A COUNTEREXAMPLE TO A GENERALIZED LOOP THEOREM

By
Wolfgang Heil

(Received May 6, 1971)

In 1960 J. Stallings proved a combined form of Dehn's lemma and the loop theorem [2]. He also gave a counterexample to the following.

Conjecture: If M is a compact 3-manifold and F a closed (tame) surface embedded in int M, such that $\operatorname{ker}\left(i_{*}: \pi_{1}(F) \rightarrow \pi_{1}(M)\right) \neq 1$ (where $i: F \rightarrow M$ denotes inclusion), then there exists a simple closed curve J on F such that $J \neq 1$ on F, and J bounds a non-singular disc D in M, with $D \cap F=\partial D=J$.

If F is two-sided in M, this conjecture is true [1]. In Stalling's counterexample F is a non-orientable closed surface in an orientable 3-manifold.

In 1969 Suzuki proved the following theorem:
If $F_{p, q}$ is an orientable surface of genus p with q boundary components embedded in int (M), such that $i_{*}: \pi_{1}\left(\right.$ int $\left.F_{p, q}\right) \rightarrow \pi_{1}\left(M-\partial F_{p, q}\right)$ is not an isomorphism (into), then there exists a simple closed curve J on $F_{p, q}, J \neq 1$ on $F_{p, q}$, and J bounds a non-singular disc D with int $D \subset M^{3}-F_{p, q}$.

We remark that this theorem is true if $F_{p, q}$ is 2 -sided embedded in M, ($F_{p, q}$ orientable or not), and give two counterexamples to the theorem if M is nonorientable.

1) $q=0, p=1$.

Let $M=P^{2} \times S^{1}$ (P^{2} is the projective plane). Let $\pi_{1}(M)=Z_{2}(\alpha) \times Z(\beta)$, where α is represented by a simple loop in P^{2} and β by a simple loop in S^{1}. Let $F_{1,0}=\alpha \times \beta$, a (one-sided) torus in M. Clearly $i_{*}: \pi_{1}\left(F_{1,0}\right) \rightarrow \pi_{1}(M)$ is not an isomorphism. If J is any closed curve on $F_{1,0}$ then $J \simeq m \alpha+n \beta,(m, n)=1$.

If J bounds a disc in M, then $n=0, m \equiv 0(\bmod 2)$. But if $m \neq 0$ then J can not be represented by a simple closed curve. Thus there exists no simple closed curve as in the theorem.
2) $q=2, p=0$.

Again, let $M=P^{9} \times S^{1}$. Let k be a simple arc in S^{1}. Let $F_{0,2}=\alpha \times k$, a (one-sided) annulus in M. Then $i_{*}: \pi_{1}\left(\operatorname{int} F_{0,2}\right) \rightarrow \pi_{1}\left(M-\partial F_{0,2}\right)$ is not an isomor-
phism, for if t is a simple closed curve on int $F_{0,2}$ that generates $\pi_{1}\left(\operatorname{int} F_{0,2}\right)$, we have that $i(t)$ lies on a projective plane in $M-\partial F_{0,2}$ and therefore $i_{*}\left(t^{2}\right)=1$.

If J is any simple closed curve on $F_{0,2}$ that is not $\simeq 1$ on $F_{0,2}$, we have $J \simeq \alpha$. But such a J can not bound any disc in M.

Remark. The second counterexample can clearly be modified by taking $M=P^{2} \times I$ and letting $F_{0,2}=\alpha \times I$.

REFERENCES

[1] S. Kinoshita, On Fox's property of a surface in a 3-manifold, Duke Math. J., Vol. 33 (1966), pp. 791-794.
[2] J. Stallings, On the loop theorem, Ann. of Math., 72 (1960), 12-19.
[3] S. Suzuki, Note on bounded surfaces in a 3-manifold, Yokohama Math. J. Vol. 17 (1969), pp. 93-98.

Florida State University
Tallahassee, Florida 32306
U.S.A.

