^{\pi}$ be the $T_{0}$ Partition $sPaces$ of $X,$ $Y$ and $p,$ $q$

the corresponding natural projections. For any continuous function $f:X\rightarrow Y$,
there exists a unique continuous function $f^{\pi}$ : $X^{\pi}\rightarrow Y^{\pi}$ such that the following
diagram is commutative.

$X\rightarrow Yf$

$X^{\pi}p\downarrow\rightarrow^{f’ t}Y^{\pi}\downarrow q$

PROOF. By Lemma 1.9, $q\circ f$ is continuous. Therefore by Lemma 1.10, there
exists a unique continuous function $f^{\pi}$ : $X^{\pi}\rightarrow Y^{\pi}$ such that the diagrem
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is $\ovalbox{\tt\small REJECT} mmutative$ , and the theorem follows.
It tums out that the induced function $f^{\pi}$ inherits some Properties of $f$.
THEOREM 1.12. If $f$ is an imbedding then $f^{\pi}$ is also an imbedding.
PROOF. We first $s$how that $f^{\pi}$ is iniective. SuPpose the contrary is true.

Then there are $x,$
$x^{\prime}eX$, such that $f^{\pi}(p(x))=f^{\pi}(p(x^{\prime}))$ and $p(x)\neq p(x^{\prime})$ . From the

equation we have $q(f(x))=q(f(x^{\prime}))$ since $f^{\pi}P=qf$. From the inequality of elements
of the To partition space $X^{\pi}$ , there exists an open $neighUurh\ovalbox{\tt\small REJECT} dU$ of $x$ , which
does not contain $x^{\prime}$ . Since $f$ is an imbedding, this implies the exi $s$tence of an
open set in $Y$, which $\ovalbox{\tt\small REJECT} ntainsf(x)$ but not $f(x^{\prime})$ , contradicting $q(f(x))=q(f(x^{\prime}))$

in the partition space $Y^{\pi}$ . This shows that $f^{\pi}$ is iniective. To prove that $f^{\pi}$ is
an imbedding, it is now enough to show that for any open set $G$ in $X^{\pi},$ $f^{\pi}(G)$ is
open in $f^{\pi}(X^{\pi})$ . Let $U=P^{-1}(G)$ . As $qf=f^{\pi}p$ it is equivalent to show that $q(f(U))$

is open in $q(f(X))$ . Since $f$ is an imbedding, $f(U)$ is open in $f(X)$ , i.e.,
$V\cap f(X)=f(U)$ for an open set $V$ of Y. Since $q$ is open (Corollary 1.4), $q(V)$ is
an open set in Y. We shall show that $q(f(U))=q(V)\cap q(f(X))$ . Clearly $q(f(U))=$

$q(V\cap f(X))\subset q(V)\cap q(f(X))$ . It remains to show that $q(V\cap f(X))\supset q(V)\cap q(f(X))$ .
Let $zeq(V)\cap q(f(X))$ . Then $z=q(f(x))$ for some $xeX$. On the other hand from
$q(f(x))eq(V)$ we get $f(x)eq^{-1}(q(V))=V$. Therefore $zeq(V\cap f(X))$ . The theorem
is proved.

COROLLARY 1.13. If $f$ is a homeomorphim from $X$ onto $Y$, then $f^{\pi}$ is a
homeomorphism from $X^{\pi}$ onto $Y^{\pi}$ .

PROOF. Making use of the above theorem, we need only to prove that the
suriectivity of $f$ implies the suriectivity of $f^{\pi}$ . But it follows from the com-
mutativity of the diagram in Theorem 1.11 immediately.

Remark. We note here that in general $f^{\pi}$ does not inherit iniectivity. Indeed
if $X$ and $Y$ are the discrete and the indiscrete space of one and the same set
$S$ respectively, then the identity map $i$ of $S$ is a continuous iniection from $X$

into Y. We also $s$ee that $X^{\pi}$ is $hom\ovalbox{\tt\small REJECT} morphic$ to $X$ and $Y^{\pi}$ is iust a singIeton;
therefore if $S$ has more than one element, then $i^{\pi}$ is not iniective.

It is seen in Theorem 1.11 that every $\omega ntinuous$ function $f$ of $X$ into $Y$

gives rise to a continuous function $f^{\pi}$ of $X^{\pi}$ into $Y^{\pi}$ . We now show in the fol-
lowing second main theorem that every continuous function $g$ of $X^{\pi}$ into $Y^{\pi}$ can
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be obtained in thi $s$ way.
THEOREM 1.14. For every continuous function $g;X^{\pi}\rightarrow Y^{\pi}$ , there is a con-

tinuous function $f:X\rightarrow Y$ such that $g=f^{x}$ .
PROOF. Consider the composite function $g\circ p$ , which is a continuous func-

tion of $X$ into Y. We define a function $f$ as follows.
Let $\phi$ be a choice function of the decomposition $Y^{\pi}$ of $Y$, i.e., a mapping

$\phi$ : $Y^{\pi}\rightarrow Y$ such that $ q\circ\phi$ is the identity of $Y^{\pi}$ . Let $f=\phi\circ g\circ p$ . Then $q\circ f=g\circ p$ .
Since $g\circ P$ is continuous, $f$ is a $\ovalbox{\tt\small REJECT} ntinuous$ function of $X$ into $Y$, by Lemma 1.9.
By uniqueness, we have $f^{\pi}=g$.

Let $A$ be a subspace of $X$ and $i$ the inclusion map of $A$ into $X$. Then $i^{\pi}$

is an imbedding of $A^{\pi}$ into $X^{\pi}$ . Our results so far enable us to reduce an ex-
tension problem on continuous function between arbitrary topological spaces to
one on continuous function between $T_{0}$ spaces.

THEOREM 1.15. Let $A$ be a subspace of a topol0gical space $X$ and $i:A\rightarrow X$

the inclusion. Let $Y$ be an arbitrary topological space. Then a continuous func-
tion $f;A\rightarrow Y$ admits an extension over $XiJ$ and only if the continuous function

$f^{\pi}$ : $A^{\pi}\rightarrow Y^{\pi}$ admits an extension over $X^{n1)}$

PROOF. Necessity: Let $\overline{f};X\rightarrow Y$ be a continuous extension of $f$, i.e., $f=\overline{f}\circ i$.
Using notations of Theorem 1.11 we obtain $\ovalbox{\tt\small REJECT} mmutative$ diagrams:

$p\downarrow_{f^{\kappa}}\downarrow qX^{\pi}\rightarrow Y^{\pi}x_{--\rightarrow Y}^{f}$

and

1) By Theorem 1.12, corresponding to the inclusion map $i:A\rightarrow X,$ $i^{l}$ : $ A^{\kappa}\rightarrow X\sim$ is an
imbedding. By an extension $ f\sim$ of $f7t$ here we mean $f\sim;X^{l}\rightarrow Y^{r}$ and $fs_{\dot{\eta}^{C}=f\sim}$ .
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Chasing the diagrams, we see that

is $\ovalbox{\tt\small REJECT} mmutative$ ; therefore $(\overline{f})^{\pi}$ is an extension of $f^{\pi}$ over $X^{\pi}$ .
Sufficiency: SuPpose $f^{\pi}$ admits an extension $g:X^{\pi}\rightarrow Y^{\pi}$ , i.e., $f^{\pi}=g\circ i^{\pi}$ . Take

a choice function $\varphi$ : $Y^{X}\rightarrow Y$ as in the $pr\ovalbox{\tt\small REJECT} f$ of Theorem 1.14. Define a map
$\overline{f};X\rightarrow Y$ by putting

$\overline{f}(x)=\left\{\begin{array}{ll}f(x) & if xeA,\\\varphi\circ g\circ p(x) & if xeX\backslash A.\end{array}\right.$

Clearly $f=\overline{f}\circ i$ . It remains to show that $\overline{f}$ is continuous. By Lemma 1.9, it suf-
fices to show commutativity of the diagram

$p\downarrow\downarrow qX^{\pi}\rightarrow Y^{\pi}x^{f}\rightarrow Yg$

Now commutativity of the following diagram

qualifies the following $\ovalbox{\tt\small REJECT} mputations$ :
If $xeX\backslash A$ , then

$q(\overline{f}(x))=q(\varphi(g(p(x))))=g(p(x))$ .
If $xeA$ , then

$q(\overline{f}(x))=q(f(x))=f^{\pi}(p_{A}(x))=g(i^{\pi}(p_{A}(x)))=g(p(i(x)))=g(p(x))$ .
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Therefore $q\circ\overline{f}=gop$ .

4. The Covariant Functor $\pi$ .
To condude this chapter, we formalize some of the results between a

topological space $X$ and its To partition space $X^{\pi}$ in terms of a covariant func-
tor. We denote by $\mathscr{F}$ the category of all towlogical space with continuous
functions as morphisms and by $\mathscr{F}\overline{0}$ the subcategory of all $T_{0}to\infty logical$ spaces.
For every obiect $X$ of $\ovalbox{\tt\small REJECT}^{-}$ we put $\pi(X)=X^{\pi}$ , the unique To partition space of
$X$; and for every morphism $f:X\rightarrow Y$ of $F$ we put $\pi(f)=f^{\pi}$ , the unique con.
tinuous function such that

$X\rightarrow Yf$

$X^{\pi}p\downarrow\rightarrow^{f^{t}}Y^{\pi}\downarrow q$

is commutative. It is easy to verify that
(i) $\pi(i_{X})=i_{x^{\pi}}$ where $i_{X}$ and $i_{X^{\pi}}$ are the identity maPpings of $X$ and $X^{n}$

$resPectively$ , and
(ii) $\pi(f\circ g)=\pi(f)\circ\pi(g)$ .

