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1. Introduction. The purpose of this paper it to study point processes and
their random translations by a method which is a little different from those
already published (say Dobrushin [5], Goldman [8], and Stone [13]). It seems
that most of the published results on random translations of point processes are
those on the space $R^{d}$ or its subgroups. In this paper we consider point pro-
cesses on an arbitrary locally compact separable metric space $X$.

In Section 2 we introduce a metric into the class $S$ of all measures in the
space $X$, and define point processes and random measures as probability measures
in this metric space $S$ . If $X=R^{d}$ , then this definition $\ovalbox{\tt\small REJECT} incides$ essentially with
the usual definition by Ryll-Nardzewski [12]. The convergence of random meas-
ures and point processes is defined as the weak convergence of probability
measure on $S$ . In particular, if $X=R^{d}$ and the limiting point process is Poisson,

then our definition of convergence coincides with a definition in [5] and [13].

In Section 3, we prove two existence $th\ovalbox{\tt\small REJECT} rems$ for random measures and point
processes. Although theorems in these two sections are stated in terms of
generating functions and functionals, it seems that they are essentially included
in known results (see [9] and [10]). In Section 4 we define mixed Poisson process
generated by a random measure. These point processes are generalizations of
those considered in [5] and others. In Section 5 is treated random translations
of point processes, and it is shown that the limit of the random translations of
any point process, if exists, $\llcorner r_{must}$ be mixed Poisson. The convergence to a
Poisson process was treated in [5], [8] and [13], with some restrictions on the
initial point processes. We give a condition for the convergence to a Poisson
process without additional assumptions on the initial processes. In Section 6,

we study the structure of point processes which are invariant under a given
random translation, and prove a $th\ovalbox{\tt\small REJECT} rem$ which is essentially a strengthening
of results of [5] and [8].

2. Random measures and point processes. Let $X$ be a locally compact
separable metric space with a metric $d$. Let $C_{0}(X)$ denote the class of all con-



120 TOSHIO MORI

tinuous real functions $\varphi$ on $X$ such that supp $[\varphi]=\{x;\varphi(x)\neq 0\}$ is $\ovalbox{\tt\small REJECT} mpact$ . Let
$C_{0}^{+}(X)$ denote the subset of $C_{0}(X)$ consisting of all non-negative $\varphi eC_{0}(X)$ .

For $\varphi_{n},$ $n\geq 1$ , and $\varphi$ in $C_{0}(X),$
$\lim_{\rightarrow\infty}\varphi_{n}=\varphi$ means that the following two con-

ditions are satisfied: (i) there exists a $\ovalbox{\tt\small REJECT} mpact$ set $K\subset X$ such that supp $[\varphi_{n}]\subset K$,
$n\geq 1$ , and (ii) $\varphi_{f}$ converges to $\varphi$ uniformly on $K$. We can use Stone-Weierstrass
theorem to show the existence of the sequence $\{\alpha_{n}\},$ $\alpha_{n}\in C_{0}^{+}(X)$ having the
following property: for every $\varphi eC_{0}(X)$ there exists a sequence $\{\varphi_{n}\}$ , where $\varphi_{n}$

is a finite linear $\ovalbox{\tt\small REJECT} mbination$ of $\alpha_{k}$ , such that $\lim_{n\rightarrow\infty}\varphi_{n}=\varphi$ .
Let $\mathfrak{B}$ be the class of all Borel subsets of $X,$ $S$ the class of all measures on

$\mathfrak{B}$ , where we mean by a measure a non-negative countably additive set function
$\mu$ on $\mathfrak{B}$ such that $\mu(A)<\infty$ if $A$ is compact. For $\mu eS$ and a real measurable

function $\varphi$ on $X$, we write $(\varphi, \mu)=\int_{X}\varphi d\mu$ if the integral on the right exists.

Let $R^{\infty}$ denote the space of all sequences $\omega=(\omega_{1}, \omega_{2}, \cdots)$ of real numbers.

$\rho_{0}(\omega, \omega^{\prime})=\sum_{k=1}^{\infty}2^{-k}|\omega_{k}-\omega_{k}^{\prime}|(1+|\omega_{k}-\omega_{k}^{\prime}|)^{-1}$ defines a metric in $R^{\infty}$ . With this metric
$R^{\infty}$ is a complete separable metric space (see [11 p. 218). The classes of Borel
sets of $R^{d}$ and $R^{\infty}$ are denoted by $\Re^{d}$ and $\Re\infty$ respectively.

Let $\tau$ be a mapping from $S$ to $R^{\infty}$ defined by $\tau(\mu)=(\omega_{1}, \omega_{2}, \cdots),$ $\mu eS$,
$\omega_{i}=(\alpha_{i}, \mu)$ . Since $(\alpha_{i}, \mu)=(\alpha\iota, \nu),$ $i\geq 1$ , implies that $\mu=\nu,$ $\tau$ is one-to-one. Hence
$\rho(\mu, \nu)=\rho_{0}(\tau(\mu), \tau(\nu))$ defines a metric in $S$ . We write $\mu_{n}\rightarrow\mu w$ if $\rho(\mu_{n}, \mu)\rightarrow 0$ . Note
that $\mu_{n}\rightarrow\mu w$ if and only if $(\varphi, \mu_{n})\rightarrow(\varphi, \mu)$ for every $\varphi eC_{0}(X)$ .

Lemma 2.1. $\tau(S)$ is closed in $R^{\infty}$ , and $(S, \rho)$ is a complete separable metric
space.

Proof. If $\{\mu_{n}\},$ $\mu_{n}eS$ , is a Cauchy sequence, then so is $\{(\varphi, \mu_{n})\}$ for $\varphi eC_{0}(X)$ .
$I(\varphi)=\lim_{n\rightarrow\infty}(\varphi, \mu_{n})$ defines a positive linear functional $I$ on $C_{0}(X)$ . Hence there

exists a $\mu\in S$ such that $I(\varphi)=(\varphi, \mu),$ $\varphi eC_{0}(X)$ , and $\mu_{n}\rightarrow\mu w$ This proves that $S$ in
$\ovalbox{\tt\small REJECT} mplete$ and $\tau(S)$ is closed. $S$ is separable since $S$ is homeomorphic to $\tau(S)\subset R^{\infty}$ .

Let SA denote the class of all measures $\mu$ such that $\mu(A^{\iota})=0$ , where $A$ is a
closed subset of $S$ . Let $S^{p}$ denote the class of all measures $\mu eS$ such that $\mu(A)$

is a non-negative integer for every bounded set A $e\mathfrak{B}$ , where by a bounded set
we mean a set $A\subset X$ such that $\overline{A}$ is $\ovalbox{\tt\small REJECT} mpact$ .

Lemma 2.2. SA and $S^{p}$ are closed in $S$ .

Proof. It is easy to see that SA is closed. To prove that $S^{p}$ is closed we
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suppose $\mu_{n}eS^{p},$ $\mu_{n}\rightarrow\mu eSw$ If $Ae\mathfrak{B}$ is bounded and if $\mu(\partial A)=0$ , where $\partial A$ is
the boundary of $A$ , then by the same argument as in [1], p. 11, we see that
$\mu(A)=\lim_{n\rightarrow\infty}\mu_{n}(A)$ is a non-negative integer.

Let $K$ be compact, and let $ G.=ty;d(K, y)>\epsilon$}. Then $\partial G_{\epsilon}=\{y;d(K, y)=\epsilon\}$ ,

$K=\bigcap_{\delta<*}G_{\delta}$ and $G_{e}$ is represented as the disjoint union $G.=K\cup(\bigcup_{\delta<}\partial G_{\delta})$ . Hence there

exists a sequence $\delta_{m}$ such that $\delta_{m}\rightarrow 0,$ $\mu(\partial G_{\delta_{m}})=0,$ $m\geq 1$ . The relations $\mu(G_{\delta_{m}}\rangle$

$=\lim_{n\rightarrow\infty}\mu_{n}(G_{\delta_{m}})$ and $\mu(K)=\lim_{m\rightarrow\infty}\mu(G_{\delta_{m}})$ imply that $\mu(K)$ is an integer.

If $A$ is any bounded Borel set, then by the regularity of Borel measures in
a metric space, $\mu(A)=\sup$ {$\mu(K);K\subset A,$ $K$ is $\ovalbox{\tt\small REJECT} mpact$} is an integer. This proves
the lemma.

The following lemma is a slight modification of a well-known result and
will be proved easily.

Lemma 2.3. Suppose a class $\mathfrak{C}$ of subsets of an arbitrary metric space $X$

satisfies: (i) every compact set is in $\mathfrak{C}$ , (ii) if $A$ and $B$ are bounded sets in $\mathfrak{C}$ and
if $A\subset B$, then $B\cap A^{c}e\mathfrak{C}$ , (iii) if $A$ and $B$ are disjoint bounded sets in $\mathfrak{C}$ , then
$A\cup Be\mathfrak{C}$ , (iv) if $\{A_{n}\}$ is an increasing sequence of bounded sets in $\mathfrak{C}$ , and if
$A=\bigcup_{n}A_{n}$ is bounded, then $Ae\mathfrak{C}$ . Then $\mathfrak{C}$ contains all bounded Borel sets.

