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\S 1. Introduction

In the study of matrix-groups, several types of triangular representations
have been considered in the literature. For example, $McCoy$, [5], gave a
characterisation of sets of matrices which can be $simul\tanusly$ triangularised by
a similarity transformation. Such sets are said to have Property $p$ . For Lie-
algebras and connected algebraic matrix groups, triangularisability is equivalent
to solvability by the celebrated Lie-Kolchin Theorem [1], [4], [6].

Another type of triangularisation, called Property $T$, or sometimes called
special triangular form, is the form in which the matrices aPpear as direct sum
of monopotent triangular blocks. Sinha, [8], [9], gave characterisations of Pro-
perty $T$ for various sets and groups of matrices. This case tums out to be
characteristic of nilpotency, iust as Property $P$ is for solvability.

In between these two extremes, there is a form of triangularisation, con.
sidered by Gelfond in [3]. In this triangularisation, the matrices appear with
monopotent diagonal blocks with possible non-zero entries only on one side of
these diagonal blocks. Following Gelfond, though in a slightly modified situation,
we shall call such representation of matrices, a Horospherical Representation.
We show below that every set of monopotent matrices having Property $P$, has
such a representation. In particular, each matrix has such a representation
unique upto similarity. Several necessary conditions are given for different types
of matrix-sets, matrix-groups and algebraic matrix-groups to have horospherical
representations. As a consequence we observe the following implication relation:

Property $T=HorosphericalRepresentation\supset PropertyP$.
Finally we consider the special case of 2-dimensional vector-spaces and show

that any set of linear transformations of such a space, has a horospherical
representation if and only if it is commutative, so that in this case the concepts
of Property $T$, of horospherical representation and of commutativity, all $incide$ .

We mention that though many of the results could be formulated and proved
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for slightly more general fields, we shall be limiting our considerations throug-
hout to the field of $mplex$-numbers.

\S 2. Definitions and Monopotent Sets

Unless otherwise specified we shall be considering $n\times n$ matrices acting as
linear-transformations on an n-dimensional vector space $V$. Then we have the
following:

Definitions:
1. An indecomposable set $\Omega$ of linear transformations of $V$, is said to have

a Horospherical Representation if $V$ has a descending sequence of $\Omega$-admissible
subspaces,

$V=V_{1}>\neq V_{2^{>}}\neq\cdots\neq>V_{\ell}+1=0$ ,

such that $V$: is a minimal $\Omega$-admissible subspace of $V_{i-1}$ with the property that
the restriction of $\Omega$ to $V_{i-1}/V_{i}$ , is a set of scalar matrices; $i=2,$ $\cdots,$ $t+1$ .

We note that under these circumstances, with respect to a proper choice of
basis for $V$, each element $A$ of $\Omega$ , has the form:

$A=[A_{1}0A_{2}$ . $.*A_{\ell}]$ ,

where the diagonal blocks $A_{i}$ are scalar matrices representing the restriction of
$A$ to $V_{i}/V_{i+1}$ ; $i=1,$ $\cdots,$

$t$ .
2. An arbitrary set $\Omega$ of linear transformations of $V$, is said to have a

Horospherical-Representation if each set of its indecomposable components, have
horospherical representations defined above.

We also recall the following standard definitions:
3. A pair of matrices $\{A, B\}$ is said to be $2-mmutative$ in the additive

sense, if $[[A, B],$ $B$] $=0=[A, [A, B]]$ , where [X, $Y$]$=XY-YX$. This merely implies
that the additive commutator of $\{A, B\}$ , commutes with both $A$ and $B$.

4. Denoting $[A, B]$ by $A^{(1)}$ and defining $A^{(k)}=[A^{(k-1)}, B]$ inductively, we say
that $A$ is k-commutative with $B$ if $A^{(k)}=0$ .

5. If both $A$ and $B$ are mutually $k\cdot commutative$ then the pair $\{A, B\}$ is
said to be $k\cdot commutative$ .

6. If each pair in a set, $\Omega$ , of matrices, is k-commutative then $\Omega$ is said to
be k-commutative.
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Apart from these we shall use rudimentary properties of Lie-algebras and
Algebraic Linear Groups, for which we refer respectively to the standard works
[4] and [1].

With these preliminaries we prove:

Theorem 1: Let $\Omega$ be a set of monopotent triangularisable matrices. Then
$\Omega$ has a horospherical $rePresentation$ .