Ie other words, $\pi:\ovalbox{\tt\small REJECT}^{-}\rightarrow\ovalbox{\tt\small REJECT}_{0}^{-}$ is a covariant functor of categories. Besides the
results of the previous sections, the functor also has Properties

(iii) The restriction of $\pi$ to the subcategory $\ovalbox{\tt\small REJECT}_{0}^{-}$ is the identity functor of
$\ovalbox{\tt\small REJECT}_{0}^{-}$ , and

(iv) $\pi^{2}=\pi$ .

CHAPTER II. $\pi$-equivalence of Topological Spaces

In this chapter, we shall discuss a new classification of topological spaces.
This new classification is coarser than the classifications by lattice-equivalence
and by homotopy equivalence.

1. $\pi$-equivalence.

Making use of the functor $\pi$ of the category $\mathscr{F}$ of all topological spaces
into the category $\mathscr{F}\overline{0}$ of all To spaces. we can obtain, in a natural way, a clas-
sification of obiects of $\ovalbox{\tt\small REJECT}^{-}$ from a classification of obiects $\ovalbox{\tt\small REJECT}_{0}^{-}$ . We define

Two topological spaces $X$ and $Y$ are said to be $\pi$-equivalent if their $\ovalbox{\tt\small REJECT}_{\overline{0}}$
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partition spaces $X^{\pi}$ and $Y^{n}$ are homeomorphic.
Clearly, $\pi$-equivalence is an equivalence relation on obiects of $\mathscr{F}^{-}$ which in

tum gives rise to a classification of topological spaces. It follows from results
of the last chapter that $X$ and $Y$ are $\pi$-equivalent if and only if there exists a
continuous function $f:X\rightarrow Y$ such that $f^{\pi}$ : $X^{\pi}\rightarrow Y^{\pi}$ is a $hom\ovalbox{\tt\small REJECT} morphism$ .
2. Lattice-equivalence and Homotopy Equivalence.

Clearly homeomorphic topological spaces are $\pi$-equivalent; consequently the
classification by homeomorphism is finer than that by $\pi$-equivalence.

After W. J. Thron [201 we say that two topological spaces $X$ with topology
$\tau$ and $Y$ with topology $\sigma$ are lattice-equivalent if there exists a lattice-isomorphism
between $\tau$ and $\sigma$ . It is easy to see that lattice-equivalence is again an equivalence
relation on obiects of $\backslash Z$ and that $hom\ovalbox{\tt\small REJECT} molphic$ topological space$s$ are lattice-
equivalent. Between $\pi$-equivalence and lattice-equivalence we have the following:

THEOREM 2.1. If $X$ and $Y$ are $\pi$-equivalent topological $sPaces$, then $X$ and
$Y$ are lattice-equivalent.

PROOF. It follows from definition that $X^{\pi}$ and $Y^{\pi}$ are $hom\ovalbox{\tt\small REJECT} morphic$ and
hence lattice-equivalent. But $X$ and $X^{\pi}$ are lattice-equivalent since $P^{-1}(p(G))=G$

for open set $G$ of $X$ and similarly $Y$ and $Y^{\pi}$ are lattice-equivalent. Therefore
$X$ and $Y$ are lattice-equivalent by transitivity.

From this theorem we see that the classification by $\pi$-equivalence is finer
than that by lattice-equivalence.

We recall that two continuous functions $f,$ $g:X\rightarrow Y$ are homotopic if there
exists a continuous function $H:X\times[0,1]\rightarrow Y$ such that $H(x, O)=f(x)$ and $H(x, 1)=$

$g(x)$ for every $xeX$. The topological spaces $X$ and $Y$ are said to be homo-
topically equivalent if there exist $f:X\rightarrow Y$ and $g:Y\rightarrow X$ such that $f\circ g$ and $i_{Y}$

are homotopic, and $g\circ f$ and $i_{X}$ are homotopic. Clearly homotopy equivalence is
an equivalence relation on obiects of $\ovalbox{\tt\small REJECT}^{-}$ and $hom\ovalbox{\tt\small REJECT} morphic$ topological spaces
are homotopically equivalent. We now prove that the classification by $\pi$-equivalence
is finer than that by homotopy equivalence.

THEOREM 2.2. If $X$ and $Y$ are $\pi$-equivalent, then $X$ and $Y$ are homo-
topically equivalent.

PROOF. It follows from theorem 1.14 and the assumption that $X^{\pi}$ and $Y^{\pi}$

are homeomorphic that there exist continuous functions $f:X\rightarrow Y$ and $g:Y\rightarrow X$,
such that $f^{\kappa}\circ g^{\pi}$ and $g^{\pi}\circ f^{n}$ are the identity maps of $Y^{\pi}$ and $X^{X}$ respectively. In
particular, $p\circ g\circ f=p$ and $q\circ f\circ g=q$ where $p;X\rightarrow X^{\pi}$ and $q:Y\rightarrow Y^{\kappa}$ are the
natural Projections. We define $H:X\times[0,1]\rightarrow X$ by putting
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$H(x, t)=\left\{\begin{array}{ll}g(f(x)) & if t\neq 1,\\x & if t=1.\end{array}\right.$

Then $p\circ H=p\circ h$ where $h:X\times[0,1]\rightarrow X$ is the $proje\alpha ion$ . Therefore $H$ is con-
tinuous by Lemma 1.9. Clearly $H(x, O)=(g\circ f)(x)$ and $H(x, 1)=x$ , therefore $g\circ f$

and $i_{X}$ are homotopic. Similarly we prove fog and $i_{Y}$ are homotopic.

To summarise, we have for topological spaces $X$ and $Y$,

“X and $Y$ are homeomorphic” $\Rightarrow X$ and $Y$ are $\pi$-equivalent”

$\Rightarrow\left\{\begin{array}{l}‘‘ X and Y are lattice- equivalent’’ and\\‘‘ X and Y are homotopically equivalent’’\end{array}\right.$

Let us now show, by counter-examples, that the converses of the above im-
plications are not true in general.

Example 1. $(\pi- equivalent\rightarrow homeomorphic)$

Let $X$ be an indiscrete space containing more than one element, $Y$ a topo-
logical space consisting of only one element. Since the To partition sPace $X^{X}$ of
$X$ is also a singleton which is of course homeomorphic to $Y,$ $X$ is $\pi\cdot equivalent$

to Y. But X and $Y$ have different cardinalities; they can never be homeo.
morphic.

Example 2. $(Lattice- equivalent\Rightarrow\pi\cdot equivalent)$

Let $X$ be an infinite set with the co-finite topology. Then $X$ is a $T_{1}$ space.
Let $Y=X\cup\{z\}$ where $z$ is an obiect not in $X$. Let the closed sets in $Y$ be $\phi,$ $Y$

and all finite subset $s$ of $X$. Then $Y$ is To but not $T_{1}$ . $X$ and $Y$ are clearly
lattice-equivalent. But $X^{X}=X$ and $Y=Y^{\pi}$ , hence they are not $\pi$-equivalent.

Example 3. (Homotopically equivalent $\Rightarrow\pi$-equivalent)

For $T_{1}$ spaces $X$ and $Y,$ $X$ is $\pi\cdot equivalent$ to $Y$ if and only if $X$ is homeo-
morphic to $Y$. It is known that $[0,1]$ and $(0,1)$ are homotopically equivalent.

But they are not $\pi$-equivalent.

3. $\pi$-invariant Properties.

Arising from the classification of topological space$s$ by $\pi\cdot equivalence$ , is the
concept of $\pi$-invariant topological Properties. We say that a topological Property
$P$ is $\pi$-invariant if it is a Property of all topological spaces of a $\pi$-equivalence
class, i.e., if $X$ and $Y$ are $\pi$-equivalent and if $X$ has the Property $P$, then Yhas
the Property $P$.

Clearly for any topological space $X,$ $X$ and $X^{n}$ are $\pi$-equivalent; the following
theorem shows that it is sufficient to test $\pi$-invariance for these typical pairs of
$\pi$-equivalent spaces.
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THEOREM 2.3. Let $P$ be a topological Property. The following two state-
ments are equivalent:

(i) $P$ is a $\pi$-invariant property.
(ii) For any topological $sPaceX,$ $X$ has $P$ if and only if its $T_{0}$ partition

$sPaceX^{\pi}$ has $P$.
PROOF. $(i)\Rightarrow(ii)$ . Trivial.
$(ii)\Rightarrow(i)$ . Let $X$ and $Y$ be two $\pi$-equivalent topological spaces. If $X$ has

the property $P$, by (ii), $X^{n}$ has also the property $P$. Since $P$ is a topological
property and $X^{n}$ and $Y^{\pi}$ are homeomorphic, $Y^{\pi}$ has the property $P$. By (ii)

again, $Y$ has the property $P$.
In $Th\ovalbox{\tt\small REJECT} rems2.1$ and 2.2, we have proved that two $\pi$-equivalent spaces are

lattice-equivalent as well as homotopically equivalent. The following theorem is
then obvious:

THEOREM 2.4. A topological property $P$ is a $\pi$-invariant property if it is a
lattice-invariant property or a homotopy property.

It has been proved in [20] and [23] that the following topological properties
are lattice-invariant:

Regularity, cmplete regularity, normality, compactness, local $compactness^{1)}$ ,
being $Lindel\dot{o}f$, second countability and connectedness.

It has also been proved in [20] and [23] that the following topological properties
are not lattice-invariant:

To, $T_{1}$ , $T_{2}$ , $T_{8}$ , Tychonoff, complete normality, being separable and first
countabihty.

Consequently we have
THEOREM 2.5. Regularity, complete regularity, normality, compactness, local

compactness, being Lindelof, second countability and connectedness are $\pi$-invariant
properties.

The folowing example shows that none of the properties To, $T_{1},$ $T_{2}$ and
Tychonoff is $\pi$-invariant.