Lemma 2.4. Let $\mathfrak{U}$ be the class of all Borel subsets of S. For any non-
negative B-measurable real function $\varphi$ on $X$, the mapping $\mu\rightarrow(\varphi, \mu)$ from $S$ to the
closed half line $[0, \infty]$ is $\mathfrak{U}$-measurable. In particular, for any A $e\mathfrak{B}$ , the mapping
$\mu\rightarrow\mu(A)$ from $S$ to $[0, \infty]$ is $\mathfrak{U}$-measurable.

Proof. Let $\mathfrak{C}$ be the class of sets $Ae\mathfrak{B}$ such that the mapping $\mu\rightarrow\mu(A)$ is
$\mathfrak{U}$-measurable. If $K$ is compact, then $Ke\mathfrak{C}$ . In fact, there exists a sequence
$\{\varphi_{n}\},$ $\varphi_{n}eC_{0}^{+}(X)$ such that $0\leq\varphi_{n}(x)\leq 1,\lim_{n\rightarrow\infty}\varphi_{n}(x)=x_{K}(x)$ where $\chi_{K}$ is the indicator

function of the set $K$. Then for $\mu eS,$ $\lim_{n\rightarrow\infty}(\varphi_{n}, \mu)=\mu(K)$ . The mapping $\mu\rightarrow(\varphi_{n}, \mu)$

are continuous. Hence $\mu\rightarrow\mu(K)$ is measurable. The remaining $\ovalbox{\tt\small REJECT} nditions$ of
Lemma 2.3 are easily verified for $\mathfrak{C}$ , and therefore $\mathfrak{C}$ contains every bounded
Borel set. Since every $A$ $e\mathfrak{B}$ is the limit of an increasing sequence of bounded
Borel sets, $\mathfrak{B}=\mathfrak{C}$ . This proves the last half of the lemma. The first half is a
consequence of the application of a standard argument to the last half.

Remark. Let $\mathfrak{C}$ be a class of subsets of $X$ which is closed under the for.
mation of finite intersections, and assume that $\mathfrak{C}$ generates the $\sigma- field\mathfrak{B}$ . For
instance the class of all compact sets satisfies these conditions since $X$ is separable.



122 TOSHIO MORI

Then the argument similar to the preceding proof shows that $\mathfrak{U}$ is the smallest
a-field with respect to which all mappings $\mu\rightarrow\mu(A),$ $A$ $e\mathfrak{C}$ are measurable.

Definition 2.1. A random measure $P$ on $X$ is a probability measure on $\mathfrak{U}$ .
A point process $P$ on $X$ is a random measure on $X$ such that $P(S^{p})=1$ .

Deflnition 2.2. We say a sequence of random measures $\{P_{n}\}$ on $X$ converges
to a random measure $P$, and write $P_{n}\supset P$, if probability measures $P_{n}$ converges

weakly to P. $i.e.,$ $\int_{s}fdP_{n}\rightarrow\int_{s}fdP$ for every bounded continuous real fuuction $f$

on $S$ .
The following two lemmas are the uniqueness theorem and the continuity

theorem of Laplace transforms in higher dimensions. In the one-dimensional
case these lemmas are well-known (see [7]). The general case can be proved by
reducing it to the one-dimensional case.

Lemma 2.5. Let $p$ and $q$ be two probability measures in $R^{k+}$ . If

(2.1) $\int_{R^{k+}}e^{-(\ell.x)}p(dx)=\int_{R^{k+}}e^{-(\ell.x)}q(dx)$ , $teR^{k+}$ ,

where $(t, x)=t_{1}x_{1}+\cdots+t_{kXk},$ $R^{k+}$ is the positive octant $\{(x_{1}, \cdots, x_{k});x_{i}\geq 0\}$ of $R^{k}$ ,
then $p=q$ .

Lemma 2.6. Let $tp_{n}$} be a sequence of probability measures in $R^{k+}$ . If

(2.2) $l(t)=\lim_{n\rightarrow\infty}\int_{R^{k+}}e^{-(t.x)}p_{n}(dx)$ , $teR^{k+}$ ,

exists, and if $\lim_{t\rightarrow+0}l(t)=1$ , then $p_{n}$ converges weakly to a probability measure $p$ in
$R^{k+}$ , and

$l(t)=\int_{R^{k+}}e^{-(t.x)}p(dx)$ .

Remark. These two lemmas are valid if (2.1) and (2.2) hold for $t$ in a
$neighborh\ovalbox{\tt\small REJECT} d$ of the origin.

Theorem 2.1. For a random measure $P$ on $X$, define a functional $l($ . ; $P)$ on
the class of all non.negative measurable functions $\varphi$ on $X$ by

(2.3) $l(\varphi;P)=\int_{S}e^{-(\varphi.\mu)}P(d\mu)$ .

If $P$ and $Q$ are two random measures on $X$ such that
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(2.4) $l(\varphi;P)=l(\varphi;Q)$ . $\varphi eC_{0}^{+}(X)$ ,

then $P=Q$ .
Proof. Let $\varphi=\sum_{i=1}^{k}t_{i}a_{i}$ , $t_{i}\geq 0$ . Then by Lemma 2.5, $P\tau^{-1}\pi_{k}^{-1}=Q\tau^{-1}\pi_{k}^{-1},$ $k\geq 1$ ,

where $\pi_{k}$ is the natural projection from $R^{\infty}$ to $R^{k}$ defined by $\pi k(\omega)=(\omega_{1}, \cdots, \omega_{k})$ .
This implies $P\tau^{-1}=Q\tau^{-1}$ , and therefore $P=Q$ ([1] p. 19, p. 39).

Theorem 2.2. Let $P_{n}$ be random measures on X. If $P_{n}$ converges to a
random measure $P$ on $X$, then

(2.5) $\lim_{n\rightarrow\infty}l(\varphi;P_{n})=l(\varphi;P)$ , $\varphi eC_{0}^{+}(X)$ .
Conversely if
(2.6) $l(\varphi)=\lim_{n\rightarrow\infty}l(\varphi;P_{n})$ ,

exists for everv $\varphi eC_{0}^{+}(X)$ and if $\lim_{t\rightarrow+0}l(t\varphi)=1$ , then there exists a unique random

measure $P$ on $X$ such that $P_{n}\Rightarrow P$ and $l(\varphi;P)=l(\varphi)$ .
Proof. The first half is obvious, since for $\varphi\in C_{0}^{+}(X)$ the function $\mu\rightarrow e^{-(\varphi.\mu\}}$

is bounded and continuous on $S$ . Let us prove the second half. Let $t=(t_{1},$ $\cdots$ ,
$t_{k})eR^{k+}$ . By the assumption we have $\lim_{t\rightarrow 0}l(t_{1}\alpha_{1}+\cdots+t_{k}\alpha_{k})=1$ . It follows from

Lemma 2.6 that for each $k$ the probability measures $P_{n}\tau^{-1}\pi_{k}^{-1}$ on $R^{k}$ converges
weakly to a probability measure, and therefore there exists a probability measure
$P^{\prime}$ on $R^{\infty}$ such that $P_{n}\tau^{-1}\supset P^{\prime}$ ([1] p. 19). Since $\tau(S)$ is closed in $R^{\infty},$ $ P^{\prime}\tau(S)\geq$

$\lim_{n\rightarrow}\sup_{\infty}P_{n}\tau^{-1}(\tau(S))=\lim_{n\rightarrow}\sup_{\infty}P_{n}(S)=1$ . Thus $P^{\prime}\tau(S)=1$ , and $ P=P^{\prime}\tau$ is a random

measure on $X$. If $f$ is a bounded continuous real function on $S$ , then so is the
function $f\tau^{-1}$ on the closed set $\tau(S)$ . By Tietze’s theorem ([11] p. 242) there
exists a bounded continuous extension $g$ of $f\tau^{-1}$ to $R^{\infty}$ , and we have

$\lim_{n\rightarrow\infty}\int_{s}fdP_{n}=\lim_{n\rightarrow\infty}\int_{R^{\infty}}gdP_{n}\tau^{-1}=\int_{R^{\infty}}gdP^{\prime}=\int_{s}fdP$ .

This proves $P_{n}\supset P$.
Remark. By the remark following Lemma 2.6, Theorem 2.1 and the last

half of Theorem 2.2 are valid if (2.5) and (2.6) hold only for $\varphi eC_{0}^{+}(X)$ such that
$0\leq\varphi<1$ .

3. Existence theorems. In this section we state and prove two theorems
which assert the existence of random measures and point processes. These
theorems seem to be included in recent results of Harris [9] and [10].
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Lemma 3.1. If $X$ is a separable metric space, then for every $\delta>0$ there is a
finite or infinite sequence $\{x_{n}\},$ $x_{n}eX$, such that (i) $d(x_{m}, x_{n})>\delta/2$ if $m\neq n$ , and
(ii) $\bigcup_{n}S(x_{n}, \delta)=X$, where $S(x, \delta)=\{y;d(x, y)<\delta\}$ .

Proof. Let $\{y_{k}\}$ be a countable dense subset of $X$, and let $x_{1}=y_{1}$ . Suppose

$Xj,$ $j<n$ , have been chosen, and let $x_{n}$ be the first $y_{k}$ such that $y_{k}\not\in\bigcup_{j=1}^{\iota-1}S(Xj, \delta/2)$ .
It is easy to see that the sequence $\{x_{n}\}$ has the stated properties.