Proof: It clearly suffices to assume that $\Omega$ is indecomposable. Under our
hypothesis, we can further assume that each $ Ae\Omega$ has the form $A=A..A_{u}$

where $A.=\lambda(A$] $\cdot I$ is a scalar matrix with characteristic root $\lambda(A$], while $A_{u}$ is a
unipotent triangular matrix, and $A_{\iota}A_{u}=A_{u}\cdot A_{\iota}$ . {We recall that for non singular
matrix $x$ , we have what is called the unique Jordan Multiplicative Decomposition
of the form $x=x_{s}\cdot x_{u}$ , where $x$. is semi-simple, $x_{u}$ is unipotent, and $x..x_{u}=x_{u}\cdot x.$ .
Thus, over an algebraically closed field, $x$. can be taken to be diagonal: [1]}.

With these observations, to prove the $threm$ , it clearly suffices to take $\Omega$

to be a unipotent set of triangular matrices.
Now let $\Sigma$ be a finite subset of $\Omega$ . Then the algebra $\Omega^{*}$ generated by

$\{A-I/Ae\Omega\}$ , contains the subalgebra $\Sigma^{*}$ generated by $\{\sigma-I|\sigma\in\Sigma\}$ , which is
clearly nilpotent by a well known Theorem of Wedderburn: [2], page 188.

Thus $\Omega^{*}$ is a locally nilpotent algebra of finite dimensional linear transfor-
mations, and hence is itself nilpotent. Let $t$ be its index of nilpotency. Then
($\Omega^{*}]^{\ell}=0$ and $t$ is minimal.

Now consider the $\Omega^{*}$-admissible descending chain of subspaces:

$V>V\Omega^{*}>V\Omega^{*2}>\cdots>V\Omega^{*t-1}>0$ ,

where each containment is proper in view of the index of nilpotency of $\Omega^{*}$ .
Next it is easy to see that the lattice of $\Omega^{*}$-admissible subspaces coincides

with the $\Omega$-admissible subspaces. Thus it suffices to prove that for each permis-
sible $i,$ $V\Omega^{*}$

: is minimal in $V\Omega^{*i-1}$ such that the restriction of $\Omega^{*}$ to $V\Omega^{*i-1}/V\Omega^{*i}$ ,

is a zero-matrix. {Here we take $V\Omega^{*0}=V$ }. Again ( $V\Omega^{*}\ell-1$ ] $\Omega^{*}=V\Omega^{*}:$ , shows that
the restriction is zero.

To prove minimality, let $W\subseteq V\Omega^{*i}$ such that ( $i$] $W$ is $\Omega^{*}$-admissible, and
$tii]\Omega^{*}$ restricted to $V\Omega^{*i-1}/W$, is zero.

Then ( $V\Omega^{*i-1}$ ] $\cdot\Omega^{*}\subseteq W$ so that $V\Omega^{*i}\subseteq W$. Hence $W=V\Omega^{*i}$ . This completes
the proof. Q. E. D.

From the theory of Jordan-Canonical forms, we know that each $n\times n$ matrix
is a direct sum of its primary components which can, in the canonical form, be
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taken to be monopotent triangular. Hence we have:
Cor. 1: Every matrix has a horospherical $rePresentation$ , unique $uPto$ simi-

larity.
Since by a $threm$ of Kolchin [1], every multiplicatively closed set of

unipotent matrices is triangularisable, we also have:
Cor. 2: Any multiPlicatively closed set of $uniPotent$ matrices has a horo-

$sPherical$ representation.

\S 3. Group Theoretic Conditions.

We aPply the above Th. 1 to exhibit a non-trivial normal subgroup in every
linear group, such that the subgroup has a horospherical representation.

Theorem 2: Every finitely generated indecomposable linear group $\Omega$ , has a
normal subgroup $H\neq I$. such that $H$ has a horospherical $rePresentation$ .