Example. Let $I=[0,1]$ be the closed unit interval with the usual topology $\tau$ .
Then $I$ has the properties To, $T_{1},$ $T_{l},$ $T_{8}$ and Tychonoff. Let $\tau_{1}$ be the family
of $\tau\cdot open$ sets that contain 1. Consider the one point extension $X=I\cup\{\infty\}$ with
the topology $\tau^{*}=\{A\cup\{\infty\}:Ae\tau_{1}\}\cup(\tau\backslash \tau_{1})$ . In (X, $\tau^{*}$), any $neighbourh\ovalbox{\tt\small REJECT} d$ of 1
$\ovalbox{\tt\small REJECT} ntains\infty$ and any $neighbourh\ovalbox{\tt\small REJECT} d$ of $\infty$ contains 1. Therefore, (X, $\tau^{*}$) is a

1) Here, by a locally compact space, we mean a topological space in which every point
has a $neighbourh\ovalbox{\tt\small REJECT} d$ with compact closure.
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$non- T_{0}$ space, and hence does not have any of the Properties mentioned above.
But $I$ and $X$ are clearly $\pi$-equivalent.

We shall show that separability, complete normality, first countability and
pseudo-metrizability are all $\pi$-invariant Properties. We state first a simple
lemma:

LEMMA 2.6. Let $X$ be a topological $sPace,$ $X^{Z}$ its To partihon $sPace$ and $p$

the natural projection. Then for any subsets $A$ and $B$ of $X$.
(i) $p(A^{-})=p(A)^{-}$ , and

(ii) $p(A\cap B)=p(A)np(B)$ if one of $A$ and $B$ is $oPen$ or closed.
PROOF. (i) is an immediate consequence of the fact that $p$ is a continuous

and closed map. (ii) follows from the fact that for the open or closed set $A$ ,
$A=p^{-1}(p(A))$ .

THEOREM 2.7. The following topological properties are $\pi$-invariant:
(i) $SeParability$ ,

(ii) first countability,
(iii) $comPlete$ normality, and
(iv) pseudo-metrizability.
PROOF. Making use of Theorem 2.3, it is enough for us to $s$how that $X$

has a Property $P$ if and only if $X^{\pi}$ has the Property $P$.
(i) SuPpose $X$ is separable and $A$ a countable dense subset of $X$. Then

$p(A)^{-}=p(A^{-})=p(X)=X$, by Lemma 2.6, i.e., $P(A)$ is a countable dense set in $X^{\pi}$ .
Hence $X^{\pi}$ is separable. Conversely, let $S$ be a countable dense subset in $X^{\pi}$ .
Consider the disjoint family $\{p^{-1}(s) : seS\}$ of non-empty sets in $X$. By Axiom
of Choice, we have a subset $B$ in $X$ such that for each seS, $B\cap P^{-1}(s)$ is a
singleton. $B$ is obviously a countable $s$ubset of $X$. By Lemma 2.6, $p(B^{-})=p(B)^{-}=S^{-}$

$=X$. But $B^{-}$ is dosed. We have $B^{-}=p^{-1}(p(B^{-}))=p^{-1}(X^{\pi})=X$. Therefore $B$ is a
countable dense subset in $X$.

(ii) By direct verification, one can easily see that
(a) if $U_{1},$

$\cdots,$
$U_{n},$ $\cdots$ is a countable local base at $x$ in $X$ then $P(U_{1}),$ $\cdots,$ $P(U_{n})$ ,

. . . is a $\omega untable$ local base at $p(x)$ in $X$; and
(b) if $W_{1},$

$\cdots,$
$W_{n},$ $\cdots$ is a countable local base at $p(x)$ in $X$, then $P^{-1}(W_{1}),$ $\cdots$ ,

$p^{-1}(W_{n}),$ $\cdots$ is a $\omega untable$ local base at $x$ in $X$.
Clearly, from (a) and (b), (ii) follows.

(iii) It is known that a topological space $X$ is completely normal if and
only if, for any two sets $A$ and $B$ such that $ A\cap B^{-}=\phi$ and $ A^{-}\cap B=\phi$ , there exist
disioint open sets $U$ and $V$ in $X$ with $A\subset U$ and $B\subset V$ (See 11, p.61). Thus it is
enough to verify the following two statements:
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(a) For any two sets $A$ and $B$ in $X,$ $ A\cap B^{-}=\phi$ if and only if $ P(A)np(B)^{-}=\phi$ .
(b) For any two sets $A$ and $B$ in $X,$ $A$ and $B$ have disioint open neighbourhoods

if and only if $P(A)$ and $p(B)$ have disioint open $neighbourh\ovalbox{\tt\small REJECT} ds$ .
Proof of $(a)$ . It follows from Lemma 2.6 that

$p(A)np(B)^{-}=p(A)np(B^{-})=p(A\cap B^{-})$ .
Therefore

$ p(A)\cap p(B)^{-}=\phi$ ,

if and only if $ A\cap B^{-}=\phi$ .
Proof of $(b)$ . If $U,$ $V$ are disioint neighbourhoods of $p(A)$ and $p(B)$ , then $P^{-1}(U)$

and $p^{-1}(V)$ are disioint open $neighbourh\ovalbox{\tt\small REJECT} ds$ of $A$ and $B$. It remains to show
the converse. Let $G$ and $H$ be disjoint open neighbourhoods of $A$ and $B$ respec-
tively. Then $p(G)$ and $p(H)$ are open $neighMurh\ovalbox{\tt\small REJECT} ds$ of $A$ and $B$ respectively.
furthermore, by Lemma 2.6,

$ p(G)\cap p(H)=p(G\cap H)=p(\phi)=\phi$ .
(iv) It is well-known that a topological space $X$ is pseudo-metrizable if and

only if it possesses a a-locally finite basis. Therefore, it suffices to show that
for any topological space $X,$ $X$ possesses a a-locally finite basis if and only if
$X^{\pi}$ does. Under the lattice isomorphism between the topologies of $X$ and $X^{\pi}$

(induced by the natural proiection $p$), it is obvious that a family $\mathcal{B}$ of open
sets in $X$ forms a basis for $X$ if and only if the corresponding family $\mathcal{B}^{n}$

forms a basis for $X^{\pi}$ . So, what remains for us to show is that a family..$ $ of
open sets is locally finite in $X$ if and only if the corresponding family $\mathscr{A}^{\pi}$ is
locally finite in $X$. This follows from Lemma 2.6 (ii) immediately.

CHAPTER III. $t_{1}$ Spaces and $t_{2}$ Spaces

In the last section of the previous chapter, we have tested the $\pi$-invariance
of some well-known topological properties. Among those that are not $\pi$-invariant,

we find the so-called separation axioms, $T_{0},$
$\cdots,$

$T_{4}$ . This is not at all $t\ovalbox{\tt\small REJECT}$ sur-
prising, since we lump points together to $\omega nstructT_{0}$ partition spaces and the
To partition space usually satisfies stronger separation axiom than the original
space. On the other hand, most topological Properties are studied in coniunction
with some separation axioms, therefore the theory of partition spaces and in
particular the theory of $\pi$-invariance will be greatly enhanced if some sort of
$\pi$-invariant separation axioms can be formed which are closely related to the
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well-known separation axioms. To find these, we take a separation axiom $T_{i}$ ,
and $1\ovalbox{\tt\small REJECT} k$ for a necessary and sufficient condition $t_{i}$ that a topological space $X$

satisfies so that the $T_{0}$ Partition sPace $X^{X}$ satisfies $T_{i}$ . For $T_{0}$ no valuable result
can be obtained since $X^{\pi}$ always satisfies $T_{0}$ . In the sequel we shall do this for
$T_{1}$ and $T_{2}$ and treat $T_{8}$ and $T_{4}$ with $t_{1}$ and $t_{2}$ .
1. The separation Axioms $t_{1}$ and $t_{2}$ .

THEOREM 3.1. Let $X$ be a topological $sPace$ and $X^{\pi}$ its $T_{0}$ partition $sPace$ .
Then the followin$g$ statements are equivalent.

(i) $X^{\pi}$ is a $T_{1}sPace$ .
(ii) For all $x,$ $y$ in $X$ if $ x^{-}\cap y^{-}\neq\phi$ , then $x^{-}=y^{-}$ .
PROOF. $(i)\Rightarrow(ii)$ . By Lemma 2.6, we have

$p(x)^{-}\cap p(y)^{-}=p(x^{-})\cap p(y^{-})=p(x^{-}\cap y^{-})$ .
If $ x^{-}\cap y^{-}\neq\phi$ , then it follows that $ p(x)^{-}\cap p(y)^{-}\neq\phi$ . Since $X^{\pi}$ is a $T_{1}$ space, by
assumption, we get $p(x)=p(y)$ which is the case if and only if $x$ and $y$ belong
to the same closed sets of $X$. Therefore $x^{-}=y^{-}$ .

$(ii)\Rightarrow(i)$ . SuPpose $p(x)\neq p(y)$ in $X^{\pi}$ . Then $x\not\in y^{-}$ or $y\not\in x^{-};$ therefore $x\not\in y^{-}$

and $y\not\in x^{-}$ by the assumption (ii). Consider the open sets $U=X\backslash y^{-}$ and $V=X\backslash x^{-}$

of $X$. Then $P(U)$ is an open set which $\ovalbox{\tt\small REJECT} ntainsp(x)$ . But $p(U)np(y)=p(U\cap\{y\})=$

$ p(\phi)=\phi$ , therefore $p(U)$ is a $neighbourh\ovalbox{\tt\small REJECT} d$ of $p(x)$ in $X^{\pi}$ which does not $\ovalbox{\tt\small REJECT} ntain$

$p(y)$ . Similarly $p(V)$ is a neighbourhood of $p(y)$ in $X^{\pi}$ which does not contain
$p(x)$ . Therefore $X^{\pi}$ is a $T_{1}$ space.