Theorem 3.1. Assume that for each $n\geq 1$ , disjoint bounded sets $A_{i}eB$ , and
$t_{i}\geq 0,1\leq i\leq n$ , there corresponds a real $L(t_{1}, \cdots, t_{n} ; A_{1}, \cdots, A_{n})$ satisfying the
following properties:

(i) for each family of disjoint bounded $A_{i}eB,$ $1\leq i\leq n,$ $L(\cdot, \cdots, \cdot ; A_{1}, \cdots, A_{n})$

is the Laplace transform of a probability distribution on $R^{n+}$ ,

\langle ii) if $(i_{1}, \cdots, i_{n})$ is a permutation of $(1, \cdots, n)$ , then

$L(t_{i_{1}}, \cdots, t_{i_{n}}; A_{i_{1}}, \cdots, A_{i_{n}})=L(t_{1}, \cdots, t_{n};A_{1}, \cdots, A_{n})$ ,

(iii) $L(t_{1}, \cdots, t_{n}, 0;A_{1}, \cdots, A_{n}, A_{n+1})=L(t_{1}, \cdots, t_{n}; A_{1}, \cdots, A_{n})$ ,

(iv) $L(t_{1}, \cdots, t_{n-1}, t_{n}, t_{n}; A_{1}, \cdots, A_{n-1}, A_{n}, A_{n+1})$

$=L(t_{1}, \cdots, t_{n-1}, t_{n} ; A_{1}, \cdots, A_{n-1}, A_{n}\cup A_{n+1})$ ,

(v) if $A_{1}\supset A_{2}\supset\cdots,$
$\bigcap_{n}A_{n}=\phi$ , then $\lim_{n\rightarrow\infty}L(t;A_{n})=1$ for $t\geq 0$ .

Then there exists a unique random measure $P$ on $X$ such that

(3.1) $\int_{s}$ exp $[-\sum_{j=1}t_{j}\mu(AJ)]dP=L(t_{1}, \cdots, t_{n} ; A_{1}, \cdots, A_{n})$ ,

for each $n\geq 1$ , disjoint bounded $A_{i}e\mathfrak{B},$ $t_{i}\geq 0,1\leq i\leq n$ .
Proof. First let us prove the following inequality:

(3.2) $|L(t_{1}, \cdots, t_{\ell} ; A_{1}, \cdots, A_{\ell})-L(t_{1}^{\prime}, \cdots, t_{m}^{\prime} ; A_{1}^{\prime}, \cdots, A_{m}^{\prime})|\leq 1-L(\epsilon;A)$ ,

where $\{A_{1}, \cdots, A_{\ell}\}$ and $\{A_{1}^{\prime}, \cdots, A_{m}^{\prime}\},$ $A_{i}e\mathfrak{B},$ $A_{j}^{\prime}e\mathfrak{B},$ $A_{i}\cap A_{j}=\phi,$ $ A_{i}^{\prime}\cap A_{j}^{\prime}=\phi$ if

$i\neq j,\bigcup_{i=1}^{l}A_{i}=\bigcup_{j=1}^{m}A_{j}^{\prime}=A$ , are two partitions of a bounded set A $eB$, and $t_{i},$ $t_{j}^{\prime}\geq 0$ ,

$|t_{i}-t_{j}^{\prime}|<\epsilon$ if $A_{i}\cap A_{j}^{\prime}\neq\phi,$ $1\leq i\leq l,$ $1\leq j\leq m$ . In fact, let $A_{1}^{\prime\prime},$

$\cdots,$
$A_{n}^{\prime\prime}$ be an enume-

ration of non-void $A_{i}\cap A_{j}^{\prime}$ , and let $u_{k}=t_{i},$ $u_{k}^{\prime}=t_{j}^{\prime}$ if $A_{k}^{\prime\prime}=A_{i}\cap A_{j}^{\prime}$ . Then $|u_{k}-u_{k}^{\prime}|<\epsilon$ ,
$1\leq k\leq n$ . If $\xi_{1},$

$\cdots,$
$\xi_{n},$ $\xi_{k}\geq 0$ , are random variables on a probability space, whose

joint Laplace transform is $L(t_{1}, \cdots, t_{n} ; A_{1}^{\prime\prime}, \cdots, A_{n}^{\prime\prime})$ , then by (iv) the random
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variable $\sum_{k=1}^{n}\xi_{k}$ has the Laplace transform $L(t;A)$ . It follows from (iii) and (iv)

that the left hand side of (3.2) is equal to
$|L(u_{1}, \cdots, u_{n} ; A_{1}^{\prime\prime}, \cdots, A_{n}^{\prime\prime})-L(u_{1}^{\prime}, \cdots, u_{n}^{\prime} ; A_{1}^{\prime\prime}, \cdots, A_{n}^{\prime\prime})|$

$=|E[\exp(-\sum_{k=1}u_{k}\xi_{k})-\exp(-\sum_{k=\downarrow}^{n}u_{k}^{\prime}\xi_{k})]|$ ,

which is dominated by $E[1-\exp(-\sum_{k=1}^{n}|u_{k}-u_{k}^{\prime}|\xi_{k})]=1-L(\epsilon;A)$ .
By Lemma 3.1, we can find for each fixed $n$ a $\omega untable$ discrete subset

$C_{n}=\{x_{nk} ; k\geq 1\}$ of $X$ such that $\bigcup_{k}S(x_{nk} ; n^{-1})=X$. Let $A_{nk}^{\prime}=S(x_{nk} ; n^{-1})\cap(\bigcup_{j=1}^{k-1}S(x_{nk}$ ;

$n^{-1}))^{\iota}$ , and let $A_{nk}=A_{nk}^{\prime}$ if $A_{nk}^{\prime}$ is bounded, and $ A_{nk}=\phi$ otherwise. For each
$k\geq 1$ , the Laplace transform $L(t_{1}, \cdots, t_{k} ; A_{n1}, \cdots, A_{nk})$ determines a unique pro-
bability measure $p_{nk}$ on $R^{k+}$ . It follows from (ii) and (iii) that the probability
measures $p_{nk},$ $k=1,2,$ $\cdots$ , are consistent, and therefore there exists a unique
probability measure $P_{n}^{\prime}$ on $R^{\infty+}$ such that $P_{n}^{\prime}\pi_{k}^{-1}=p_{nk}$ . Let $\sigma_{n}$ be the mapping
from $R^{\infty+}toS_{C_{n}}$ defined by $\sigma_{n}(\omega)=\mu$ if $\mu(\{x_{ni}\})=\omega_{i}$ . It is easy to see that $P_{n}=P_{n}^{\prime}\sigma_{n}^{-1}$

is a probability on $\mathfrak{B}$ such that $P_{n}(S_{C_{n}})=1$ .
We shall now prove that $P_{n}$ converges to a random measure on $X$. If

$\varphi eC_{0}^{+}(X)$ , then there exists a bounded open set $U$ such that $U\supset supp[\varphi]$ . Let
$ n>2/\delta$ be fixed for a moment, where $\delta=d(supp[\varphi], U^{c})$ . It is easy to see that
except for a finite number of $j,$ $A_{nj}$ does not meet with supp $[\varphi]$ , and if
$ A_{nj}^{\prime}\cap supp[\varphi]\neq\phi$ , then $A_{nj}^{\prime}$ is bounded, $i.e.,$ $A_{nj}=A_{n_{j}}^{\prime}$ and $A_{nj}\subset U$. Let $B_{n_{1}},$ $\cdots$ ,
$B_{nl}$ , where $l$ depends on $n$ , be an enumeration of $A_{nj},$ $j\geq 1$ , such that $A_{nj}\cap supp[\varphi]$

$\neq\phi$ , and let $y_{ni}=x_{nj}$ if $B_{ni}=A_{nj}$ . Then supp $[\varphi]\subset\bigcup_{i=1}^{\ell}B_{ni}\subset K$, where $K=\overline{U}$ is a

compact set independent of $n$ .

(3.3) $\int_{s}e^{-(\varphi,\mu)}P_{n}(d\mu)=L(\varphi(y_{n1}), \cdots, \varphi(y_{nl}), 0;B_{n1}, \cdots, B_{nl}, K\cap(\bigcup_{j=1}^{l}B_{ni})^{\iota})$ .

