A COUNTEREXAMPLE TO A GENERALIZED LOOP THEOREM

By

WOLFGANG HEIL

(Received May 6, 1971)

In 1960 *J. Stallings* proved a combined form of *Dehn*'s lemma and the loop theorem [2]. He also gave a counterexample to the following.

Conjecture: If M is a compact 3-manifold and F a closed (tame) surface embedded in int M, such that $\ker(i_*: \pi_1(F) \rightarrow \pi_1(M)) \neq 1$ (where $i: F \rightarrow M$ denotes inclusion), then there exists a simple closed curve J on F such that $J \neq 1$ on F, and J bounds a non-singular disc D in M, with $D \cap F = \partial D = J$.

If F is two-sided in M, this conjecture is true [1]. In *Stalling*'s counterexample F is a non-orientable closed surface in an orientable 3-manifold.

In 1969 Suzuki proved the following theorem:

If $F_{p,q}$ is an orientable surface of genus p with q boundary components embedded in int (M), such that $i_*: \pi_1(\operatorname{int} F_{p,q}) \to \pi_1(M - \partial F_{p,q})$ is not an isomorphism (into), then there exists a simple closed curve J on $F_{p,q}$, $J \not\simeq 1$ on $F_{p,q}$, and Jbounds a non-singular disc D with $\operatorname{int} D \subset M^{\mathfrak{d}} - F_{p,q}$.

We remark that this theorem is true if $F_{p,q}$ is 2-sided embedded in M, $(F_{p,q}$ orientable or not), and give two counterexamples to the theorem if M is non-orientable.

1) q=0, p=1.

Let $M=P^2 \times S^1$ (P^2 is the projective plane). Let $\pi_1(M)=\mathbb{Z}_2(\alpha) \times \mathbb{Z}(\beta)$, where α is represented by a simple loop in P^2 and β by a simple loop in S^1 . Let $F_{1,0}=\alpha \times \beta$, a (one-sided) torus in M. Clearly $i_*: \pi_1(F_{1,0}) \to \pi_1(M)$ is not an isomorphism. If J is any closed curve on $F_{1,0}$ then $J \simeq m\alpha + n\beta$, (m, n) = 1.

If J bounds a disc in M, then n=0, $m\equiv 0 \pmod{2}$. But if $m\neq 0$ then J can not be represented by a simple closed curve. Thus there exists no simple closed curve as in the theorem.

2) q=2, p=0.

Again, let $M=P^{\circ}\times S^{1}$. Let k be a simple arc in S^{1} . Let $F_{0,2}=\alpha \times k$, a (one-sided) annulus in M. Then $i_{*}:\pi_{1}(\operatorname{int} F_{0,2})\to \pi_{1}(M-\partial F_{0,2})$ is not an isomor-

WOLFGANG HEIL

phism, for if t is a simple closed curve on $\inf F_{0,2}$ that generates $\pi_1(\inf F_{0,2})$, we have that i(t) lies on a projective plane in $M - \partial F_{0,2}$ and therefore $i_*(t^2) = 1$.

If J is any simple closed curve on $F_{0,2}$ that is not $\simeq 1$ on $F_{0,2}$, we have $J \simeq \alpha$. But such a J can not bound any disc in M.

Remark. The second counterexample can clearly be modified by taking $M=P^2 \times I$ and letting $F_{0,2}=\alpha \times I$.

REFERENCES

 S. Kinoshita, On Fox's property of a surface in a 3-manifold, Duke Math. J., Vol. 33 (1966), pp. 791-794.

[2] J. Stallings, On the loop theorem, Ann. of Math., 72 (1960), 12-19.

 [3] S. Suzuki, Note on bounded surfaces in a 3-manifold, Yokohama Math. J. Vol. 17 (1969), pp. 93-98.

> Florida State University Tallahassee, Florida 32306 U.S.A.

142