Proof: By virtue of Noether’s Representation $Threm$ , there is a repre-
sentation $\rho$ of $\Omega$ such that for every A $e\Omega$ ,

$\rho(A$] $=[\rho_{1}(A$

]

$0$
$\rho_{t}(A$]

$*]$ ,

where $\rho_{i}$ are the irreducible constituents of $\rho$ .
It is straight forward to verify that the map $\mu$ defined by,

$\mu(A]=\left\{\begin{array}{ll}\rho_{1}(A] & 0\\0 & \rho_{t}(A]\end{array}\right\}$ ,

is a group homomorphism defined on $\Omega$ , and the kemel of $\mu$ is the normal subgroup
$H$ consisting of all $A$ $e\Omega$ such that

$\rho(A]=[$ $0I_{1}$ . $*I_{\ell}$ $]$ ,

where $I$: are identity matrices of the same dimension as the degree of the con.
stituent $\rho:$ .

Applying Cor. 2 to Th. 1, $H$ has a horospherical representation
Finally, since $\Omega$ is indecomposable, so clearly $\mu$ is not an isomorphism

Thus $H\neq I$.
Cor. 1: If $\Omega$ does not have a horospherical $rePresentation$ then $H$ is proper.
This corollary gives us an interesting simplicity criterion:
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Cor. 2: $A$ finitely generated indecomposable linear group $\Omega$ is either not
simple or has a horospherical representation.

To apply Th. 1 to certain nilpotent linear groups, we recall that in [7], the
following was proved:

Lemma 3: If $C=(A, B$] $=ABA^{-1}B^{-1}$ is $uniPotent$ and commutes with both
the invertible linear transformations $A$ and $B$ of a vector sPace $V$, then the $B$

primary $comPonents$ of $V$, are A-invariant.
It follows that the following holds:
Lemma 4: If $\mathcal{L}=\{A_{1}, \cdots, A_{m}\}$ is a finite set of linear transformations of

$V$, such that for each $i,$ $j,$ $(A_{i}, A_{j}$] is uniPotent and commutes with both $A_{i}$ and
$A_{j}$ , then $V=V_{1}\oplus\cdots\oplus V_{t}$ such that for each $i$ and $j,$ $A$: restrtcted to $V_{j}$ is mono-
$p_{otent}$ .

We use these results to prove:

Theorem 5: Let $\Omega$ be a finitely generated nilpotent linear group with the
generators $\{A_{1}, A_{2}, \cdots, A_{m}\}$ , such that for each $i,$ $j,$ $(A_{i}, A_{j}$] is uniPotent and
commutes with each $A_{k}$ . Then $\Omega$ has a horosPherical $rePresentation$ .

Proof: By Lemma 4, the restriction of each $A$: to any $\Omega$-indecomposable
component of $V_{1}$ is monopotent. Further, since $(A_{i}, A_{j}$] is unipotent and com-
mutes with each $A_{k}$ , so $(A_{i}, A_{j}$] $-I$ lies in the radical of the associative algebra
generated by $\{A_{1}, A_{2}, \cdots, A_{m}\}$ . Then, by a trivial modification of McCoy’s

Criterion for triangularisability, we conclude that $\{A_{I}, \cdots, A_{m}\}$ , and hence their
restrictions to the $\Omega$-indecomposable components of $V$, form a triangularisable

set of matrices. Now it follows as a straight consequence of Th. 1 above, that
$\Omega$ has a horospherical representation. Q. E. D.

In order to obtain conditions for horospherical representations of algebraic

linear groups, we recall the following results from [1] Th. 11.1 and [6] P. 30
respectively:

Lemma 6: If $\Omega$ is a connected nilpotent linear group, then $\Omega.$ , the set of
semi-simple parts of the elements of $\Omega$ , belong to the centre of $\Omega$ .

Lemma 7: A connected algebraic linear group is solvable if and only if it is
triangularizable.

We aPply these to obtain:

Theorem 8: If $\Omega$ is a connected nilpotent algebraic linear group, then $\Omega$ has
a horosPherical $rePresentation$ . (Conversely) If $\Omega$ is a linear group such that $\Omega$.
is contained in its centre, and $\Omega$ has a horospherical representation then $\Omega$ is
nilpotent.
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Proof: Let $\Omega$ be a connected nilpotent algebraic linear group. By Lemma
6, $\Omega_{l}$ is central in $\Omega$ . We can also assume $\Omega$ to be $indecom\infty$sable as before.
Then by Th. 1 in [7], $\Omega$. is a monopotent set of matrices. Then in view of the
Jordan Multiplicative Decomposition $A=A_{\epsilon}\cdot A_{u}$ , where A. is semi.simple and $A_{u}$

is unipotent, we deduce that $\Omega$ is itself a monopotent set of matrices, Further,
by Lemma 7, $\Omega$ is triangularisable. Hence, by Th. 1, $\Omega$ has a horosphericaI
representation.