For any $\epsilon>0$ there exists $ n>2/\delta$ such that $d(x,y)<1/n$ implies $|\varphi(x)-\varphi(y)|<\epsilon$ .
If $m>n$ , then by (3.2) and (3.3) $|\int_{s}e^{-(\varphi.\mu)}dP_{n}-\int_{s}e^{-(\varphi.\mu)}dP_{m}|$ is dominated by

$1-L(\epsilon;K)$ which tends to $0$ with $\epsilon$ . Hence $l(\varphi)=\lim_{n}l(\varphi;P_{n})$ exists for every

$\varphi eC_{0}^{+}(X)$ . Since

$l(t\varphi;P_{n})=L(t\varphi(y_{n1}), \cdots, t\varphi(y_{nl}), 0;B_{n1}, \cdots, B_{nl}, K\cap(\bigcup_{t=\iota}^{i}B_{ni})^{\iota})$

$\geq L(t\cdot\sup_{x\in X}\varphi(x);K)$ , $n\geq 1$ ,
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we have $\lim_{t\rightarrow+0}l(t\varphi)=1$ . It follows from Theorem 2.2 that there exists a random

measure $P$ on $X$ such that $P_{n}=P,$ $l(\varphi;P)=l(\varphi)$ .
It remains to prove that $P$ satisfies (3.1). Let $K_{1},$ $\cdots,$

$K_{n}$ be disjoint $\ovalbox{\tt\small REJECT} mpact$

subsets of $X$. Then for each $j\geq 1$ , there exists disjoint bounded open sets $G_{ij}$ ,
$1\leq i\leq n$ , such that $G_{ij}\supset K_{i},$ $1\leq i\leq n$ , and $G_{i1}\supset G_{i2}\supset\cdots,$

$\bigcap_{j}G_{ij}=K_{i}$ . Let $\varphi_{ij}eC_{0}^{+}(X)$ ,

$1\leq i\leq n,$ $j\geq 1$ , be such that $0\leq\varphi_{ij}(x)\leq 1,$ $\varphi \mathfrak{i}j(x)=0$ if $x\not\in G_{ij},$ $\varphi_{ij}(x)=1$ if $ xeK\ell$ .
Clearly $\lim_{j\rightarrow\infty}\varphi_{ij}(x)=\chi_{K_{i}}(x)$ . It follows from bounded convergence theorem and

from (v) that

$\int_{s}$ exp $[-\sum_{=\perp}^{n}t_{i}\mu(K_{1})]P(d\mu)=\lim_{j\rightarrow\infty}\int_{s}$ exp $[-(\sum_{i=1}^{n}t_{i}\varphi_{ij}, \mu)]P(d\mu)$

$\geq\lim_{j\rightarrow}\sup_{\infty}L(t_{1}, \cdots, i_{n}; G_{1j}, \cdots, G_{nj})$

$=L(t_{1}, \cdots, t_{n} ; K_{1}, \cdots, K_{n})+\lim_{j\rightarrow}\sup_{\infty}L(t_{1}, \cdots, t_{n} ; G_{1j}\cap K_{1}^{t}, \cdots, G_{n_{j}}\cap K_{n}^{t})$

$\geq L(t_{1}, \cdots, t_{n} ; K_{1}, \cdots, K_{n})+\lim_{\vec{j}}\sup_{\infty}L(\max_{1\leq i\leq n}t_{i} ; \bigcup_{\ell=1}^{n}(G_{i_{j}}\cap K_{i}^{0}))$

$=L(t_{1}, \cdots, t_{n} ; K_{1}, \cdots, K_{n})$ .
The reverse inequality is easily verified and we have proved (3.1) when $A_{i}’ s$ are
all compact. Let $n\geq 1$ , and bounded disjoint sets $A_{2},$

$\cdots,$
$A_{n}e\mathfrak{B}$ be fixed for a

moment. Assume that (3.1) holds for each compact $A_{1}$ and these fixed sets $A_{2}$ ,
$A_{n}$ . Let $\mathfrak{C}=\mathfrak{C}(A_{2}, \cdots, A_{n})$ be the class of bounded sets $A_{1}e\mathfrak{B}$ for which (3.1)

holds. By (iv) and (v) $\mathfrak{C}$ satisfies the $\ovalbox{\tt\small REJECT} nditions$ of Lemma 2.3, and therefore
every bounded Borel set is in $\mathfrak{C}$ . Now starting from $\omega mpactA_{2},$ $\cdots,$

$A_{n}$ and
using (ii), we see that (3.1) holds for every family of disjoint bounded Borel
sets. This completes the proof.

Theorem 3.2. Assume that for each integer $n\geq 1$ , disjoint bounded sets $A_{i}$ ,

and real si, si $|\leq 1,1\leq i\leq n$ , there corresponds a real number $\Phi(s_{1},$
$\cdots,$ $s_{n}$ ; $A_{1},$ $\cdots$ ,

$A_{n})$ satisfying the following properties:
(i) for each family of disjoint bounded $A_{i}eB,$ $1\leq i\leq n,$ $\Phi(\cdot, \cdots, \cdot ; A_{1}, \cdots, A_{n})$

is the probability generating function of a probability distribution concentrated on
the lattice points of $R^{n+}$ ,

(ii) if $(i_{1}, \cdots, i_{n})$ is a permutation of $(1, \cdots, n)$ , then

$\Phi(s_{i_{1}}, \cdots, s_{i_{n}} ; A_{i_{1}}, \cdots. A_{i_{n}})=\Phi(s_{1}, \cdots, s_{n} ; A_{1}, \cdots, A_{n})$ ,

(iii) $\Phi(s_{1}, \cdots, s_{n}, 1;A_{1}, \cdots, A_{n}, A_{n+1})=\Phi(s_{1}, \cdots, s_{n}; A_{1}, \cdots, A_{n})$ ,

(iv) $\Phi$ ($s_{1},$ $\cdots$ , Sn-l, $s_{n},$ $s_{n}$ ; $A_{1},$
$\cdots,$ $A_{n-1},$ $A_{n},$ $A_{n+1}$ )

$=\Phi$ ( $s_{1},$ $\cdots$ , Sn-l, $s_{n}$ ; $A_{1},$
$\cdots,$ $A_{n-1},$ $A_{n}\cup A_{n+1}$),
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(v) if $ A_{1}\supset A_{2}\supset\cdots$ . $\bigcap_{\sim}A_{n}=\phi$ , then $\lim_{n\rightarrow\infty}\Phi(s;A_{n})=1$ for $|s|\leq 1$ .

Then there exists a unique point process $P$ on $X$ such that

(3.4) $\int_{s}s_{1}^{\mu(A_{1})}\cdots s_{n}^{\mu(A_{n})}dP=\Phi(s_{1}, \cdots, s_{n} ; A_{1}, \cdots A_{n})$ ,

for each $n\geq 1$ , disjoint bounded $A_{i}e\mathfrak{B}$ , si $|\leq 1,1\leq i\leq n$ .
Proof. The function $L$ defined by

$L(t_{1}, \cdots, t_{n} ; A_{1}, \cdots, A_{n})=\Phi(e^{-t_{1}}, \cdots, e^{-\ell_{n}} ; A_{1}, \cdots, A_{n})$ ,

satisfies all conditions of Theorem 2.1. Therefore there exists a unique random
measure $P$ on $X$ for which (3.1) and therefore (3.4) holds for every disjoint

bounded $A_{i}e\mathfrak{B}$ . Let $P_{n}$ be random measures defined in the proof of $Th\ovalbox{\tt\small REJECT} rem$

3.1. Clearly $P_{n}(S^{p})=1,$ $n\geq 1$ . Since $S^{p}$ is closed in $S$ and since $P_{n}\supset P$, we
have $P(S^{p})=1$ , this proves the theorem.

4. Mixed Poisson processes. In this section we prove the existence of a
mixed Poisson $pr\propto ess\mathfrak{M}(P)$ whose ” mixture ” process is an arbitrary random
measure $P$, and give some relations between $P$ and $\mathfrak{M}(P)$ .

Theorem 4.1. Let $P$ be a random measure on X. Then there exists a
unique point process $Q=\mathfrak{M}(P)$ on $X$ such that

(4.1) $\int_{s}\prod_{j=1}^{n}s_{j}^{\mu(Aj)}Q(d\mu)=\int_{s}$ exp $[\sum_{j=1}^{n}(s_{j}-1)\cdot\mu(A_{j})]P(d\mu)$ ,

for every $n\geq 1$ , disjoint bounded $A_{j}eB,$ $|s_{j}|\leq 1,1\leq j\leq n$ , and

(4.2) $l(\varphi;Q)=l(1-e^{-\varphi} ; P)$ ,

for every $\varphi\in C_{0}^{+}(X)$ .
Proof. For any finite family of disjoint bounded sets $A_{j}eB$ ,

$\Phi(s_{1}, \cdots, s_{n} ; A_{1}, \cdots, A_{n})=\int_{s}$ exp $[\sum_{j=1}^{n}(s_{j}-1)\cdot\mu(A_{j})]P(d\mu)$

is a probability generating function. The family of functions $\Phi$ satisfies the
conditions of Theorem 3.2, and therefore there exists a unique point process
$Q$ satisfying (4.1). The relation (4.2) is proved by a standard approximation
procedure.

Deflnition 4.1. The point process $Q=\mathfrak{M}(P)$ is called the mixed Poisson process
generated by the random measure P. If $P(\{\mu\})=1,$ $\mu eS$ , then $Q=\mathfrak{M}(P)$ is called
the Poisson process generated by the measure $\mu$ .
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Theorem 4.2. If $P$ and $Q$ are two random measures such that $\mathfrak{M}(P)=\mathfrak{M}(Q)$ ,
then $P=Q$ .

Proof. This follows from (4.2), Theorem 2.1 and the remark following
Theorem 2.2.