The above theorem leads us to define the separation axiom $t_{1}$ as the $s$tate-
ment (ii) above. A topological space $X$ is $\ovalbox{\tt\small REJECT} nsequently$ called a $t_{1}sPace$ if it
satisfies the conditions of Theorem 3.1. Clearly $t_{1}$ is a $\pi$-invariant topological
Property. Moreover if $X$ is a $T_{1}$ space then $X$ is a $t_{1}$ space since $X^{\pi}=X$; there-
fore $t_{1}$ is a weaker separation axiom than $T_{1}$ .

THEOREM 3.2. Let $X$ be a topological $sPace$ and $X^{\pi}$ its $T_{0}$ partition $sPace$.
Then the following statements are equivalent:

(i) $X^{\pi}$ is a $T_{2}sPace$.
(ii) For all $x,$ $y$ in $X$ if $x^{-}\neq y^{-}$ , then $x$ and $y$ have disjoint neighbourhoods.
PROOF. $(i)\Rightarrow(ii)$ . SuPpose $X^{\pi}$ is a $T_{2}$ space and $x^{-}\neq y^{-}$ . Then by Lemma

2.6, $x^{-}=p^{-1}(p(x^{-}))=p^{-1}(p(x)^{-})=p^{-1}(p(x))$ and similarly $y^{-}=p^{-1}(p(y))$ . Therefore
$p(x)\neq p(y)$ . As $X^{n}$ is a $T_{2}$ space, $p(x)$ and $p(y)$ have disioint $neighbourh\ovalbox{\tt\small REJECT} ds$ in
$X^{X}$ . It follows from continuity of $p$ that $x$ and $y$ have disioint neighbourhoods
in $X$.
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$(ii)\Rightarrow(i)$ . SuPpose $p(x)\neq p(\gamma)$ in $X$ Then $x\not\in y^{-}$ or $y\not\in x^{-};$ hence $x^{-}\neq y^{-}$ .
By assumption, $x$ and $y$ have disioint open neighbourhoods $U$ and $V$ respectively.
On the other hand, $P(U\cap V)=p(U)np(V)$ , therefore $P(U)$ and $p(V)$ are disjoint
open neighbourhoods of $p(x)$ and $P(y)$ respectively.

The above $th\ovalbox{\tt\small REJECT} rem$ leads us to define the separation axiom $t_{2}$ as the state-
ment (ii) above. A topological space $X$ is called a $t_{2}sPace$ if it satisfies the
conditions of Theorem 3.2. Clearly $t_{2}$ is $\pi$-invariant topological Property. Moreover
if $X$ is a $T_{2}$ space, then $X$ is a $t_{2}$ space since $X^{\pi}=X$; therefore $t_{2}$ is a weaker
separation axiom than $T_{2}$ .

Remarks. The concept of $t_{2}$ space is implicit in a Paper by Dixmier [3].

There a point $x$ of a topological space is said to be separated if for each $y\not\in x^{-}$ ,
$x$ and $y$ have disioint neighbourhoods. It is easily seen that a topological space
$X$ is a $t_{2}$ space if every point of $X$ is separated.

The following theorem shows that, like their counterparts $T_{1}$ and $T_{2}$ , the
separation Properties $t_{1}$ and $t_{2}$ are hereditary, productive but not divisible.

THEOREM 3.3.
(i) Every subspace of a $t_{1}$ (respectively $t_{2}$ ) $sPace$ is a $t_{1}$ (respectively $t_{2}$ ) space.

(ii) The product of a family of $t_{1}$ (respectively $t_{2}$) spaces is a $t_{1}$ (respectively
$t_{2})$ space.

(iii) A quotient space of a $t_{1}$ (respectively $t_{2}$ ) space may not be a $t_{1}$ (respec-

tively $t_{2}$) space.
PROOF. (i) SuPpose $A$ is a subspace of a $t_{1}$ (respectively $t_{2}$) space $X$.

Then $A^{n}$ is homeomorphic to a subspace of $X^{\pi}$ which is a $T_{1}$ (respectively $T_{2}$)

space. Since $T_{1}$ (respectively $T_{2}$) is hereditary, $A^{\pi}$ is a $T_{1}$ (respectively $T_{2}$)

space. Therefore $A$ is a $t_{1}$ (respectively $t_{2}$ ) sPace.
(ii) Let $(X_{i})_{i\in I}$ be a family of spaces and $P$ the topological product of $X_{\ell}$ .

Then the To partition space $P^{\pi}$ is homeomorphic to the topological product of
the $T_{0}$ partition space $X_{i}^{\pi}$ , i.e., $(\Pi X_{i})^{\pi}\cong(\Pi X_{i}^{\pi})$ (This folows from the fact that
for every $xe\Pi X_{i},$ $x^{-}=\Pi\{x_{i}\}^{-}$). Using similar argument as in the proof of (i), we
easily prove (ii).

(iii) Let $X$ be the set of all real numbers with usual topology. Then $X$ is
a $t_{1}$ and $t_{2}$ space. Consider the decomposition $X=\{0\}\cup\{x;x>0\}\cup\{x:x<0\}$ . It
is then easily seen that the quotient space of $X$ corresponding to this decomposi-

tion is neither $t_{I}$ nor $t_{2}$ .
2. Relationship among the Separation Axioms.

In the sequel we shall use the following abbreviations:
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Ty: Tychonoff;
$R$ : regularity;
CR: $\ovalbox{\tt\small REJECT} mplete$ regularity; and
$N$ : normality.

We know from general theory of topology that

$\Downarrow T_{4}\Rightarrow Ty\Downarrow\Rightarrow\Downarrow T_{8}\Rightarrow T_{2}\Rightarrow,$

$T_{1}\Rightarrow T_{0}$

$N$ $CR\Rightarrow R$

and that the converses do not hold in general.
It follows from definitions that $t_{2}\Rightarrow t_{1}$ . But the converse of this implication

does not hold in general. For example if $X$ is an infinite set with $\ovalbox{\tt\small REJECT}- finite$

topology, then $X$ is a $t_{1}$ space but not a $t_{2}$ space. It is easy to show that
$R\rightarrow t_{2}$ . In fact if $X$ is a regular space and if $x^{-}\neq y^{-}$ in X. then either $y\not\in x^{-}$

or $x\not\in y^{-}$ . It then follows from regularity of $X$ that either $y$ and $x^{-}$ or $x$ and $y^{-}$

have disioint neighbourhoods. Therefore $X$ is a $t_{2}$ space. The diagram above
can now be extended to

$\Downarrow NT_{4}\Rightarrow CR\Rightarrow Ty^{\rightarrow}\Downarrow\approx\Downarrow RT_{8}\Rightarrow^{\Rightarrow}\Downarrow T_{2}t_{2}\Rightarrow\Rightarrow\Downarrow T_{1}t_{1}\Rightarrow T_{0}$

We wish now to consider $\ovalbox{\tt\small REJECT} nditions$ under which the vertical arrows can be
reversed. Recall that every $T_{0}$ space $X$ is identical with its $T_{0}$ partition space
X. Therefore it follows that $X$ is a $T_{1}$ (respectively $T_{2}$) space if and only if $X$

satisfies To and $t_{1}$ (respectively $t_{2}$). We remark that $t_{1}$ does not imply $T_{1}$ nor
does $t_{2}$ imply $T_{2}$ in general. To see this, it is sufficient to exhibit a $t_{2}$ space
which is not $T_{1}$ . Let $X=\dagger a,$ $b,$ $c$} and $\tau=\{\phi, X, \{a, b\}, \{c\}\}$ where $a,$

$b$ and $c$ are
distinct. Then $X$ satisfies $t_{2}$ but not $T_{1}$ .

It also follows from the above that a topological space $X$ is a $T_{8}$ (respectively
Tychonoff) space if and only if $X$ is a $T_{0}$ space and a regular (respectively $\ovalbox{\tt\small REJECT} m-$

pletely regular) space. If we recall that regularity and complete regularity are
$\pi$-invariant Properties, we see immediately that a necessary and sufficient con.
dition for $X^{\pi}$ to be $T_{8}$ (respectively Tychonoff) is that $X$ is regular (respectively
$\omega mpletely$ regular).

At this iuncture it seems natural to extend the above diagram by defining
a $t_{4}sPace$ to a normal space which satisfies $t_{1}$ . We claim that $t_{4}\Rightarrow CR$ . Sup-
pose $F$ is a closed subset of a $t_{4}$ space $X$ and $xeX\backslash F$. Then $x^{-}\neq y^{-}$ for every
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$yeF$ since $x\not\in y^{-}\subset F$. By the $s$eparation axiom $t_{1}$ we have $ x^{-}\cap y^{-}=\phi$ , and hence
$ x^{-}\cap F=\phi$ . $X$ being normal, there exists a real valued continuous function $f$

which separates $x^{-}$ and $F$, hence $x$ and $F$. Therefore $X$ is $\ovalbox{\tt\small REJECT} mpletely$ regular.
Finally for the sake of symmetry we may call any topological space a to

space. Summarizing, we have

$\Downarrow T_{4}\Rightarrow Ty\backslash \Downarrow\Rightarrow\Downarrow T_{8}\Rightarrow\Downarrow T_{2}\Rightarrow\Downarrow T_{1}\Rightarrow\Downarrow T_{0}$

$t_{4}\Rightarrow CR\Rightarrow R\Rightarrow t_{2}\Rightarrow t_{1}\Rightarrow t_{0}$

where the Properties at the bottom row are all $\pi$-invariant Properties and

(To and to ) $\Leftrightarrow T_{0}$

(To and $t_{1}$ ) $\Leftrightarrow T_{1}$

( $T_{0}$ and $t_{2}$ ) $\Leftrightarrow T_{2}$

(To and $R$ ) $\Leftrightarrow T_{8}$

( $T_{0}$ and $CR$) $\Leftrightarrow T_{4}$

(To and $t_{4}$ ) $\Leftrightarrow T_{4}$ .
We remark that although the definition of $t_{4}$ spaces may seem to be far

fetched at first sight, there is quite a large class of important $t_{4}$ spaces. For
example any regular space which satisfies the second axiom of countability or
has a $\sigma$-locally finite basis is a $t_{4}$ space, so is also any pseudo-metrizable space.
We shall see in the next section that any $\ovalbox{\tt\small REJECT} mpactt_{2}$ space is a $t_{4}$ space.