For the second part of the theorem, we again make the simplification of
taking $\Omega$ to be indecomposable. Then, as $\Omega$. is central by hypothesis, the same
argument as above gives that $\Omega$ is a monopotent set of matrices. The rest of
the argument is as in the proof of Th. 1 of [9]. By virtue of horosperical
representation, we can assume that each $A$ $e\Omega$ has the form,

$A=[A_{1}0A_{2}$ . $.*A_{\ell}]$ ,

where $A_{i}=\lambda_{A}\cdot I_{i}$ , where $\lambda_{A}$ is the unique characteristic root of $A$ , and $L$ is the
unit matrix of suitable dimensions. Since each $A$ in $\Omega$ is nonsingular, so
$A=(\lambda_{A}\cdot I$] $\cdot(\lambda_{A}^{-1}\cdot A$] $=A..A_{u}$ where $A_{*}=\lambda_{A}\cdot I$ and $A_{u}=\lambda_{A}^{-1}\cdot A$ .

Now, clearly, the set $\{\lambda_{A}|Ae\Omega\}$ is a multiplicative subgroup $N$ of the complex
field, and hence $N$ is abelian also. Further $\ovalbox{\tt\small REJECT}^{\prime}=\{A_{u}|Ae\Omega\}$ is a triangularisable
unipotent group, and hence nilpotent: [1].

Since under our $hy\infty theses,$ $N$ and %’ commute elementwise and $N\cap\%^{r}=I$,
so \Omega =N $\times$ %’, whence $\Omega$ is nilpotent. Q. E. D.

In [9], the equivalence of Property $T$ and nilpotence of connected algebraic
linear groups, was established. Hence we have:

Cor. 1: . For connected algebraic linear groups, $ProPertyT$ imPlies horo-
sPherical $rePresentation$ .

In the next section we shall establish the same result for arbitrary sets of
linear transformations.

\S 4. Additive Commutator Conditions.

We prove first:
Theorem 9: Let $\Omega$ be a finite set of 2-commutative linear transformations.

Then the enveloping Lie algebra $\overline{\Omega}$ generated by $\Omega$ , has a horospherical $representa-$

tion.
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Proof: Let $\Omega=\{A_{1}, \cdots, A_{m}\}$ . Since $\Omega$ is $2-\omega mmut^{c}ative$ , so the additive
commutators $[A_{i}, A_{j}]$ belongs to the centre of $\Omega$ .

Now $\overline{\Omega}$ is generated, as a vector space, by the Lie-monomials $[\cdots[Ai_{1}, A\ell_{2}]$ ,
, $A:.$], which are all zero if $s>2$ in view of the above comment. Thus $\overline{\Omega}$ has

a finite vector space basis consisting of the elements $\{A_{1}, \cdots, A_{m}, [Ai, Aj]\cdots\}$ .
Hence $[\overline{\Omega},\overline{\Omega}]$ , the commutator ideal, is contained in the centre of $\overline{\Omega}$ . Then if
$X$ is any element of $\overline{\Omega}$ , and ad $X$ is the adjoint of $X$, we have that for any
vector $ue\overline{\Omega}$ ,

$u(adx]^{\epsilon}=[\cdots[u, x],$ $\cdots,$ $x$] $=0$ for $s>1$ .
Thus each ad $X$ is nilpotent so that $\overline{\Omega}$ is a nilpotent Lie-algebra, and it is well
known that for such a Lie-algebra, of linear transformations of a finite dimen-
sional vector space $V$, we can decompose $V$ into a direct sum of indecomposable
$\Omega$-admissible subspaces:

$V=V_{1}\oplus\cdots\oplus V_{\ell}$ ,

such that the restriction of the elements of $\overline{\Omega}$ to any $V_{i}$ , are monopotent and
triangularisable: [4].

Then by Th. 1, each of these indecomposable components of $\overline{\Omega}$ , has a horo-
spherical representation, and hence so has $\overline{\Omega}$ . Q. E.D.

Cor. 1: Every commutative set of linear transformations has a horosphericd
$rePresentation$ .