Theorem 4.3. If $P$ is a random measure and if $Q=\mathfrak{M}(P)$ , then for every $\varphi$

and $\phi$ in $C_{0}^{+}(X)$

(4.3) $\int_{s}(\varphi, \mu)dQ=\int_{s}(\varphi, \mu)dP$ ,

and

(4.4) $\int_{s}(\varphi, \mu)(\psi, \mu)dQ=\int_{s}(\varphi, \mu)(\psi, \mu)dP+\int_{s}(\varphi\psi, \mu)dP$ ,

where both sides of (4.3) or (4.4) may be infinite.
Proof. By a well-known property of Laplace transforms we have

$\int_{s}(\varphi, \mu)dQ=-\lim_{\ell\rightarrow+0}\frac{d}{dt}l(t\varphi;Q)=-\lim_{\ell\rightarrow+0}\frac{d}{dt}l(1-e^{-\ell\varphi} ; P)$

$=-\lim_{t\rightarrow+0}\frac{d}{dt}\int_{s}$ exp $[-(1-e^{-t\varphi}, \mu)]P(d\mu)$

$=\lim_{\ell\rightarrow+0}\int_{s}[\int_{X}\varphi e^{-\ell\varphi}d\mu]\exp[-\int_{X}(1-e^{-\ell\varphi})d\mu]P(d\mu)$

$=\int_{s}(\varphi, \mu)P(d\mu)$ .
The exchange of differentiation and integration is iustified since $(\varphi e^{-\ell\varphi}, \mu)$ exp
$[-(1-e^{-\ell\varphi}, \mu)]$ is dominated by an integrable function independent of $t>t_{0}>0$ .
The last equality folows from the monotone convergence theorem. Similarly
we have

$\int_{s}(\varphi, \mu)(\psi, \mu)dQ=\lim_{t,u\sim+0}\frac{\partial^{2}}{\partial t\partial u}l(1-e^{-t\varphi-u\psi}; P)$

$=\lim_{\ell,u\rightarrow+0}\int_{s}[(\varphi\psi e^{-t\varphi-u\psi}, \mu)+(\varphi e^{-\ell\varphi-u\phi}, \mu)(\psi e^{-\ell\varphi-\tau\psi}, \mu)1$

. exp $[-(1-e^{-t\varphi-u\psi}, \mu)]P(d\mu)$

$=\int_{s}[(\varphi\phi, \mu)+(\varphi, \mu)(\phi, \mu)]P(d\mu)$ .

Theorem 4.4. Let $Q_{t}=\mathfrak{M}(P,)$ be the mixed Poisson processes generated by
random measures $P_{n}$ . In order that $Q_{n}$ converge to a point process $Q$ , it is
necessary and suff cient that $P_{n}$ converge to a random measure P. In this case
$Q=\mathfrak{M}(P)$ .
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Proof. From (4.2)

$l(\varphi;Q_{\#})=l(1-e^{-\varphi}; P_{n})$ .
If $Q_{n}\supset Q$ , then for every $\psi eC_{0}^{+}(X)$ such that $\psi(x)<1$ , we have

$l(\psi)=\lim_{n\rightarrow\infty}l(\psi;P_{n})=\lim_{n\rightarrow\infty}l(-\log(1-\psi);Q,)=l(-\log(1-\phi);Q)$ ,

and
$\lim_{t\rightarrow+0}l(t\psi)=\lim_{\ell\rightarrow+0}l(-\log(1-t\psi);Q)=1$ .

It follows from Theorem 2.2 and the remark folowing it that there exists a
unique random measure $P$ such that $P_{n}=P$ and $l(1-e^{-\varphi}; P)=l(\varphi;Q)$ . The
converse part is proved similarly.

5. Random translations. Let $\lambda$ be a substochastic transition function on
the measurable space (X, $\mathfrak{B}$), $i.e.,$ $\lambda$ is a function on $X\times \mathfrak{B}$ satisfying: (i) for
flxed $xeX,$ $\lambda(x, )$ is a measure on $\mathfrak{B}$ such that $\lambda(x, X)\leq 1$ , and (ii) for fixed
$A$ $e\mathfrak{B},$ $\lambda(\cdot, A)$ is a B-measurable function on $X$. For real bounded measurable
function $\varphi$ on $X$, and for $\mu eS$ we write

$T_{\lambda}\varphi(x)=\int_{X}\varphi(y)\lambda(x, dy)$ , $xeX$ ,

and

$U_{\lambda}\mu(A)=\int_{X}\lambda(x, A)\mu(dx)$ , A $e\mathfrak{B}$ ,

Note that $ U_{\lambda}\mu$ is a measure on $\mathfrak{B}$ which may assume the $value+\infty$ for compact
sets. By Lemma 2.4 the mapping $\mu\rightarrow U_{\lambda}\mu(A)$ is $\mathfrak{U}$-measurable for each A $e\mathfrak{B}$ .

Lemma 5.1. Let $S_{\lambda}=\{\mu;\mu\in S, U_{\lambda}\mu eS\}$ . Then $S_{\lambda}e\mathfrak{U}$ .
Proof. Choose an increasing sequence $\{A_{n}\},$ $A_{n}e\mathfrak{B}$ , such that $\bigcup_{\iota}A_{n}=X$.

Then $S_{\lambda}=$ {$\mu;\mu eS,$ $ U_{\lambda}\mu(A_{n})<\infty$ for $n\geq 1$ } $e\mathfrak{U}$ .
Theorem 5.1. Let $P$ be a random measure on $X$, and $\lambda$ be a substochastic

transition function on (X, $B$). In order that there exist a unique random measure
$Q$ on $X$ satisfying:

(5.1) $\int_{s}$ exp $[-\sum_{j=1}^{n}t_{j}\mu(A_{j})]Q(d\mu)=\int_{s}$ exp $[-\sum_{f=1}^{n}t_{j}U_{\lambda}\mu(A_{j})]P(d\mu)$ ,

for every $n\geq 1$ , bounded disjoint $A_{j}eB,$ $t_{j}\geq 0,1\leq j\leq n$ , it is necessary and sufficieM
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that $P(S_{\lambda})=1$ . If this is the case, then

$l(\varphi;Q)=l(T_{\lambda}\varphi;P)$ ,

for $\varphi eC_{0}^{+}(X)$ .
Proof. Assume $P(S_{\lambda})=1$ . The family of functions

$L(t_{1}, \cdots, t_{n} ; A_{1}, \cdots, A_{n})=\int_{s}$ exp $[-\sum_{f=1}^{n}t_{j}U_{\lambda}\mu(A_{j})]P(d\mu)$ ,

satisfies the $\ovalbox{\tt\small REJECT} nditions$ of Theorem 3.1, and therefore determines a unique random
measure $Q$ on $X$. The relation (5.2) may be proved by a standard argument.
If $P(S_{\lambda})<1$ , then $P\{\mu;U_{\lambda}\mu(A)=\infty\}>0$ for some bounded A $e\mathfrak{B}$ , and the right hand
side of (5.1) with $n=1,$ $A_{1}=A$ , cannot be the Laplace transform of a probability
distribution.

Deflnition 5.1. When $P(S_{\lambda})=1$ , the random measure $Q$ on $X$ defined in
Theorem 5.1 is called the translation of the random measure $P$ by the transition
function $\lambda$ , and is denoted by $\mathfrak{T}_{\lambda}(P)$ .

Theorem 5.2. Let $P$ be a point process on $X$, and $\lambda$ be a substochastic transi-
tion function on (X, $B$). In order that there exist a point process $Q$ such that for
$n\geq 1$ , disjoint bounded $A_{j},$ $|s_{j}|\leq 1,1\leq j\leq n$ ,

(5.3) $\int_{s}\prod_{j=1}^{n}s_{j}^{\mu(Aj)}Q(d\mu)=\int_{s}$ exp $(\log[1-\sum_{j=1}^{n}(1-s_{j})\lambda(x, A_{j})], \mu)P(d\mu)$ ,

it is necessary and sufficient that $P(S_{\lambda})=1$ . If this is the case, then for $\varphi eC_{0}^{+}(X)$ ,

(5.4) $l(\varphi;Q)=l(-\log(1-T_{\lambda}(1-e^{-\varphi}));P)$ .
Proof. For every $\mu eS^{p}$ , let $\{x_{k} ; k\geq 1\}$ be the support of $\mu$ and let $n_{k}=\mu(\{x_{k}\})$ .

Then

(5.5) exp $(\log[1-\sum_{j=1}^{\cdot}(1-s_{j})\lambda(x, A_{j})], \mu)=\prod_{k}[1-\sum_{j=1}^{n}(1-Sj)\lambda(x_{k}, Aj)]^{n}k$

is a probability generating function if and only if this infinite product converges,
or equivalently

$\sum_{j}\sum_{k}n_{k}\lambda(x_{k}, A_{j})=\sum_{j}U_{\lambda}\mu(A_{j})<+\infty$ .

Thus if $\mu\in S^{p}\cap S_{\lambda}$ , then (5.5) is a generating function for any finite family of
disjoint bounded $A_{j}e\mathfrak{B}$ . Hence $P(S_{\lambda})=1$ implies that the right hand side
$\Phi(s_{1}, \cdots, s_{n} ; A_{1}, \cdots, A_{n})$ of (5.3) is a probability generating function. It is easy
to verify that the family of functions $\Phi(s_{1}, \cdots, s_{n} ; A_{1}, \cdots, A_{n})$ satisfies the con–
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ditions of Theorem 3.2, and therefore there exists a unique point process $Q$

satisfying (5.3). The relation (5.4) follows from (5.3).

If $P(S_{\lambda})<1$ , then there exists a bounded set $A$ $e\mathfrak{B}$ such that $P\{\mu;U_{\lambda}\mu(A)$

$=\infty\}>0$ . It follows that

$1(5.6)$ $\int_{s}$ exp $(\log[1-(1-s)\lambda(x, A)], \mu)P(d\mu)$ ,

is dominated by $P\{\mu;U_{\lambda}\mu(A)<\infty\}<1$ for every $s$ . This shows that (5.6) is not
a generating function.

Deflnition 5.2. If $P$ is a point process on $X$ satisfying $P(S_{\lambda})=1$ , then the
$\backslash point$ process $Q$ defined in Theorem 5.2 is called the random translation of $P$ by
the transition function $\lambda$ , and is denoted by $\Re_{\lambda}(P)$ .