3. Applications.

We mentioned at the beginning of this chapter that since most topological
Properties are studied in coniunction with some separation axioms, it is most
desirable to have some sort of $\pi$-invariant $s$eparation axioms for the study of
$\pi$-invariant topological Properties. In the previous section, we have found some
of the $\pi$-invariant separation axioms, namely, $t_{0},$ $t_{1},$ $t_{2}$ . $R$ , CR and $t_{4}$ , correspond-
ing to which are the well-known topological separation axioms $T_{0},$ $T_{1},$ $T_{2},$ $T_{8}$ , Ty
and $T_{4}$ respectively. SuPpose for example all $T_{1}$ spaces have a $\pi$-invariant pro-
perty $P$. Then it would follow that all $t_{1}$ spaces have the same $\pi$-invariant
property $P$. In other words any theorem about $\pi$-invariant Properties of $T_{i}$

spaces can be readily generalized into a theorem about the same $\pi$-invariant
Properties on the larger class of all $h$ spaces. A slightly stronger Principle of
generalization is also true:

THEOREM 3.4. SuPpose $P$ and $Q$ are two $\pi$-invariant Properties. If the im-
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plication $P\Rightarrow Q$ is true for all $T_{\ell}sPaces(i=0,1,2)$ , then the $imPlication$ is also
true for all $t_{i}sPaces$ .

PROOF. Let $X$ be a $t_{i}$ space $s$ which has the Property $P$. Then $X^{\pi}$ also has
the Property $P$, since $P$ is $\pi\cdot invariant$ . By assumption the $T_{\ell}$ space $X^{\pi}$ has the
Property $Q$ Therefore $X$ also has $Q$ since $Q$ is $\pi$-invariant.

COROLLARY. If $P\Rightarrow Q$ is true for all $T_{1}$ or all $T_{2}sPaces$, then $P\Rightarrow Q$

is true for all regular $sPaces$ .
In the sequel we shall make use of Theorem 3.4 and its corollary to obtain

some non-trivial generalizations.

A. Compact, locally compact and supercompact spaces.

It is well-known that a $\ovalbox{\tt\small REJECT} mpact$ Hausdorff space is a $T_{4}$ space. Since $\ovalbox{\tt\small REJECT} m-$

pactness and normality are both $\pi$-invariant Properties, aPplying the $prInciple$

above we obtain:
THEOREM 3.5. A $comPactt_{2}sPace$ is a $t_{4}sPace$ , and consequently it is

normal and $comPletely$ regular.

In the literature one finds diverse definitions for locally compact space $X$

such as
[LCI] Every $xeX$ has a compact neighbourhood [11, $P$ . 661.
[LC21 Every $xeX$ has a neighbourhood with $\ovalbox{\tt\small REJECT} mpact$ closure [12, p. 611.
[LC3] Every $x\in X$ has a closed compact neighbourhood [91.

[LC4] Every $xeX$ has a compact local basis $[3|$ .
[LC5] Every $xeX$ has a closed compact local basis [9].

Among these statements, [LC51 is the strongest and [LC1] is the weakest.
For Hausdorff spaces it is known that $[LC1]\Rightarrow[LC5|$ and hence all five state-
ments are equivalent for Hausdorff spaces. We wish now aPply the principle
above to show

THEOREM 3.6. Statements [LCII, [LC21, [LC31, [LC41 and [LC51 are all
equivalent to each other for $t_{2}sPaces$.

PROOF. It is enough to show $[LC1]\Rightarrow[LC5]$ for $t_{2}$ spaces. By Theorem
3.4, it suffices to prove that [LCI] and [LC51 are $\pi$-invariant Properties. But this
follows from the lemma below:

LEMMA 3.7. Let $X/R$ be a partition $sPace$ of a topological $sPaceX$ and $p$ the
natural lrojection. Then a subset $K$ of $X$ is $comPact$ if and only if $P(K)$ is
$comPat$.

PROOF. It follows from continuity that if $K$ is compact, then $P(K)$ is com-
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pact. Conversely if $p(K)$ is compact and $\mathcal{G}$ is an open cover of $K$ in $X$, then
$\{P(G):Ge\mathcal{G}\}$ is an open cover of $p(K)$ in $X/R$ . Hence $p(K)$ has a finite sub-
cover say $\{p(G_{1}), \cdots, p(G_{n})\}$ . It follows from $G_{i}=p^{-1}(p(G_{\mathfrak{i}}))$ that $\{G_{1}, \cdots, G_{n}\}$ is
a finite cover of $K$.

In 1969, J. de Groot [7], defined supercompactness as follows:
A space is said to be $suPercompact$ if it possesses an $oPen$ subbase $S$ such
that each subcollection of $S$ covering the $sPace$ contains a Pair of sets which
together cover the $sPace$ .

A coniecture of de Groot that
Every $comPact$ metric $sPace$ is $suPercompact$

wa $s$ proved by J. L. O’Connor in 1970 [14]. It is natural to ask whether we can
have a similar theorem for pseudo-metric spaces, i.e., every compact pseudo-

metric space is supercompact. A natural way is to go through the $pr\ovalbox{\tt\small REJECT} f$ to see
whether it still works; but an easy application of Theorem 3.4 saves all the

tedious work. First of all the conjecture above can be rephrased as:
For any $T_{1}sPaceX$, if $X$ is Pseudo-metrizable and $comPact$ then $X$ is super-
$comPact$ .

It is known that pseudo-metrizability and compactness are $\pi$-invariant and it is
easy to verify that supercompactness is also $\pi$-invariant. Making use of Theorem
3.4 and the fact that any pseudo-metrizable space is a $t_{1}$ space, we obtain the
following theorem:

THEOREM 3.8. Every $comPact$ pseudo-metrizable $sPace$ is $suPercompact$.

B. Completely regular $8paces$ .
Let $X$ be a topological space. A base $\beta$ for closed subsets of $X$ is called

a normal base if the following conditions are satisfied.
(i) Finite unions and finite intersections of members of $\beta$ are still mem-

bers of $\beta$ .
(ii) For Be $\beta$ and $xeX\backslash B$ there is $ Ae\beta$ such that $xe$ $A$ and $ A\cap B=\phi$ .

(iii) For disjoint $A$ and $B$ in $\beta$ there are $C$, De $\beta$ such that $X\backslash C$ and $X\backslash D$

are disjoint neighbourhoods of $A$ and $B$.
A topological space is called semi-normal if it possesses a normal base. O. Frink
[5] proves that a $T_{1}$ space is completely regular if and only if it is semi-normal.
Since every completely regular space is $t_{1}$ and complete regularity is $\pi$-invariant.

THEOREM 3.9. A topological space is completely regular if and only if it is
semi-normal.
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will follow from
LEMMA 3.10. Every semi-normal $sPace$ is a $t_{1}sPace$ and semi-normality is

a $\pi$-invariant Propertv.

PROOF of Lemma. Let $X$ be a semi-normal space and let $\beta$ be a normal
base of X. Suppose $x^{-}\neq y^{-}$ in $X$. Then, either $x\not\in y^{-}$ or $y\not\in x^{-}$ . For the former
case $x\not\in y^{-}$ , we can find Be $\beta$ such that $y^{-}\subset B$ and $xeX\backslash B$ since $\beta$ is a base
for closed subsets in $X$. Using condition (ii) above we have $ Ae\beta$ such that
$xe$ $A$ and $ A\cap B=\phi$ . By condition (iii) we obtain disioint $neighburh\ovalbox{\tt\small REJECT} ds$ for $A$

and $B$ which are disioint neighbourhoods of $x$ and $y$ . Therefore $X$ is a $t_{2}$ and
hence a $t_{1}$ space.

For the second Part of the lemma, it is enough to $s$how that a topological
space $Y$ is semi-normal if and only if $Y^{\pi}$ is semi-normal. If $\beta$ is a normal
base of $Y$, then it is easy to verify directly that $\beta^{*}=\{p(B):Be\beta\}$ is a normal
base of $Y^{\pi}$ . Conversely for any normal base $\gamma$ of $Y^{\pi},\overline{\tau}=\{p^{-1}(C);Ce\gamma\}$

Remarks. We have shown in $Th\ovalbox{\tt\small REJECT} rem3.9$ that the $T_{1}$ condition from
O. Frink’s theorem can be removed. J. de Groot and J. M. Aarts [8] show that
the semi-ring condition (i) above can be removed while retaining the $T_{1}$ condi.
tion. E. F. Steiner [171 proves that a topological space is completely regular if
and only if it possesses a normal separating family of closed sets. E. F. Steiner
doubts of the possibility of modifying O. Frink’s $pr\ovalbox{\tt\small REJECT} f$ to cover all completely
regular spaces as what we have done here.

CHAPTER IV. COMPACTIFICATIONS

The compactifications yield useful results if a Hausdorff spaoe $X$ to be com-
pactified and its compactifications are Hausdorff spaces. In the sequel, we shall
relax this $\ovalbox{\tt\small REJECT} ndition$ and consider compactifications of $t_{2}$ spaces.