Finally, we have:

Theorem 10: If $\Omega$ is a set of linear transformations of the vector $sPaceV$

such that,
(i) $\Omega$ has $ProPertyP$, and
(ii) $\Omega$ is k-commutative in the additive sense for some finite $k$ , then $\Omega$ has a

horospherical $rePresentation$ .
Proof: From [4], page 40, $k-mmutativity$ implies that $V$ has a direct sum

decomposition into $\Omega$-admissible indecomposable subspace:

$V=V_{1}\oplus\cdots\oplus V_{t}$ ,

such that the set of restrictions of the elements of $\Omega$ to any of the $V_{\ell}$ , is a
monopotent set. This fact, combined with hypothesis (i) of the $threm$ and
Th. 1, gives a horospherical representation for $\Omega$ . Q. E. D.

Now we remark that in [8], it has been shown that hypotheses( $i$] and (ii)

of Th. 10 above, are equivalent to Property $T$ for $\Omega$ . Thus we conclude:
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Cor. 1: If a set $\Omega$ of linear transformations has $ProPertyT$, then it has a
horospherjcal $rePresentation$ .

\S 5. Special Case of $dim$ . $2$ .
For this section, we assume that $dim$ . $V=2$ . We then have:

Theorem 11: A set $\Omega$ of linear transformations of $V$, has a horosphericat
$rePresentation$ if and only if $\Omega$ is commutative.

Proof: If $\Omega$ is $mmutative$ then by Cor. to Th. 9 above, $\Omega$ has a horo-
spherical representation.

Conversely, if $\Omega$ has a horospherical representation, then, since, $dim$ . $V=2$ ,
so either $\Omega$ consists of only scalar matrices or $V$ has a l-dimensional $\Omega$-invariant
subspace $V_{1}=\{v_{1}\}$ , where $v_{1}$ is the basis of $V_{1}$ . Hence for all A $e\Omega,$ $Av_{1}=\lambda(A$] $v_{1}$ ,
and $A$ has the form

$A=[\lambda(A]0$ $\mu(A\nu(A\}]\cdot$

If $\nu(A$] $=0$ for every $A$ , then $V=V_{1}\oplus V_{2}$ where $V_{2}$ is also $\Omega$-invariant, so that $\Omega$

is diagonable and hence abelian.
On the other hand, if $V_{1}$ is the unique l-dimensional $\Omega$-invariant subspace

of $V$, then let $\{v_{1}, vJ\}$ be a basis for $V^{*}$ , the dual vector space of $V$. Then
$(v_{i}, v_{j}^{*}]=\delta_{ij}$ , the $Kronecker-\delta$ , where the parenthesis denotes the usual inner
product of vector spaces.

Now $v_{2}^{*}$ is incident of $v_{1}$ , and $ V_{1}=\langle v_{1}\rangle$ is $\Omega$-invariant, so $ V_{2}^{*}=\langle v_{2}^{*}\rangle$ is also
$\Omega^{*}$-invariant where $\Omega^{*}$ is the set of transposes of the elements of $\Omega$. Again $V_{l}^{*}$

must be the unique l-dimensional $\Omega^{*}$-invariant subspace of $V^{*}$ or else $\Omega^{*}$ and
hence $\Omega$ , will be diagonal.

Now let A $e\Omega$ . Then,

$Av_{1}=\lambda(A$] $\cdot v_{1}$ ,
$Av_{2}=\nu(A]v_{1}+\mu(A]v_{2}$ ,

so that
$v_{1}^{*}A^{*}=\mu(A]v_{1}^{*}+\nu(A]v_{f}^{*}$ ,
$v_{l}^{*}A^{*}=\lambda(A]v_{l}^{*}$

Hence
$(Av_{2}, v_{l}^{*}]=\nu(A]\cdot(v_{1}, v_{2}^{*}]+\mu(A](v_{2}, v_{l}^{*}]$ ,

$=\mu(A]$ ,
$=(v_{2}, v_{8}^{*}A^{*}]$ ,
$=\lambda(A](v_{2}, v_{2}^{*}]$ ,
$=\lambda(A]$ .
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Thus we have proved that $\Omega$ consists of monopotent triangular matrices
only. Then it is easy to verify that such a set is commutative.

This $mpletes$ the proof. Q. E. D.
Cor 1: If $dim$ . $V=2$ , then for any set $\Omega$ of linear transformations of $V$, the

notions of $P\prime oPertyT,$ horospherical $rePresentation$ and commutativity all coincide.
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