Remark. The intuitive definition of random translation is as follows. A
point process determines stochastically a ” particle system” on $X$. We move
each “ particle” of this system independently according to the transition function

$\lambda$ , and get a new particle system which is the random translation of the initial
point process. The quantity $1-\lambda(x, X)$ is the probability that a particle at the
position $x$

” disappears”.

Theorem 5.3. Let $\lambda_{1}$ and $\lambda_{2}$ be two substochastic transition functions on (X, $B$),

and let

$\lambda(x, A)=\int_{x}\lambda_{1}(x, dy)\lambda_{2}(y, A)$ , A $e\mathfrak{B}$ .
Then the translation $\mathfrak{T}_{\lambda}(P)$ of a random measure $P$ (or the random translation
$\Re_{\lambda}(P)$ of a point process $P$) exists if and only if $\mathfrak{T}_{\lambda_{2}}(\mathfrak{T}_{\lambda_{1}}(P))$ (or $\Re_{\lambda_{2}}(\Re_{\lambda_{1}}(P))$ ) exists,
and

(5.7) $\mathfrak{T}_{\lambda_{2}}(\mathfrak{T}_{\lambda_{1}}(P))=\mathfrak{T}_{\lambda}(P)$ ,

(5.8) $\Re_{\lambda_{2}}(\Re_{\lambda_{1}}(P))=\Re_{\lambda}(P)$ .
Proof. We prove (5.7) only since (5.8) is similarly proved. Suppose that

$\mathfrak{T}_{\lambda_{2}}(\mathfrak{T}_{\lambda_{1}}(P))$ and $\mathfrak{T}_{\lambda}(P)$ are both defined, then since $ T_{\lambda_{1}}(T_{\lambda_{Z}}\varphi)=T_{\lambda}\varphi$ , and since (5.2)

holds for any non-negative continuous $\varphi$ , we have

$l(\varphi;\mathfrak{T}_{\lambda_{2}}(\mathfrak{T}_{\lambda_{1}}(P)))=l(T_{\lambda_{2}}\varphi;\mathfrak{T}_{\lambda_{1}}(P))=l(T_{\lambda_{1}}(T_{\lambda_{2}}\varphi);P)=l(T_{\lambda}\varphi;P)=l(\varphi;\mathfrak{T}_{\lambda}(P))$ .
Thus by Theorem 2.1 we have (5.7). Moreover these equalities can be used to
prove that $\mathfrak{T}_{\lambda_{2}}(\mathfrak{T}_{\lambda_{1}}(P))$ and $\mathfrak{T}_{\lambda}(P)$ exist simultaneously.



132 TOSHIO MORI

Theorem 5.4. Let $P$ be a random measure on $X$ and let $\lambda$ be a substochastic
transition function on (X, B). Then $P(S_{\lambda})=1$ if and only if $\mathfrak{M}(P)(S_{\lambda})=1$ , and
(5.9) $\Re_{\lambda}(\mathfrak{M}(P))=\mathfrak{M}(\mathfrak{T}_{\lambda}(P))$ .

Proof. $IfP(S_{\lambda})=1$ and $\mathfrak{M}(P)(S\lambda)=1$ , then from (4.2), (5.2), and (5.4), we have

$l(\varphi;\mathfrak{M}(\mathfrak{T}_{\lambda}(P)))=l(1-e^{-\varphi} ; \mathfrak{T}_{\lambda}(P))=l(T_{\lambda}(1-e^{-\varphi});P)$

$=l(-\log(1-T_{\lambda}(1-e^{-\varphi}));\mathfrak{M}(P))=l(\varphi;\Re_{\lambda}(\mathfrak{M}(P)))$ ,

where we used the fact that (4.2) holds for any non-negative continuous $\varphi$ . These
equalities can also be used to show the equivalence of $P(S_{\lambda})=1$ and $\mathfrak{M}(P)(S_{\lambda})=1$ .

Theorem 5.5. Let $X$ be not compact, $P$ a point process on X. Let $\{\lambda_{n}\}$ be a
sequence of substochastic transition function on (X, $B$) such that

(5.10) $P(S_{\lambda_{n}})=1$ , $n\geq 1$ ,

and for every bounded A $e\mathfrak{B}$ ,

(5.11)
$\lim_{n\rightarrow\infty}\sup_{\in x}\lambda_{n}(x, A)=0$ .

In order that $\Re_{\lambda_{n}}(P)c\rho nverge$ to a point process $Q$ , it is necessary and sufficient
that $\mathfrak{T}_{\lambda_{n}}(P)$ converge to a random measure $Q^{\prime}$ . If this is the case, then $Q=\mathfrak{M}(Q^{\prime})$ .

Proof. If $\varphi eC_{0}^{+}(X)$ , then $\psi=1-e^{-\varphi}eC_{0}^{+}(X)$ . Let $a_{n}=\sup_{x\in X}T_{\lambda_{n}}\psi(x)$ , then it

follows from (5.11) that

(5.12)
$\lim_{n\rightarrow\infty}a_{n}=0$ .

Put

$A_{n}(\mu)=\exp[-(T_{\lambda_{n}}\psi, \mu)]-\exp[(\log(1-T_{\lambda_{n}}\psi), \mu)]$ .
It is easy to see that

$l(\varphi;\mathfrak{M}(\mathfrak{T}_{\lambda}(P)))-l(\varphi;\Re_{\lambda_{n}}(P))=\int_{s}A_{n}(\mu)P(d\mu)$ .

Using (5.12) and an elementary inequaliy $0<-x-\log(1-x)<x^{2}$ for small $x$ , we
have

(5.13) $0<A_{n}(\mu)=[1-\exp(\log(1-T_{\lambda_{n}}\psi)+T_{\lambda_{n}}\psi, \mu)]$ exp $[-(T_{\lambda_{n}}\psi, \mu)]$

$\leq 1-\exp[-((T_{\lambda_{n}}\psi)^{2}, \mu)]$

$\leq 1-\exp[-- a_{n}(T_{\lambda_{n}}\psi, \mu)]$

$\leq 1-\exp[a_{n}(\log(1-T_{\lambda_{n}}\psi), \mu)]$ .
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If $\mathfrak{T}_{\lambda_{n}}(P)$ converges to a random measure $Q^{\prime}$ and if $ a_{n}<\epsilon$ , then by (5.13)

$\lim_{\sim\rightarrow}\sup_{\infty}\int_{s}A_{n}(\mu)P(d\mu)\leq 1-\lim_{\rightarrow\infty}\int_{s}$ exp $[-a_{\#}(T_{\lambda_{n}}\psi, \mu)]P(d\mu)$

$\leq 1-\lim_{n\rightarrow\infty}l(\epsilon T_{\lambda_{n}}\psi;P)$

$=1-l(\epsilon\phi;Q^{\prime})$ ,

which tends to $0$ with $\epsilon$ . It follows from Theorem 4.4 that for $\varphi eC_{0}^{+}(X)$

$\lim_{n\rightarrow\infty}l(\varphi;\Re_{\lambda_{n}}(P))=\lim_{n\rightarrow\infty}l(\varphi;\mathfrak{M}(\mathfrak{T}_{\lambda_{\hslash}}(P)))=l(\varphi;\mathfrak{M}(Q^{\prime}))$ .

Hence $\Re_{\lambda_{n}}(P)=\mathfrak{M}(Q^{\prime})$ .
Conversely if $\Re_{\lambda_{n}}(P)$ converges to a point process $Q$ , if $a_{n}<\epsilon<1$ , then

$\lim_{\sim}\sup_{\infty}\int_{s}A,(\mu)P(d\mu)\leq 1-\lim_{n\rightarrow\infty}l$( $-\epsilon$ log $(1-T_{\lambda_{n}}(1-e^{-\varphi}));P$)

$\leq 1-\lim_{\sim\infty}l(-\log(1-T_{\lambda_{*}}(1-e^{-\cdot\varphi}));P)$.
$=1-\lim_{n\rightarrow\infty}l(\epsilon\varphi;\Re_{\lambda_{n}}(P))$

$=1-l(\epsilon\varphi;Q)$ ,

which becomes arbitrarily small with $\epsilon$ . Hence

$\lim_{\iota\sim}l(\varphi;\mathfrak{M}(\mathfrak{T}_{\lambda_{n}}(P)))=\lim_{n\rightarrow\infty}l(\varphi;\Re_{\lambda_{n}}(P))=l(\varphi;Q)$ .
It follows from Theorem 4.4 that $\mathfrak{T}_{\lambda_{\hslash}}(P)$ converges to a random measure $Q^{\prime}$ and
$Q=\mathfrak{M}(Q^{\prime})$ . This $\ovalbox{\tt\small REJECT} mpletes$ the proof.