1. Aleksandrov CompactIfication.

Let $X$ be a topological space and $\hat{X}=X\cup\{\infty\}$ the Aleksandrov one point
compactification of $X$. It is well-known that

(a) $\hat{X}$ is a compact space,
(b) $X$ is an oPen subspace of the space $\hat{X}$ ,
(c) if $X$ is a $non-\ovalbox{\tt\small REJECT} mpact$ space, then $X$ is dense in $\hat{X}$ , and
(d) $\hat{X}$ is a Hausdorff space if and only if $X$ is a locally $\ovalbox{\tt\small REJECT} mpact$ Hausdorff

space.
We shall show that for $t_{2}$ spaces, a statement similar to (d) above holds.



PARTITION SPACES 25

THEOREM 4.1. A necessary and sufficient condition of the Aleksandrov one
point $comPactification\hat{X}$ of a topological sPace $X$ being $t_{2}$ is that $X$ is a locally
$comPactt_{2}sPace$ .

PROOF. Necessity: Since any subspace of a $t_{2}$ space is also $t_{2},$ $X$ is a $t_{2}$

space. $X$ is open in $\hat{X}$ which is a $t_{2}$ space, therefore, for every $xeX,$ $x$ and $\infty$

have disioint open neighbourhoods, $U$ and $V$ respectively. Now $X\backslash V$ contains
$U$ and is compact, therefore, it is a compact neighbourhood of $x$ in $X$

Sufficiency: For any $xeX$, let $C$ be a compact neighbourhood of $x$ in $X$.
By Theorem 3.6, we may assume that $C$ is a closed subset of $X$. Thus, $C$ and
$\hat{X}\backslash C$ are disioint $neighbourh\ovalbox{\tt\small REJECT} ds$ of $x$ and $\infty$ respectively. In other words, any
$xeX$ is strongly separated from $\infty$ in $\hat{X}$ . SuPpose $yeX$ has a $neighbourh\ovalbox{\tt\small REJECT} dU$

in $\hat{X}$ which does not contain $x$ . Then either $U$ or $U\backslash \{\infty\}$ is a $neighbourh\ovalbox{\tt\small REJECT} d$

in $X$ of $y$ which does not contain $x$ . Since $X$ is $t_{2},$ $x$ and $y$ have disioint neigh-
bourhoods in $X$. But these are aIso disioint neighbourhoods of $x$ and $y$ in $\hat{X}$ .
Therefore, $\hat{X}$ is a $t_{2}$ space.

2. Stone-Cech Compactifications of Completely Regular Spaces.

Let $X$ be a topological space. A $comPactification$ of $X$ is defined to be a
Pair $(f, Y)$ where $Y$ is a $\ovalbox{\tt\small REJECT} mpact$ toPological sPace and $f$ is a homeomorphism
of $X$ onto a dense subspace of $Y$. A compactification $(f, Y)$ is called Hausdorff
(respectively $t_{2}$) if and only if $Y$ is a Hausdorff (respectively $t_{2}$) space. It is
well-known that a topological space $X$ admits a Hausdorff compactification if
and only if it is a Tychonoff space. We show first that only completely regular
spaces can have a $t_{2}$-compactification.

LEMMA 4.2. If a topological $sPaceX$ has a $t_{2}\cdot comPactification$ , then $X$ is a
$comPletely$ regular sPace.

PROOF. Let $(f, Y)$ be a $t_{2}$-compactification of $X$. Then $Y$ is a compact $t_{2-}$

space and hence a completely regular space by Theorem 3.5. As $\ovalbox{\tt\small REJECT} mplete$

regularity is a hereditary Property, $f(X)$ and hence also $X$ are completely regular
spaces.

Our next problem is to show that every completely regular space admits a
$t_{2-}compactification$ which has similar features as those of the Stone-\v{C}ech compacti-
fications of Tychonoff spaces. It tums out that in relation to the separation
axioms, this compactification falls between $t_{2}$ and $T_{2}$ . This leads us to the fol-
lowing definition.

We say that a $t_{2}- compactification(f. Y)$ of a topological space $X$ is a $T_{2}/t_{2}$.
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compactificatiOn of $X$ if every point of $Y\backslash f(X)$ is a Hausdorff Point of $Y$, i.e.,

if every pair of points $t$ of $Y\backslash f(X)$ and $y$ of $Y$ have disioint neighbourhoods in
Y. We now $s$how that every completely regular space has a $T_{2}/t_{2-}compactifica$ .
tion. We recall that in the construction of the Stone- ece compactification of a
Tychonoff space $X$, the assumption that $X$ is a Hausdorff spaoe plays an im-
portant role in assuring that the family $F$ of $\omega ntinuous$ functions of $X$ into
$Q=[0,1]$ distinguishes points. This method no longer applies to the present case
of compactifying $t_{2}$ space$s$ ; but the forming of To partition spaces provides us a
convenient devise to overcome the difficulty.

THEOREM 4.3. Let $X$ be a $comPletely$ regular $sPace$ ; let $X^{\pi}$ be the To Parti-
tion $sPace$ of $X$ (note that $X^{\pi}$ is now a Tychonoff $sPace$) and $p;X\rightarrow X^{\pi}$ the natural
projection. If $(h, Y)$ is a Hausdorff $comPactification$ of the Tychonoff $sPaceX^{\pi}$ ,
then there exists a $T_{2}/t_{2-}comPactification(k, Z)$ of $X$ such that $Y$ is the $T_{0}$ parti-

tion $sPace$ of $Z$ and the diagram

$X^{\pi}\rightarrow Y=Z^{\pi}p\downarrow^{\rightarrow}\downarrow qx_{h}^{k}z$

is commutative where $q;Z\rightarrow Z^{\pi}$ is the natural projection.
PROOF. Let $Z$ be the disioint union of the set $X$ and the set $Y\backslash h(X^{\pi})$ and

define $q:Z\rightarrow Y$ by putting

$q(t)=\left\{\begin{array}{ll}h(P(t)) & if teX\\t & if teY\backslash h(X^{\pi}).\end{array}\right.$

Then $q$ is a suriective maPping of $Z$ onto Y. Let $Z$ be given the coarsest
topology so that $q$ is continuous, i.e., a subset $G$ of $Z$ is open if and only if
$G=q^{-1}(U)$ for some open set $U$ of $Y$ Then $Y$ is the To partitIon space of $Z$.
i.e., $Y=Z^{\pi}$ , and $q:Z\rightarrow Y$ is the natural Proiection. $Mor\ovalbox{\tt\small REJECT} ver$ , it follows that $Z$

is a compact $t_{2}$ space. We define now $k:X\rightarrow Z$ to be the inclusion mapping.
Then the diagram of the theorem is commutative, and it follows from Lemma
1.9 that $k$ is continuous. We shall now prove that $k$ is an imbedding. Let
$G$ be an open set of $X$. Since $p$ is open and $h$ is an imbedding, $q(k(G))=$

$h(P(G))$ is open in $h(X^{\pi})$ . Let $U$ be an open set of $Y$ so that $U\cap h(P(X))=q(k(G))$ .
By the $\ovalbox{\tt\small REJECT} mmutativity$ of the diagram, we have $U\subset q(k(X))=q(k(G))$ . It follows
from the definition of $q$ and $k$ and the assumption that $G$ is open in $X$ that
$k(G)=G=q^{-1}(q(G))=q^{-1}(q(k(G)))=q^{-1}(U\cap q(k(X)))=q^{-1}(U)\cap k(X)$ . But $q^{-1}(U)$ is ooen
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in $Z$, therefore $k(G)$ is open in $k(X)$ , and hence $k$ is an imbedding. We are now
going to prove that $k(X)$ is dense in $Z$. Let $U$ be a non-empty open set of $Z$.
Then $q(U)$ is a non-empty open set in Y. Since $h(P(X))$ is dense in $Y$, there is
$xeX$ such that $h(P(x))eq(U)$ . It follows from the commutativity of the diagram

that $q(k(x))\in q(U)$ . Since $Y$ is the $T_{0}$ partition of $Z$ and $q$ is the natural proiec-
tion, we have $U=\tau^{1}(q(U))$ . Therefore $k(x)eq^{-1}(q(k(x)))\subset U$ proving that $k(X)$ is
dense in $Z$. Thus, $(k, Z)$ is a $t_{2-}compactification$ of $X$. It remains now to prove
that the points of $Z\backslash k(X)$ are Hausdorff in $Z$. For any $teZ\backslash k(X)$ and any $zeZ$

distinct from $t$ , we have $q(t)\neq q(z)$ by the definition of $q$. Since $Y$ is Hausdorff,
$q(t)$ and $q(z)$ have in $Y$ disioint neighbourhoods which give rise to disioint neigh-
$bourh\ovalbox{\tt\small REJECT} ds$ of $t$ and $z$ in $Z$. Therefore $(k, Z)$ is a $T_{2}/t_{2-}compactification$ of $X$.
The proof is now complete.

Let us now look at some consequences of Theorem 4.3. Since every Tychonoff
space has a Hausdorff compactification, Theorem 4.3 together with Lemma 4.2
yield a characterization of completely regular topological spaces:

COROLLARY. A topological $sPaceX$ is homeomorphic to a subspace of a
$comPactt_{2}sPace$ if and only if $X$ is a $comPletely$ regular $sPace$ .