Theorem 5.6. Let $X$ be non-compact. Assume a point process $P$ on $X$ and
a sequence $\{\lambda_{n}\}$ of substochastic transition functions on (X, $\mathfrak{B}$) satisfy the conditjms
(5.10) and (5.11) of Theorem 5.5. In order that $P_{\hslash}=\Re\lambda_{n}(P)$ converge to the Poisson
process $Q$ generated by a measure $\mu eS$ , it is necessary and sufficient that
(5.14) $\lim_{\sim\sim}P\{\nu;|U_{\lambda_{n}\nu}(A)-\mu(A)|>\epsilon\}=0$ ,

for any $\epsilon>0$ and bounded A $eB$ such that $\mu(\partial A)=0$ .
Proof. It follows from Theorem 5.5 that $P_{n}\supset Q$ if and only if for $\varphi eC_{0}^{+}(X)$

and $\epsilon>0$

(5.15) $\lim_{n\rightarrow\infty}P\{\nu;|(\varphi, U_{\lambda_{n}}\nu)-(\varphi, \mu)|>\epsilon\}=0$ .
If $P_{n}\supset Q$ , and if $Ae\mathfrak{B}$ is a bounded set such that $\mu(\partial A)=0$ , then there

exist $\varphi_{i}eC_{0}^{+}(X),$ $i=1,2$ , such that $\varphi_{1}\leq\chi_{A}\leq\varphi_{2},$ $(\varphi_{2}-\varphi_{1}, \mu)<e/2$ . It follows from
(5.15) that
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$\lim_{n\rightarrow\infty}P\{\nu;|U_{\lambda_{n}}\nu(A)-\mu(A)|>\epsilon\}$

$\leq\lim_{n\rightarrow\infty}P${ $\nu;(\varphi_{1},$ $U_{\lambda_{n}}\nu)-(\varphi_{2},$ $\mu)<-\epsilon$ or $(\varphi_{2},$ $U_{\lambda_{n}}\nu)-(\varphi_{1},$ $\mu)>\epsilon$ }

$\leq\lim_{n\rightarrow\infty}P${$\nu;(\varphi_{1},$ $U_{\lambda_{n}}\nu)-(\varphi_{1},$ $\mu)<-\epsilon/2$ or $(\varphi_{2},$ $U_{\lambda_{n}})-(\varphi_{2},$ $\mu)>\epsilon/2$}

$=0$ .
Let us prove the converse. We assume (5.14) and prove first that for any

$\epsilon>0$ ,

\langle 5.16) $\lim_{n\rightarrow\infty}P\{\nu;\mu(F)<U\lambda_{n}\nu(F)-\epsilon\}=0$ ,

if $F$ is compact, and

\langle 5.17) $\lim_{n\rightarrow\infty}P\{\nu;\mu(G)>U_{\lambda_{n}}\nu(G)+\epsilon\}=0$ ,

if $G$ is bounded open. In fact, let $G_{\delta}=\{y;d(y, F)<\delta\}$ , then for any $\epsilon>0$ we can
$ch\ovalbox{\tt\small REJECT} se\delta>0$ such that $\mu(\partial G_{\delta})=0,$ $\mu(G_{\delta}\cap F^{e})<\epsilon$ . It follows from (5.14) that

$\lim_{n\rightarrow\infty}P\{\nu;\mu(F)<U_{\lambda_{n}}\nu(F)-2\epsilon\}\leq\lim_{\prime\rightarrow\infty}P\{\nu;\mu(G_{\delta})<U_{\lambda_{n}}\nu(G_{\delta})-\epsilon\}=0$ .
This proves (5.16). Note that for any bounded open $G$ , we can choose a $\ovalbox{\tt\small REJECT} mpact$

$F$ such that $F\supset G,$ $\mu(\partial F)=0$ . It follows from (5.14) and (5.16) that

$\lim_{n\rightarrow\infty}P\{\nu;\mu(G)>U_{\lambda_{n}}\nu(G)+2\epsilon\}$

$\leq\lim_{n\rightarrow\infty}P\{\nu;\mu(F)>U_{\lambda_{n}\nu}(F)+\text{\’{e}}\}+\lim_{n\rightarrow\infty}P\{\nu;\mu(F\cap G^{c})<U_{\lambda_{n}}\nu(F\cap G^{c})-\epsilon\}=0$ .
This shows (5.17).

In order to prove (5.15) for $\varphi eC_{0}^{+}(X)$ , we may and do assume that $0\leq\varphi(x)$

$\leq 1$ . Let $k>0$ be an integer such that $\mu(K)\leq k\epsilon$ , where $K=supp[\varphi]$ , and let $F_{i}$

be the compact set $F_{i}=\{x;i/k\leq\varphi(x)\},$ $0\leq i\leq k$ . Then for every $\nu eS$ ,

$k^{-1}\sum_{i=\iota}^{k}\nu(F_{1})\leq(\varphi, \nu)\leq k^{-1}\nu(K)+k^{-1}\sum_{:=1}^{k}\nu(F_{i})$ .
It follows from (5.16) that

(5.18) $\lim_{n\rightarrow\infty}P\{\nu;(\varphi, \mu)<(\varphi, U_{\lambda_{n}}\nu)-3\epsilon\}$

$\leq\lim_{n\rightarrow\infty}P\{v;k^{-1}\sum_{\ell=1}^{k}\mu(F_{1})<k^{-1}\sum_{i=1}^{k}U_{\lambda_{n}}\nu(F_{i})-\epsilon\}$

$+\lim_{\sim\rightarrow\infty}P\{\nu;k^{-1}U_{\lambda_{n}}\nu(K)>\epsilon+k^{-1}\mu(K)\}=0$ .
Similarly we can use (5.17) to obtain

(5.19) $\lim_{n\rightarrow\infty}P\{\nu;(\varphi, \mu)>(\varphi, U_{\lambda_{\hslash}}\nu)+3\epsilon\}=0$ ,
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The relations (5.18) and (5.19) prove (5.15).

Let $X$ be a localy compact abelian group satisfying the second axiom of
countability. It is well-known ([11] p. 210) that there exists an invariant metric
$d$ for $X,$ $i.e.,$ $d$ is a metric such that $d(x+z, y+z)=d(x,y)$ for $x,y$ and $z$ in $X$,
and the topology of $X$ is that derived from $d$ (the invariance wm not be used).

Consider a spatially homogeneous transition function $\lambda$ on (X, $\mathfrak{B}$), $i.e.,$ $\lambda(x, A)$

$=\lambda_{0}(A-x)$ , where $A-x=\{y-x;y\in A\}$ and $\lambda_{0}$ is a probability measure on (X, $\mathfrak{B}$).

All of our previous results apply to this case. For example we have the following
corollary to Theorem 5.6. In the following statement we mean by the Poisson
process with parameter $c>0$ , the Poisson process generated by the measure $ c\eta$ ,
where $\eta$ is a fixed Haar measure on (X, $\mathfrak{B}$).

Corollary 5.1. Let $X$ be a locally compact non-compact second countable
ibelian group. Assume that a point process $P$ on $X$, and a sequence $\{\lambda_{n}\}$ of pro-
bability measures on (X, $B$) satisfy the following:

(5.20) $P${$\mu;\mu*\lambda_{n}(A)<\infty$ for every bounded A $e\mathfrak{B}$} $=1$ , $n\geq 1$ ,

where $\mu*\lambda_{n}(A)=\int_{X}\lambda_{n}(A-x)\mu(dx)$ , and

(5.21)
$\lim_{n\rightarrow\infty}\sup_{x\in X}\lambda_{n}(A-x)=0$ ,

for every bounded $A$ $e$ B. In order that the random translation $\mathfrak{B}_{\lambda_{n}}(P)$ converge
to the Poisson process with parameter $c>0$ , it is necessary and sufficient that

$\lim_{n\rightarrow\infty}P\{\mu;|\mu*\lambda_{n}(A)-c\eta(A)|>\epsilon\}=0$ ,

for any $\epsilon>0$ and bounded A $e\mathfrak{B}$ such that $\eta(\partial A)=0$ .
Remark. Assume (5.20) and (5.21). Let $S_{c}=\{\mu;\mu*\lambda_{n}\rightarrow c\eta\}eA$ . If $P(S_{\iota})=1$ ,

then it is obvious that $\Re_{\lambda_{n}}(P)$ converges to the Poisson process with parameter
$c$ . However, as the following example shows, the converse is not true.

Example. Let $X$ be the additive group of integers with counting measure.
$S$ is the class of all two-sided sequences $\mu=\{\cdots, \mu_{-1}, \mu_{0}, \mu_{1}, \cdots\},$ $\mu_{i}\geq 0$ . $\mathfrak{B}$ is the
$\sigma- field$ generated by Borel cylinders. Let $S_{0}=$ {$\mu;\mu_{j}=1$ for $j\leq 1$ }, $S_{n}=\dagger\mu;\mu_{j}=1$

for $2^{n}\leq j\leq 2^{n+1}-1$ }, $S_{n}^{\prime}=\dagger\mu;\mu_{j}=0$ for $2^{n}\leq j\leq 2^{n+1}-2,$ $\mu_{j}=2^{n}$ for $j=2^{n+1}-1$}. Let
$P$ be the point process such that $P(S_{0})=1,$ $P(S_{n})=1-n^{-1},$ $P(S_{n}^{\prime})=n^{-1}$ , and the
events $S_{n},$ $n\geq 1$ are independent. Let $\lambda_{n}$ be such that $\lambda_{n}(\{j\})=n^{-1},1\leq j\leq n$ .
Then $\Re_{\lambda_{n}}(P)$ converges to the Poisson process with parameter 1. However it
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follows from Borel-Cantelli lemma that for every $j,$ $\mu*\lambda_{n}(\{j\})$ does not converge
with probability one.

6. Point processes invariant under random translation. In this section we
consider point processes invariant under a given random translation. The
following theorem is a generalization of a result of Derman [41. For related
results, see Brown [2].

Theorem 6.1. Let $P=\mathfrak{M}(Q)$ be a point process on $X$ generated by a random
measure $Q$ , and let $\lambda$ be a substochastic transition function on (X, B). In order
that $\Re_{\lambda}(P)=P$, it is necessary and sufficient that $\mathfrak{T}_{\lambda}(Q)=Q$ . In particular, $in$

order that the random translation $\Re_{\lambda}(P)$ of the Poisson process $P$ generated by a
measure $\mu eS$ coinczde with $P$, it is necessary and sufficient that

$\mu(A)=\int_{r}\lambda(x, A)\mu(dx)$ ,

for every bounded A $e\mathfrak{B}$ .
Proof. Immediate from Theorem 4.2 and Theorem 5.3.

In what follows $X$ is a locally $\omega mpact$ second countable abelian group with
a fixed Haar measure $\eta$ . Let $S^{H}=\{\mu;\mu=c\eta, c>0\}$ denote the class of all Haar
measures on (X, $\mathfrak{B}$). It is easily proved that $S^{H}e\mathfrak{U}$ .

Deflnition 6.1. If $Q=\mathfrak{M}(P)$ is a mixed Poisson process on $X$ and if $P(S^{H})=1$ ,
then $Q$ is called a mixed Poisson process in the strict sense.

Lemma 6.1. Let $X$ be a topological abelian group, and let $M\subset X$. In order
that the product group $x\times X=\{(x, y);x, yeX\}$ be generated by the product set
$M\times M$, it is necessary and sufficient that $X$ be generated by $x+M$ for every
$xeX$.

Proof. To prove the necessity, assume that for some $xeX,$ $x+M$ is $\ovalbox{\tt\small REJECT} n-$

tained in a proper closed subgroup $Y$ of $X$. Since $(y, z)\in M\times M$ implies that
$y-z=(x+y)-(x+z)eY,$ $M\times M$ is contained in the proper subgroup $\{(x,y);x-yeY\}$

of $X\times X$. Next to prove the sufficiency, assume that $M\times M$ is contained in a
proper closed subgroup $Y^{*}$ of $X\times X$. We may assume that $M$ generates $X$, for
otherwise we have nothing to prove. $Y=\{x;(x, 0)eY^{*}\}$ , where $0$ is the identity
element of $X$, is a proper closed subgroup of $X$. In fact, if $(x, 0)eY^{*}$ for every
$xeX$, then for $yeX,$ $(x,y)=(y,y)+(x-y, 0)eY^{*}$ . This contradicts the fact that
$Y^{*}$ is a proper subgroup of $X\times X$. If $x,yeM$, then $(y-x, O)=(y,y)-(x,y)eY^{*}$ ,
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$ y-x\in$ Y. Thus M–xc Y. This proves the lemma.

Theorem 6.2. Let $X$ be a locally compact second countable abelian group.
Let $P$ be a random measure on $X$, and $\lambda$ be a probability measure on B. Suppose
that (i) for every $xeX,$ $x+supp[\lambda]$ generates $X$, where supp $[\lambda]$ is the support of
the measure $\lambda$ , (ii) for every $\varphi eC_{0}(X)$ ,

$\sup_{x\in X}\int_{s}(\varphi(x+\cdot), \mu)^{2}P(d\mu)<\infty$ ,

and (iii) for every $\varphi eC_{0}(X)$ ,

$\lim_{y\rightarrow x}\int_{s}[(\varphi(x+\cdot), \mu)-(\varphi(y+\cdot), \mu)]^{2}P(d\mu)=0$ .

Then in order that the translation $\mathfrak{T}_{\lambda}(P)$ of $P$ be identical with P. it is necessary
and sufficient that $P(S^{B})=1$ .

Proof. The sufficiency part is proved without assumptions $(i)-(iii)$ . Since
$P(S^{H})=1$ implies that $P(S\lambda)=1$ and for any $\varphi eC_{0}(X)$ ,

(6.1) $P\{\mu;(\varphi, \mu)=(\varphi, \mu*\lambda)\}=1$ ,

we have by Theorem 4.1 that for $\varphi eC_{0}^{+}(X)$ ,

$l(\varphi;\mathfrak{T}_{\lambda}(P))=l(\int_{x}\varphi(x+\cdot)\lambda(dx);P)=\int_{s}e^{-(\varphi.\mu*\lambda)}P(d\mu)$

$=\int_{s}e^{-(\varphi.\mu)}P(d\mu)=l(\varphi.\cdot P)$ ,

It follows from Theorem 2.1 that $\mathfrak{T}_{\lambda}(P)=P$.
In order to prove the necessity, we define for each $\varphi eC_{0}(X)$ a function

$v(\cdot. \cdot ; \varphi)$ on $X\times X$ by

$v(x,y;\varphi)=\int_{s}(\varphi(x+\cdot), \mu)(\varphi(y+\cdot), \mu)P(d\mu)$ .

By (ii) and (iii), $v$ is bounded and coutinuous on $X\times X$. Since $\mathfrak{T}_{\lambda}(P)=P$ implies
(6.1) we have

(6.2) $v(x,y;\varphi)=\int_{s}(\varphi(x+\cdot), u*\lambda)(\varphi(y+\cdot), \mu*\lambda)P(d\mu)$

$=\int_{xxx}v(x+x^{\prime},y+y^{\prime} ; \varphi)\lambda(dx^{\prime})\lambda(dy^{\prime})$ ,

By the assumption (i) and Lemma 6.1, the support of the product measure $\lambda\times\lambda$ ,

which is identical with supp $[\lambda]\times supp[\lambda]$ , generates $X\times X$. It follows from a
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famous theorem of Choquet and Deny [3] that $v(x,y;\varphi)$ is a constant function
on $X\times X$. Hence we have

$\int_{s}[(\varphi(x+\cdot), \mu)-(\varphi(y+\cdot), \mu)]^{2}P(d\mu)$

$=v(x, x;\varphi)-2v(x,y;\varphi)+v(y,y;\varphi)=0$ .
and therefore for every pair $x,yeX$,

(6.3) $P\{\mu;(\varphi(x+\cdot), \mu)=(\varphi(y+\cdot), \mu)\}=1$ .
Let $D$ be a countable dense subset of $X$. It follows from (6.3) that $P(S_{0})=1$ ,

where
$S_{0}=\{\mu;(\alpha_{i}(x+\cdot), \mu)=(\alpha_{\ell}, \mu), i\geq 1, xeD\}\in \mathfrak{U}$ .

If $\mu eS_{0}$ , then $(\varphi(x+\cdot), \mu)=(\varphi, \mu)$ for every $\varphi eC_{0}(X)$ and $x\in X$, and therefore
$\mu eS^{H}$ . Thus $S^{H}=S_{0}$ and $P(S^{H})=1$ .

The sufficiency part of the following theorem was essentially proved by
Doob [6]. The necessity part may be regarded as a strengthening of results
by Dobrushin [5] and Goldman [8].

Theorem 6.3. Let $X$ be a locally compact non-compact second countable abelian
group. Let $P$ be a point process on $X$, and let $\lambda$ be a probability measure on
(X, B). Suppose that the conditions (i), (ii) and (iii) of Theorem 6.2 are satisfied
by P. Moreover we assume

(6.4) $\lim_{n\rightarrow\infty}\sup_{x\in X}\lambda^{n*}(A-x)=0$ ,

for every bounded A $e\mathfrak{B}$ , where $\lambda^{n*}$ is the n-fold convolution of $\lambda$ with rtself.
Then in order that the random translation $\Re_{\lambda}(P)$ of $P$ coincide with $P$, it is
necessary and sufficient that $P$ is a mixed Poisson process in the strict sense.

Proof. The sufficiency part follows from Theorem 5.4 and Theorem 6.2.
Let us prove the necessity part. It follows from Theorem 5.3 that $\Re_{\lambda}(P)=P$

implies $P(S_{\lambda^{n}}*)=1,$ $\Re_{\lambda^{n}}*(P)=P$ for $n\geq 1$ , and therefore $\lim_{n\rightarrow\infty}\Re_{\lambda^{n}}*(P)=P$. By (6.4)

and Theorem 5.5 $P$ must be a mixed Poisson process. Let $P=\mathfrak{M}(Q)$ , where $Q$

is a random measure. Then by Theorem 5.4 $Q(S_{\lambda})=1,$ $P=\Re\lambda(P)=\mathfrak{M}(\mathfrak{T}_{\lambda}(Q))=\mathfrak{M}(Q)$ .
Hence by Theorem 4.2, $\mathfrak{T}_{\lambda}(Q)=Q$ . By Theorem 4.3, $Q$ satisfies the conditions
(ii) and (iii) of Theorem 6.2. It follows from Theorem 6.2 that $Q(S^{H})=1$ . This
proves the theorem.

Remark. If $X$ is a non-compact closed subgroup of $R^{d}$ , or more generally
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if there is a non-zero homomorphism from $X$ to the additive group of real
numbers, then (6.4) is implied by the assumption (i) of the theorem. However,
the author does not know whether this is true for an arbitrary locally compact
non-compact $X$.

Moreover it seems possible to replace the assumption (ii) and (iii) of Theorem
6.2 and Theorem 6.3 by some weaker ones. In fact, if $X$ is the additive group
of integers, then (ii) and (iii) may be replaced by

$\sup_{a\in X}\int_{s}(\varphi(x+\cdot), \mu)P(d\mu)<\infty$ , for $\varphi eC_{0}^{+}(X)$ .
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