If, in the proof of Theorem 4.3, we make use of the Stone- ech compactifica-

tion $(e, \beta(X^{\pi}))$ of the Tychonoff space $X^{\pi}$ instead of an arbitrary Hausdorff com-
pactification $(h, Y)$ , then we obtain a unique $T_{2}/t_{2-}compactification(f, \gamma(X))$ of
the completely regular space $X$, such that the diagram

$X^{\pi}\rightarrow\beta(X^{\pi})=\gamma(X)^{\pi}p\downarrow_{e}\downarrow qX\rightarrow\gamma(X)f$

is commutative. Suppose the $\omega mpletely$ regular space $X$ is itself a Tychonoff
space, then $X^{\pi}=X$ and the construction yields $(f, \gamma(X))=(e, \beta(X))$ . Therefore it
is justified to define the $T_{2}/t_{2}$-compactification $(f, \gamma(X))$ of the completely regular

space $X$ as the Stone-\v{C}ech $comPactification$ of the $comPletely$ regular $sPaceX$.
Clearly this compactification has the property that $f(X)$ is dense in $\gamma(X)$ ; let us
now establish the other characterizing property of a Stone- ech compactification

which permits continuous extension of continuous functions. More precisely, we
prove:

THEOREM 4.4. Let $X$ be a $comPletetely$ regular $sPace$ and $(f, \gamma(X))$ the
Stone-\v{C}ech $comPactification$ of X. If $\varphi$ is a continuous function on $X$ to a com-



28 YIM-MING WONG

pact $t_{2}sPaceY$, then there exists a continuous function $\psi$ on $X^{\pi}$ to $Y$ such that
$\phi\circ f=\varphi$ .

PROOF. Consider the To partition spaces $X^{\pi}$ and $Y^{n}$ of $X$ and $Y$. By
Theorem 1.11, a unique continuous function $a:X^{\pi}\rightarrow Y^{\pi}$ exists such that the
diagram

$ X\rightarrow Y\varphi$

$ p\downarrow$ $\downarrow p^{\prime}$

$X^{\pi}\rightarrow^{\alpha}Y^{\pi}$

is $\omega mmutative$ where $p$ and $p^{\prime}$ are the natural Projections. Now $\alpha$ is a con-
tinuous function of the Tychonoff space $X^{\pi}$ into the compact Hausdorff space
$Y^{\pi}$ , therefore, by the well.known Property of Stone- ech compactification of
Tychonoff space$s$ , there exists a continuous function $\zeta$ : $\beta(X^{X})\rightarrow Y$’ such that
$\alpha=\zeta\circ e$ . Putting all these together we obtain a commutative diagram as follows:

$X$

$\gamma(X$

$q$

$\nearrow^{)fp})^{\backslash \varphi}$

$\nearrow^{X^{\pi}}c\backslash \alpha Y1^{p^{\prime}}$

$\gamma(X)^{\pi}=\beta(X^{\pi})Y^{\kappa}\overline{\zeta}$

Define now a function $\psi$ : $\gamma(x)\rightarrow Y$ by putting $\phi(x)=\varphi(x)$ if $xeX$ and $\psi(x)=y$

such that $P^{\prime}(y)=\zeta\circ q(x)$ if $x\not\in X$. Clearly $\psi\circ f=\varphi$ ; it remains to prove that $\psi$ is
continuous. By Lemma 1.9, it is sufficient to show that the following diagram
is commutative:

For $xe$ X. we get
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$\zeta\circ q(x)=\zeta\circ q\circ f(x)=\zeta\circ e\circ p(x)=a\circ p(x)=p^{\prime}\circ\varphi(x)=p^{\prime}\circ\phi(x)$ . On the other hand, if
$xe\gamma(X)\backslash X$, then $p^{\prime}\circ\psi(x)=\zeta\circ q(x)$ by definition of $\psi$ . Therefore $\zeta\circ q=p^{\prime}\circ\phi$ and the
proof is complete.

The above theorem can be rephrased as: every continuous function $\varphi$ on a
completely regular space $X$ into a compact $t_{2}$ space has a continuous extension
over the Stone- ech compactification $\gamma(X)$ .
3. Characterization of $\gamma(X)$ .

A relation is defined on the collection of all $\ovalbox{\tt\small REJECT} mpactifications$ of a topological
space $X$ by agreeing that $(f, Y)\geq(g, Z)$ if and only if there is a continuous map
$h$ of $Y$ into $Z$ such that $h\circ f=g$ :

$\int^{X}f\backslash g$

$YZ\overline{h}$

Equivalently $(f, Y)\geq(g, Z)$ if and only if the function $g\circ f^{-1}$ on $f(X)$ to $Z$ has a
continuous extension $h$ which carries $Y$ into $Z$. If the function $h$ can be taken
to be a homeomorphism, then $(f_{1}Y)$ and $(g, Z)$ are said to be topologically
equivalent. In this case both of the relations $(f. Y)\geq(g, Z)$ and $(g_{1}Z)\geq(f, Y)$

hold. It is well-known that (a) the collection of all compactifica tions of a
topological space is partially ordered by $\geq$ which is not necessarily anti-
symmetric and (b) if $(f, Y)$ and $(g, Z)$ are Hausdorff compactifications of a space
and $(f, Y)\geq(g, Z)\geq(f, Y)$ , then $(f, Y)$ and $(g, Z)$ are topologically equivalent.
Consequently, the $s_{tone-_{ech}}$ comPactificatioP $(e, \beta(X))$ of a Tychonoff space $\beta(X)$

is characterized by the extension property that evyry continuous function $f$ on
$X$ to a compact Hausdorff space can be extended continuously to $\beta(X)$ . We wish
to establish an analogous result that the $s_{tone-}C_{ech}$ compactification $(f, \gamma(X))$ of
a completely regular space is characterized by the extension property of Theorem
4.4.

In proving(b) mentioned above, one makes use of the fact that, for any
Hausdorff space $X$, the identity map of $X$ is the only continuous extension of
the inclusion map of a dense subspaceA into $X$. We now prove an analogous
lemma.

LEMMA 4.5. Let $X$ be a topological space and $A$ a dense subspace of $X$

such that the points of $X\backslash A$ are Hausdorff in X. The identity maP of $X$ is the
only continuous extension of the inclusion map of $A$ into $X$.
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PROOF. Let $j:A\rightarrow X$ be the inclusion map and let $f$ be a continuous ex-
tension of $i$ over $X$. We are going to show that $f$ is the identity map of $X$.
SuPpose there exists $xeX$ such that $f(x)\neq x$ . Then $x$ cannot belong to $A$ and
hence it is a Hausdorff point in X. $x$ and $f(x)$ therefore have disioint neighbour-

hoods. Since $A$ is dense in $X_{1}$ there is a net $N$ in $A$ such that $N\rightarrow x$. By
continuity of $f$ and $f|_{A}=i_{A}$ , we have $N=f\circ N\rightarrow f(x)$ , contradicting the fact that
$x$ and $f(x)$ have disioint neighbourhoods.

The $T_{2}/t_{2}$-version of proPerty (b) can be Proved.
COROLLARY 4.6. If $(f, Y)$ and $(g_{1}Z)$ are $T_{2}/t_{2-}compactification$ of a topo.

logical space $X$ and $(f, Y)\geq(g, Z)\geq(f_{1}Y)$ , then $(f, Y)$ and $(g, Z)$ are topologically
equivalent.

PROOF. If $(f, Y)$ and $(g, Z)$ and $T_{2}/t_{2}$-compactifications of $X$ each of which
follows the other relative to the ordering $\geq$ , then both $f\circ g^{-11)}$ and $g\circ f^{-1}$ have
continuous extensions $j$ and $k$ to all of $Z$ and $Y$ respectively. Since $k\circ j$ is the
identity map on the dense subset $g(X)$ of $Z$ and $Z$ is a compact $t_{2}$ space such
that points of $Z\backslash g(X)$ are Hausdorff, $k\circ j$ is the identity map of $Z$ onto itself.
Similarly $j\circ k$ is the identity map of $Y$ onto Y. Consequently $(f, Y)$ and $(g, Z)$

are topologically equivalent.

It follows now that (i) any $T_{2}/t_{2}$-compactification $(g, Z)$ of a completely regular

space $X$ is topologically equivalent to the Stone- ech $\ovalbox{\tt\small REJECT} mpactification(f_{1}\gamma(X))$ if
every continuous function of $X$ into a compact $t_{2}$ space $Y$ can be extended
continuously to $Z$ and (ii) the Stone. ech compactification $(f_{1}\gamma(X))$ is a maximal
$T_{2}/t_{2-}compactification$ of the $\ovalbox{\tt\small REJECT} mpletely$ regular space $X$.
4. $t_{2}$-compactiflcations.

Though the results of the previous section may not hold for the less re-
strictive collection of all $t_{2}$-compactifications of a completely regular space, some
interesting results are available. We first show that the $\ovalbox{\tt\small REJECT} nstruction$ of $t_{2}$-com-
pactifications is $\ovalbox{\tt\small REJECT} mpatible$ with the forming of To partition spaces.

LEMMA 4.7. Let $X$ be a completely regular space, and $(f, Y)$ a t2-compacti-

fication of X. Then $(f^{X}, Y^{X})$ is a Hausdorff compactification of the Tychonoff
space $X^{x}$ .

PROOF. Clearly we have a commutative diagram

1) Here and in the similar cases in the sequel, $g$ is regarded as a homeomorphism from
$X$ onto $g(X)$ . So $g^{-1}$ is defined on the subspace $g(X)$ of Y.
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$X\rightarrow Yf$

$X^{n}p\downarrow\rightarrow^{f^{\tau t}}Y^{\pi}\downarrow q$

where $Y^{\pi}$ is a compact Hausdorff space. Moreover, it follows from Theorem 1.12
that $f^{n}$ is an imbedding. It remains to prove that $f^{\pi}(X^{\pi})$ is dense in $Y^{\pi}$ . Now
let $U$ be a non-empty open set in $Y^{x}$ . Then $q^{-1}(U)$ is a non-empty open set of
Y. Since $f(X)$ is dense, there is an element $x$ of $X$ such that $f(x)e\tau^{1}(U)$ . Now
$f^{\pi}(p(x))=q(f(x))eU$ therefore $f^{\pi}(X^{\pi})$ is dense in $Y$, and the theorem is proved.

Next we prove that the forming of $T_{0}$ partition is an increasing maPping
relative to the partial ordering $\geq$ .

LEMMA 4.8. Let $X$ be a completely regular space and let $(f, Y)$ and $(g, Z)$

be two $t_{2}$ -compactifications of X. Then $(f, Y)\geq(g, Z)$ if and only if $(f^{n}, Y^{\pi})\geq$

$(g^{\pi}, Z^{\pi})$ .
PROOF. SuPpose $(f, Y)\geq(g, Z)$ and $h$ is a continuous map of $Y$ into $Z$ such

that $h\circ f=g$. Then it follows from the functorial Property of $\pi$ , that $h^{\pi}$ is a
$\omega ntinuous$ map of $Y^{\pi}$ into $Z^{\pi}$ such that $h^{\pi}\circ f^{\pi}=(h\circ f)^{\pi}=g^{\pi}$ . Therefore $(f^{\pi}, Y^{\pi})\geq$

$(g^{\pi}, Z^{\pi})$ . Conversely, suppose $(f^{\pi}, Y^{\pi})\geq(g^{\pi}, Z^{\pi})$ and $k$ is a continuous map of $Y^{\pi}$

onto $Z^{\pi}$ such that $k\circ f^{\pi}=g^{\pi}$ . Denoting by $p;Y\rightarrow Y^{\pi}$ and $q:Z\rightarrow Z^{\pi}$ the natural
Projections, we define a map $s$ of $Y$ into $Z$ by putting $s(f(x))=g(x)$ for every
$xeX$, and $s(y)=z$ where $q(z)=k(p(y))$ for $yeY\backslash f(X)$ . Then the diagram

$\nearrow_{s}^{X}f\backslash g$

$Y-Z$
$p|\underline{k}|(lY^{\pi}Z^{\pi}$

is commutative and hence $s$ is continuous by Lemma 1.9. Therefore $(f, Y)\geq(g, Z)$ .
COROLLARY 4.9. If $(f, Y)$ and $(g, Z)$ are $t_{2}$-compactifications of a topologi-

cal space $X$ and $(f, Y)\geq(g, Z)\geq(f, Y)$ , then there is a $\pi$-equivalence $s$ of $Y$ into
$Z$ (i.e. $s:Y\rightarrow Z$ is continuous and $s^{\pi}$ is a homeomorphism of $Y^{\pi}$ onto $Z^{\pi}$) such
that $s\circ f=g$.

PROOF. Notations are as in the proof of Lemma 4.8. It follows from
Lemma 4.8 that $(f^{\pi}, Y^{\pi})\geq(g^{\pi}, Z^{\pi})\geq(f^{\pi}, Y^{\pi})$ . Since these are Hausdorff compacti-
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fications of $X^{\pi}$ , we have a homeomorphism $k:Y^{\pi}\rightarrow Z^{\pi}$ such that $k\circ f^{\pi}=g^{n}$ .
Lifting $k$ to $s:Y\rightarrow Z$ as in the proof of Lemma 4.8, we obtain a $\pi$-equivalence
$s$ such that $s\circ f=g$.
5. Wallman-Frink Compactification.

Let $X$ be a $T_{1}$ space. Let $\mathscr{J}$ be the family of all closed subsets of $X$, and
let $W_{\mathcal{F}}(X)$ be the collection of all subfamilies $\mathscr{A}$ of $\mathscr{G}^{-}$ which possess the
finite intersection property and are maximal in $\mathscr{G}^{-}$ relative to this Property.

For each open subset $U$ of $X$, let $U^{*}=\{\mathscr{A}:\mathscr{A}eW_{F}(X)$ and $A\subset U$ for some
$A$ in $\mathscr{A}$ }. Give to the set $W_{F}(X)$ the topology with a base the family of all
sets of the form $U^{*}$ for $U$ open in $X$; then the topolgical space $W_{\mathcal{J}}(X)$ so ob.
tained is compact. Define a map $\varphi$ : $X\rightarrow Wy(X)$ by putting $\varphi(x)=\{A:Ae\mathscr{A}$

and $xeA$ }; then $\varphi$ is an imbedding, and $\varphi(X)$ is dense in $W_{F}(X)$ . The pair
$(\varphi, W_{F}(X))$ is called the Wallman compactification of $X$. It is known that

(a) if $X$ is a $T_{4}$ space, then $(\varphi, W_{F}(X))$ is a Hausdorff compactification;
and in this case, it is topologically equivalent to the Stone-Cech com-
pactification, and

(b) if $f$ is a bounded continuous real-valued function on $X$, then $f\circ\varphi^{-1}$ may
be extended continuously to all of $W_{F}(X)$ .

O. Frink [5] proved in 1964 the following $th\ovalbox{\tt\small REJECT} rem$ :
A $T_{1}$ space $X$ is a completely regular space if and only if it possesses a nor-
mal base $\mathcal{B}$ for closed sets (see Chapter III, \S 3B).

Using a normal base $\mathcal{B}$ for closed sets of a Tychonoff space $X$ instead of $\mathscr{G}^{-}$

in the above construction, he was able to obtain a Hausdorff compactification
$(\varphi, W_{\ovalbox{\tt\small REJECT}}(X))$ . This Wallman-Frink compactification has the Property (c): for any
continuous real-valued function $f$ on $X,$ $f\circ\varphi^{-1}$ can be extended continuously to
all of We(X) if and only if $f$ is $\mathcal{B}$ -uniformly continuous (see definition below).

In the sequel, we shall drop the separation axiom $T_{1}$ and establi$sh$ similar
results for $\ovalbox{\tt\small REJECT} mpletely$ regular spaces.

Let $X$ be a completely regular space and $\mathcal{B}$ a normal base for closed sets
of X. (By $Th\ovalbox{\tt\small REJECT} rem3.9,$ $\mathcal{B}$ exists). A real-valued function $f$ defined on $X$ is
said to be $\mathcal{B}$ -uniformly continuous if for any given $\delta>0$ there exists a finite
open cover of $X$ by $\mathcal{B}$ -complements (i.e., complements of members of $\mathcal{B}$ ) such
that for any $x,$ $y$ in one and the same member of this $\ovalbox{\tt\small REJECT} ver|f(x)-f(y)|<\delta$ .

THEOREM 4.12. Let $X$ be a completely regular $sPace$ and $\mathcal{B}$ a normal base
for closed sets of X. Let $C=tp(A)$ : A $e\mathcal{B}$ } be the corresponding normal base
for closed sets of $X^{\pi}$ . A real-valued function $f$ defined on $X$ is $\mathcal{B}$ -uniformly
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continuous if and only if $f^{\pi}$ is C-uniformly continuous.
PROOF. Since the real line $R$ is a $T_{2}$ space, we have $R^{\pi}=R$ and the

diagram

$\ovalbox{\tt\small REJECT} mmutes$ . If $f$ is $\mathcal{B}$ -uniformly continuous, then for given $\delta>0$ , there exists a
finite open $\ovalbox{\tt\small REJECT} ver\{G_{1}, \cdots, G_{n}\}$ of $\mathcal{B}$ -complements such that the oscillation of $f$

on each $G_{i}$ is less than $\delta$ . By the construction of $C$, and the suriectivity of $p$ ,
the family $\{p(G_{1}), \cdots, p(G_{n})\}$ is a finite open $\ovalbox{\tt\small REJECT} ver$ of $X$, and $p(G_{i})$ is $C-\ovalbox{\tt\small REJECT} m-$

plement for each $i$ . For $y_{1},$ $y_{2}$ in the same $p(G_{i})$ , let $x_{1},$ $x_{2}eX$ such that $p(x_{1})=y_{1}$

and $p(x_{2})=y_{2}$ . Then $|f^{\pi}(y_{1})-f^{\pi}(y_{2})|=|f(x_{1})-f(x_{2})|<\delta$ . This proves that $f^{\pi}$ is
C-uniformly continuous on $X$. The converse part can be proved similarly.

THEOREM 4.13. Let $X$ be a completely regular space. A real-valued func-
tion $f$ defined on $X$ can be extended continuously over a t2-compactification $Y$ of
$X$ if and only if $f^{\pi}$ can be extended continuously over $Y^{\pi}$ .

PROOF. Consider the following commutative diagram:

$X^{\pi}\rightarrow RX\rightarrow R\downarrow_{f^{t}},\downarrow f$

where $R$ is the real line. The theorem follows from $Th\ovalbox{\tt\small REJECT} rem1.15$ immediately.
O. Frink’s theorem [5], on extension of a real-valued function is as follows:
A real-valued function $f(x)$ defined over a semi-normal space $x$ with normal
space $X$ with normal base $Z$ can be extended to a real continuous function
over the compactificatiOn $W(Z)$ if and only if $f(x)$ is Z-uniformly continuous.

In the above statement, a semi-normal space means a $T_{1}$ space which has a
normal base. Therefore, equivalently, $X$ is a Tychonoff space. It follows from
Theorem 4.12 and Theorem 4.13 that we can relax the $T_{1}$ condition from O.
Frink’s theorem. Actually, as a consequence of Theorem 4.12, Theorem 4.13 and
O. Frink’s theorem mentioned above, we get the following theorem:

THEOREM 4.14. Let $X$ be a completely regular space and ta a normal base
in X. A real-valued function defined on $X$ can be extended to a continuous real-
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valued function over the Wallman-Frink compactification We $(X)$ if and only if $f$

is $\mathcal{B}$ -uniformly continuous on $X$.
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